Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Ο
CHAPTER 2
Quadratic functions
Quadratic Functions
Quadratic functions are in the form of π(π) = πππ + ππ + π, where π β π and
represented by:
Vertex (minimum point)
axis of symmetry
Vertex (minimum point)
π<π
π>π
Roots of a quadratic function:
β The roots of the function are the x-coordinates of the points of intersection of the
curve with the x-axis
...
53
βπΒ±βπ2 β4ππ
2π
Ο
CHAPTER 2
Types of roots of a quadratic function:
1) Two different (distinct) real roots:
2) Two equal real roots (one real roots):
3) No real roots:
P
...
Discriminant = π₯ = π 2 β 4ππ, we have three cases:
1) π₯ = π 2 β 4ππ > 0
"two distinct "("different")" real roots"
2) π₯ = π 2 β 4ππ = 0
"two equal real roots "("one root")
3) π₯ = π 2 β 4ππ < 0
"no real roots"
Examples:
1) State the nature of the roots for each of the following quadratics:
a) π(π₯) = π₯ 2 β 10π₯ + 25
β΅π=1
π = β10
π = 25
β΄ π₯ = π 2 β 4ππ = 100 β 100 = 0
It has one real root (two equal roots)
-------------------------------------------------------------------------------------------------------------------------
b) π(π₯) = βπ₯ 2 + 5π₯ + 6
β΅ π = β1
π=5
π=6
β΄ π₯ = π 2 β 4ππ = 25 + 24 = 49 > 0
It has two different roots (two distinct roots)
-------------------------------------------------------------------------------------------------------------------------
c) π(π₯) = β2π₯ 2 β 5π₯ β 6
β΅ π = β2
π = β5
π = β6
β΄ π₯ = π 2 β 4ππ = 25 β 48 = β23 < 0
It has no real roots
P
...
β΅π=3
π=2
π=π
β΅ π₯ = π 2 β 4ππ = 0
two equal roots
4
1
β΄ 4 β 4 Γ 3 Γ π = 0 β 4 β 12π = 0 β 12π = 4 β π = 12 = 3
-------------------------------------------------------------------------------------------------------------------------
3) The equation ππ₯ 2 β 2π₯ β 7 = 0 has two distinct real roots, find the possible value
of k
...
56
β4
28
β π>
β1
7
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
1) Solve the equation 2π₯ 2 β 2π₯ β 1 = 0, giving the roots in exact form
------------------------------------------------------------------------------------------------------------------------
2) Solve the equation 3π₯ 2 β 4π₯ β 9 = 0, giving your answers to 2 d
...
-------------------------------------------------------------------------------------------------------------------------
3) State the nature of the roots for each of the following quadratics:
a) 2π₯ 2 β 3π₯ β 4 = 0
-------------------------------------------------------------------------------------------------------------------------
b) 2π₯ 2 β 3π₯ β 5 = 0
P
...
P
...
Example:
Find the coordinates of the vertex of the functionπ(π₯) = β2π₯ 2 β 3π₯ + 4; hence,
state the maximum or minimum value of f(x) and the value of x at which it occurs
...
59
3
4
41
8
Ο
CHAPTER 2
Quadratic functions
2) Put the function π(π₯) = ππ₯ 2 + ππ₯ + π in the form of the completing the square
π(π₯) = π΄(π₯ + π΅)2 + πΆ
...
The vertex is (-B, C)
...
Solution
β2π₯ 2 β 3π₯ + 4 β‘ π΄(π₯ + π΅)2 + πΆ β‘ π΄(π₯ 2 + 2π΅π₯ + π΅ 2 ) + πΆ β‘ π΄π₯ 2 + 2π΄π΅π₯ + π΄π΅ 2 + πΆ
π΄ = β2
β3
3
2π΄π΅ = β3 β 2(β2)π΅ = β3 β β4π΅ = β3 β π΅ = β4 = 4
3
π΄π΅ 2 + πΆ = 4 β β2(4)2 + πΆ = 4 β
3 2
β΄ π(π₯) = β2 (π₯ + 4) +
41
,
8
β18
16
9
+πΆ =4β πΆ =4+8 =
3 41
the vertex is (β 4 ,
8
41
8
)
-------------------------------------------------------------------------------------------------------------------------
2) The quadratic π₯ 2 β 10π₯ + 7 is denoted by f(x)
...
Hence, find the least possible value of f(x) and the corresponding value
of x
...
60
Ο
CHAPTER 2
Quadratic functions
3) The equation of a curve is π¦ = 8π₯ β π₯ 2
...
b) Find the coordinates of the vertex and state whether it is maximum or minimum
...
61
Ο
CHAPTER 2
Quadratic functions
5) If π(π₯) = 2π₯ 2 β 8π₯ + 10
i) Express π(π₯) is the form π(π₯ + π)2 + π, where a, b and c are constant
ii) hence, state the coordinates of the stationary point of π(π₯) and state its type
...
Solution
π₯ 2 + 4π₯ + 3 β‘ (π₯ + 2)2 β 4 + 3
π₯ 2 + 4π₯ + 3 β‘ (π₯ + 2)2 β 1,
π = 2 , π = β1
-----------------------------------------------------------------------------------------------------------------------
7) Put 2 + 2π₯ β π₯ 2 in the form β β (π₯ + π)2 stating the values of h and p
...
62
β = 3 πππ π = β1
Ο
CHAPTER 2
Quadratic functions
8) Express 2π₯ 2 β 16π₯ + 37 in the formπ΄(π₯ + π΅)2 +πΆ, stating the values of A, B
and C
...
Solution
β2π₯ 2 + 4π₯ = β2(π₯ 2 β 2π₯) = β2[(π₯ β 1)2 β 1]
= β2(π₯ β 1)2 + 2 = 2 β 2(π₯ β 1)2
π΄ = 2, π΅ = 2 πππ πΆ = 1
P
...
64
Ο
CHAPTER 2
Quadratic functions
ο Test yourself:
1) Given that π₯ 2 β 4π₯ + 7 β‘ (π₯ β π)2 + π
...
-------------------------------------------------------------------------------------------------------------------------
2) Express each of the following in the form of (π₯ + π)2 + π; stating the value of a
and b
...
a) π₯ 2 + 2π₯ + 2
------------------------------------------------------------------------------------------------------------------------
b) π₯ 2 β 8π₯ β 3
P
...
66
Ο
CHAPTER 2
Quadratic functions
g) 7 β 8π₯ β 4π₯ 2
------------------------------------------------------------------------------------------------------------------------
h) βπ₯ 2 β 10π₯ + 7
------------------------------------------------------------------------------------------------------------------------
3) Find the least or the greatest value of each of the following quadratic and the value
of x for which this occurs
...
67
Ο
CHAPTER 2
Quadratic functions
b) π¦ = (π₯ + 2)2 β 7
------------------------------------------------------------------------------------------------------------------------
c) π¦ = 1 + (2π₯ β 3)2
------------------------------------------------------------------------------------------------------------------------
d) π¦ = (5π₯ + 3)2 + 2
------------------------------------------------------------------------------------------------------------------------
e) π¦ = 3 β 2(π₯ β 4)2
P
...
β Find the y-intercept (value of y when x = 0)
...
β Sketch the function
...
69
Ο
CHAPTER 2
Quadratic functions
b) π¦ = 7 β 10π₯ β π₯ 2
Solution
Roots β 7 β 10π₯ β π₯ 2 = 0 β π₯ 2 β 10π₯ + 7
by using the formula β π₯ = β10
...
657
π¦-intercept β π₯ = 0 β π¦ = 7 β (0 , 7)
Vertex β π₯ =
βπ
2π
ββ10
= 2Γβ1 = β5
,
π¦ = 7 β 10(β5) β (β5)2 = 32 β (β5 , 32)
P
...
71
Ο
CHAPTER 2
Quadratic functions
3) π(π₯) = 4π₯ β 2π₯ 2 + 3
------------------------------------------------------------------------------------------------------------------------
4) π(π₯) = π₯ 2 + 6π₯
P
...
β Solve the equation (find the roots)
...
β State the range of values of x satisfying the inequality
...
73
,
π₯=3
3
x
Ο
CHAPTER 2
Quadratic functions
c) π₯ 2 + 12 < 13π₯
Solution
1
12
π₯ 2 β 13π₯ + 12 < 0
π₯ 2 β 13π₯ + 12 = 0 β (π₯ β 1)(π₯ β 12) = 0 β π₯ = 1
,
x
π₯ = 12
β΄ 1 < π₯ < 12
------------------------------------------------------------------------------------------------------------------------
d) π₯ 2 > π₯
Solution
0
π₯2 β π₯ > 0
π₯ 2 β π₯ = 0 β π₯(π₯ β 1) = 0 β π₯ = 0
β΄π₯<0
and
,
x
1
π₯=1
π₯>1
------------------------------------------------------------------------------------------------------------------------
2) Find the range of values of k for which the equation ππ₯ 2 + ππ₯ + 2 = 0 has no real
roots
...
74
π=8
0
8
k
Ο
CHAPTER 2
Quadratic functions
3) Find the range of values of k for which the equation ππ₯ 2 + 3π₯ + π = 0 has two
distinct real roots
...
Solution
π=1
,
π=π
,
2
π = 2π β 3
6
π₯ = π 2 β 4ππ β₯ 0 β π 2 β 4(1)(2π β 3) β₯ 0 β π 2 β 8π + 12 β₯ 0
π 2 β 8π + 12 = 0 β (π β 2)(π β 6) = 0 β π = 2
β΄πβ€2
,
πβ₯6
P
...
76
Ο
CHAPTER 2
Quadratic functions
d) 4 β 9π₯ 2 β€ 0
------------------------------------------------------------------------------------------------------------------------
2) Find the set of values of k for which the equation π₯ 2 β 2ππ₯ + 4 = 0 has two real
roots
...
77
Ο
CHAPTER 2
Quadratic functions
Simultaneous Equations
How to solve a pair of simultaneous equations one of them quadratic and
the other linear:
Examples:
1) Solve simultaneously π₯ 2 + 2π¦ 2 = 9,
π₯ + 4π¦ = 9
Solution
From the line β π₯ = 9 β 4π¦
Into the curve β (9 β 4π¦)2 + 2π¦ 2 = 9 β 81 β 72π¦ + 16π¦ 2 + 2π¦ 2 = 9
18π¦ 2 β 72π¦ + 81 β 9 = 0 β 18π¦ 2 β 72π¦ + 72 = 0 β (Γ· 18)
π¦ 2 β 4π¦ + 4 = 0 β (π¦ β 2)(π¦ β 2) = 0 β π¦ = 2
π₯ = 9 β 4(2) = 1
β΄ The line cuts the curve at point (1 , 2)
β΄ The line is tangent to the curve and the point of tangency is (1 , 2)
------------------------------------------------------------------------------------------------------------------------
2) Find the point(s) of intersection of the line π₯ + π¦ = 1 and the curve
π₯ 2 β π₯π¦ + π¦ 2 = 7
Solution
From the line β π¦ = 1 β π₯
Into the curve β π₯ 2 β π₯(1 β π₯) + (1 β π₯)2 = 7 β π₯ 2 β π₯ + π₯ 2 + 1 β 2π₯ + π₯ 2 = 7
3π₯ 2 β 3π₯ + 1 β 7 = 0 β 3π₯ 2 β 3π₯ β 6 = 0 β (Γ· 3)
π₯ 2 β π₯ β 2 = 0 β (π₯ β 2)(π₯ + 1) = 0 β π₯ = 2
π¦ = 1 β 2 = β1
,
π¦ = 1 β β1 = 2
β΄ The line cuts the curve at points (2, -1) and (-1, 2)
β΄ The points of intersection are (2, -1) and (-1, 2)
P
...
1) π₯ > 0
The line cuts the curve at two different (distinct) points
...
3) π₯ < 0
The line neither cuts nor touches the curve
Examples:
1) State the relation between the line π₯ + π¦ = 1and the curve π¦ = π₯ 2 + 2π₯ β 3
Solution
From the line β π¦ = 1 β π₯
Into the curve β 1 β π₯ = π₯ 2 + 2π₯ β 3 β π₯ 2 + 3π₯ β 4 = 0
π=1
,
π=3
,
π = β4
π₯ = π 2 β 4ππ = 32 β 4(1)(β4) = 9 + 16 = 25 > 0
β΄ The line cuts the curve at two different points
...
79
Ο
CHAPTER 2
Quadratic functions
1
2) Prove that the line π¦ = π₯ β 1 is a tangent to the curve π¦ = 4 π₯ 2
...
------------------------------------------------------------------------------------------------------------------------
3) Find the range of the value of k for which the line π¦ β π₯ = 1 cuts the curve
π¦ = ππ₯ 2 at two distinct points
...
Solution
From the line β π¦ = π₯ + π
Into the curve β π₯ 2 + π₯(π₯ + π) + 2 = 0 β π₯ 2 + π₯ 2 + ππ₯ + 2 = 0 β 2π₯ 2 + ππ₯ + 2
=0
π=2
,
π=π
,
π=2
π₯ = 0 β π 2 β 4ππ = 0 β π 2 β 4(2)(2) = 0 β π 2 β 16 = 0 β π 2 = 16
π=4
,
π = β4
P
...
Solution
From the line β π¦ = 2π₯ + π
Into the curve β (2π₯ + π)2 = 4π₯ β 4π₯ 2 + 4ππ₯ + π 2 = 4π₯ β 4π₯ 2 + 4ππ₯ β 4π₯ + π 2 = 0
4π₯ 2 + (4π β 4)π₯ + π 2 = 0
π=4
,
π = 4π β 4
,
π = π2
π₯ = 0 β π 2 β 4ππ = 0 β (4π β 4)2 β 4(4)π 2 = 0 β 16π 2 β 32π + 16 β 16π 2 = 0
16
1
β32π + 16 = 0 β 32π = 16 β π = 32 β π = 2
P
...
Find the coordinates of the points of intersection
...
P
...
------------------------------------------------------------------------------------------------------------------------
5) Show that the line π¦ = 3π₯ β 3 and the curve π¦ = (3π₯ + 1)(π₯ + 2) do not meet
...
83
Ο
CHAPTER 2
Quadratic functions
Equations which could be reduced to quadratics:
Examples:
1) solve π₯ 4 β 4π₯ 2 + 3 = 0
Solution
Let β = π₯ 2 so
β2 = π₯ 4
β2 β 4β + 3 = 0 β (β β 3)(β β 1) = 0 β β = 3
β΄ π₯2 = 3
,
π₯2 = 1
β΄ π₯ = Β±β3
,
,
β=1
π₯ = Β±1
------------------------------------------------------------------------------------------------------------------------
2) Solve π₯ β 5βπ₯ = 6
Solution
Let β = βπ₯ so
β2 = π₯
β2 β 5β β 6 = 0 β (β β 3)(β β 2) = 0 β β = 3
β΄ βπ₯ = 3
,
βπ₯ = 2
β΄π₯=9
,
,
β=2
π₯=4
------------------------------------------------------------------------------------------------------------------------
3) Solve π₯ 6 β 3π₯ 3 + 2 = 0
Solution
Let β = π₯
3
so
2
β =π₯
6
β2 β 3β + 2 = 0 β (β β 2)(β β 1) = 0 β β = 2
β΄ π₯3 = 2
,
π₯3 = 1
3
β΄ π₯ = β2
,
,
β=1
π₯=1
-----------------------------------------------------------------------------------------------------------------------18
1
4) Find the real roots of the equation π₯ 4 + π₯ 2 = 4
Solution
Multiply the equation by π₯ 4
Let β = π₯ 2 so β2 = π₯ 4
18 + π₯ 2 = 4π₯ 4 β 4π₯ 4 β π₯ 2 β 18 = 0
9
, β = β2
4
π₯ 2 = β2 (rejected no square root for β π£π numbers)
4β2 β β β 18 = 0 β (4β β 9)(β + 2) = 0 β β =
β΄ π₯2 =
9
4
,
P
...
85
Ο
CHAPTER 2
Quadratic functions
Exercises
1) i) Express 2π₯ 2 + 8π₯ β 10 in the form π(x + b) 2 + π
...
P
...
Express π(π₯) in the
form π(x β b) 2 β π
...
-------------------------------------------------------------------------------------------------------------------------
4) Determine the set of values of k for which the line 2π¦ = π₯ + π does not intersect
the curve π¦ = π₯ 2 β 4π₯+7
...
87
Ο
CHAPTER 2
Quadratic functions
5) Find the set of values of m for which the line π¦ = ππ₯ + 4 intersects the curve
π¦ = 3π₯ 2 β 4π₯ + 7 at two distinct points
...
i) Express 8π₯ β π₯ 2 in the form π β(x + b) 2 , stating the numerical values of a and b
-------------------------------------------------------------------------------------------------------------------------
ii) Hence, or otherwise, find the coordinates of the stationary point of the curve
...
88
Ο
CHAPTER 2
Quadratic functions
iii) Find the set of values of x for which π¦ β₯ β20
...
-------------------------------------------------------------------------------------------------------------------------
8) Find the set of values of k for which the line π¦ = ππ₯ β 4 intersects the curve
π¦ = π₯ 2 β 2π₯ at two distinct points
...
89
Ο
CHAPTER 2
Quadratic functions
9) The function f is defined by π βΆ π₯ β π₯ 2 β 3π₯ for π₯ β π
...
-------------------------------------------------------------------------------------------------------------------------
ii) Express π(π₯) in the form (π₯ β π) 2 β π, stating the values of a and b
...
The curve and the line intersect at the points A and B
...
Show that the coordinates of M is (2 , 7 2 )
...
90
Ο
CHAPTER 2
Quadratic functions
11) Find the value of the constant c for which the line π¦ = 2π₯ + π is a tangent to the
curve π¦ 2 = 4π₯
...
i) In the case where k = 8, find the coordinates of the points of intersection of the line
and the curve
...
P
...
i) Find the x-coordinates of the points of intersection of L and C
...
P
...
-------------------------------------------------------------------------------------------------------------------------
ii) Using these values of p and q, find the value of the constant r for which the
equation π₯ 2 + ππ₯ + π + π = 0 has equal roots
...
93
Ο
CHAPTER 2
Quadratic functions
15) The curve π¦ 2 = 12π₯ intersects the line 3π¦ = 4π₯ + 6 at two points
...
-------------------------------------------------------------------------------------------------------------------------
16) A curve has equation π¦ = ππ₯ 2 + 1 and a line has equation π¦ = ππ₯, where k is a
non-zero constant
...
P
...
i) In the case where k = 11, find the coordinates of the points of intersection of l and
the curve
...
P
...
i) For the case where k = 2, the line and the curve intersect at points A and B
...
-------------------------------------------------------------------------------------------------------------------------
ii) Find the two values of k for which the line is a tangent to the curve
...
96
Ο
CHAPTER 2
19) The diagram shows part of the curve π¦ =
2
1βπ₯
Quadratic functions
and the line π¦ = 3π₯ + 4
...
i) Find the coordinates of A and B
...
P
...
Find
i) The coordinates of the two points
...
-------------------------------------------------------------------------------------------------------------------------
21) The equation of a curve is π¦ = π₯ 2 β 3π₯ + 4
...
P
...
-------------------------------------------------------------------------------------------------------------------------
The equation of a line is π¦ + 2π₯ = π, where k is a constant
...
-------------------------------------------------------------------------------------------------------------------------
iv) Find the value of k for which the line is a tangent to the curve
...
99
Ο
CHAPTER 2
Quadratic functions
22) i) Express 2π₯ 2 β 4π₯ + 1 in the form π (π₯ + π) 2 + π and hence state the
coordinates of the minimum point, A, on the curve π¦ = 2π₯ 2 β 4π₯ + 1
...
It is given that the coordinates of P are (3, 7)
...
-------------------------------------------------------------------------------------------------------------------------
iii) Find the equation of the line joining Q to the mid-point of AP
...
100
Ο
CHAPTER 2
Quadratic functions
23) i) A straight line passes through the point (2, 0) and has gradient m
...
-------------------------------------------------------------------------------------------------------------------------
ii) Find the two values of m for which the line is a tangent to the curve
π¦ = π₯ 2 β 4π₯ + 5 For each value of m, find the coordinates of the point where the line
touches the curve
...
P
...
i) Show that the x-coordinates of A and B satisfy the equation 2π₯ 4 + 3π₯ 2 β 2 = 0
...
P
...
Given that PQ = β45 and that the gradient of the line PQ is β 2 , find
the values of a and b
...
P
...
104
Ο
CHAPTER 2
Quadratic functions
30) Express 2π₯ 2 + 12π₯ β 5 in the form π΄(π₯ + π΅)2 + πΆ, state the coordinates of the
vertex
-------------------------------------------------------------------------------------------------------------------------
31) Express 3π₯ 2 β 12π₯ + 3 in the form A(π₯ + π΅)2 + πΆ, state the coordinates of the
vertex
-------------------------------------------------------------------------------------------------------------------------
32) Express 7 β 8π₯ β 4π₯ 2 in the form π΄ β π΅(π₯ + πΆ)2 , state the coordinates of the
vertex
P
...
P
...
107
Ο
CHAPTER 2
Quadratic functions
36) by using method of completing the square, find the coordinates of the stationary
point of π¦ = 2π₯ 2 β 7π₯ + 2 and state its nature (max/min)
P
...
109
,
π₯β₯2
Ο
CHAPTER 2
Quadratic functions
2) π(π₯) = 2π₯ 2 β 12π₯ + 7
2π₯ 2 β 12π₯ + 7 β‘ π(π₯ β π)2 β π
β‘ π(π₯ 2 β 2ππ₯ + π 2 ) β π
β‘ ππ₯ 2 β 2πππ₯ + ππ 2 β π
by equating coefficients:
β΄π=2
β 2ππ = β12
ππ 2 β π = 7
β4π = β12
2(3)2 β π = 7
π=3
π = 11
β΄ π(π₯) = 2(π₯ β 3)2 β 11
------------------------------------------------------------------------------------------------------------------------
3) π¦ + 2π₯ = 11 β (1)
π₯π¦ = 12 β (2)
ππππ (1)
π¦ = 11 β 2π₯
πππ‘π (2)
π₯(11 β 2π₯) = 12
11π₯ β 2π₯ 2 = 12
β΄ 2π₯ 2 β 11π₯ + 12 = 0
3
π₯=2
π₯=4
π¦=8
π¦=3
3
β΄ πππππ‘π ππ πππ‘πππ πππ‘πππ πππ (2 , 8) πππ (4 , 3)
-------------------------------------------------------------------------------------------------------------------------
4) 2π¦ = π₯ + π β (1)
,
π¦ = π₯ 2 β 4π₯ + 7 β (2
ππππ (2) πππ‘π (1):
2(π₯ 2 β 4π₯ + 7) = π₯ + π
P
...
111
2
,
π>2
Ο
CHAPTER 2
Quadratic functions
6) i) 8π₯ β π₯ 2 β‘ π β (π₯ + π)2
β‘ π β (π₯ 2 + 2ππ₯ + π 2 )
β‘ π β π₯ 2 β 2ππ₯ β π 2
by equating coefficients:
π β π2 = 0
β2π = 8
π β (β4)2 = 0
π = β4
π β 16 = 0
β΄ π = 16
β΄ 8π₯ β π₯ 2 β‘ 16 β (π₯ β 4)2
-------------------------------------------------------------------------------------------------------------------------
ii) Stationary point of the curve (vertex) is (4, 16)
-------------------------------------------------------------------------------------------------------------------------
iii) π¦ β₯ β20
8π₯ β π₯ 2 β₯ β20
β΄ π₯ 2 β 8π₯ β 20 β€ 0
β΄ π₯ 2 β 8π₯ β 20 = 0
π₯ = β2
,
-2
π₯ = 10
10
β΄ β2 β€ π₯ β€ 10
-------------------------------------------------------------------------------------------------------------------------
7) π¦ = 4π₯ + π β (1)
π¦ = π₯ 2 β (2)
from (2) into (1):
π₯ 2 = 4π₯ + π
π₯ 2 β 4π₯ β π = 0
For the line not to intersect the curve β< 0
π=1
π = β4
π = βπ
π β 4ππ < 0
16 β 4(1)(βπ) < 0
16 + 4π < 0 β 4π < β16
2
P
...
113
3 2
9
π(π₯) = (π₯ β 2) β 4
Ο
CHAPTER 2
10) π¦ = π₯ 2 β 4π₯ + 7 β (1)
Quadratic functions
π¦ + 3π₯ = 9 β (2)
from (1) into (2):
π₯ 2 β 4π₯ + 7 + 3π₯ = 9
π₯2 β π₯ β 2 = 0
π₯ = β1
,
π₯=2
π¦ = 12
,
π¦=3
β΄Points of intersection of the line and the curve are (-1, 12) and (2, 3)
β1+2
β΄ Mid point M = (
2
,
12+3
1
1
2
2
2
) = ( ,7 )
-------------------------------------------------------------------------------------------------------------------------
11) Method (1):
π¦ = 2π₯ + π β (1)
π¦ 2 = 4π₯ β (2)
from (1) into (2):
(2π₯ + π)2 = 4π₯
4π₯ 2 + 4ππ₯ + π 2 = 4π₯
4π₯ 2 + 4ππ₯ β 4π₯ + π 2 = 0
For the line to be a tangent to the curve β= 0
π=4
,
π = 4π β 4 ,
π = π2
π 2 β 4ππ = 0
(4π β 4)2 β 4(4)(π 2 ) = 0
16π 2 β 32π + 16 β 16π 2 = 0
β΄ β32π = β16
β
1
π=2
P
...
115
Ο
CHAPTER 2
ii) π¦ 2 + 2π₯ = 13 β (1)
ππππ (2):
Quadratic functions
2π¦ + π₯ = π β (2)
π₯ = π β 2π¦
π¦ 2 + 2(π β 2π¦) = 13
πππ‘π(1):
π¦ 2 + 2π β 4π¦ β 13 = 0
β΄ π¦ 2 β 4π¦ + 2π β 13 = 0
For the line to be a tangent to the curve β= 0
π=1
π = β4
π = 2π β 13
β΄ π 2 β 4ππ = 0
16 β 4(1)(2π β 13) = 0
16 β 8π + 52 = 0
68 = 8π β π =
68
8
= 8
...
116
Ο
CHAPTER 2
Quadratic functions
14) i) Method (1):
π₯ = β3 & π₯ = 5 are roots of the equation, the equation could be written in the form
(π₯ + 3)(π₯ β 5) = 0
π₯ 2 β 2π₯ β 15 = 0 β π₯ 2 + ππ₯ + π = 0
β΄ π = β2
,
π = β15
Method (2): (Longer Method)
π₯ 2 + ππ₯ + π = 0
At π = βπ (β3)2 + π(β3) + π = 0
π β 3π + π = 0
β΄ β3π + π = βπ
β (1)
(5)2 + π(5) + π = 0
At π = π
25 + 5π + π = 0
5π + π = β25
β (2)
Now solve (1) & (2)simultaneously:
β3π + π = βπ
β5π β π = 25
β8π = 16
π = β2
,
π = β15
-------------------------------------------------------------------------------------------------------------------------
ii) π₯ 2 + ππ₯ + π + π = 0
π₯ 2 β 2π₯ β 15 + π = 0
π=1
π = β2
π = π β 15
For the equation to have equal roots β= 0
π 2 β 4ππ = 0
(β2)2 β 4(1)(π β 15) = 0
4 β 4π + 60 = 0
64 = 4π
β
π = 16
P
...
75 π’πππ‘π
4
-------------------------------------------------------------------------------------------------------------------------
16) π¦ = ππ₯ 2 + 1 β (1) ,
π¦ = ππ₯ β (2)
From (1) into (2):
ππ₯ 2 + 1 = ππ₯
ππ₯ 2 β ππ₯ + 1 = 0
For the curve and the line to have no common points
...
118
4
Ο
CHAPTER 2
Quadratic functions
17) i) When π = ππ
π₯π¦ = 12 β (1) ,
2π₯ + π¦ = 11 β (2)
From (2): π¦ = 11 β 2π₯
Into (1): π₯(11 β 2π₯) = 12
11π₯ β 2π₯ 2 = 12
β΄ 2π₯ 2 β 11π₯ + 12 = 0
3
π₯=2
,
π¦=8
π₯=4
π¦=3
3
β΄Coordinates of points of intersection of the line and the curve are (2 , 8) & (4,3)
-------------------------------------------------------------------------------------------------------------------------
ii) π₯π¦ = 12 β (1) , 2π₯ + π¦ = π β (2)
From (2): π¦ = π β 2π₯
From (1): π₯(π β 2π₯) = 12
ππ₯ β ππ₯ 2 = 12
β΄ 2π₯ 2 β ππ₯ + 12 = 0
β΄π=2
π = βπ
π = 12
for the line l not to intersect the curve β< 0
4β6
-4β6
(βπ )2 β 4(2)(12) < 0
π 2 β 96 < 0
β
β΄ π 2 β 96 = 0
π = β4β6
π = 4β6
P
...
β΄ π΄π΅ = β(β2 β 1)2 + (2 β 8)2 = 3β5 units
β΄ πππ πππππ‘ ππ π΄π΅ ππ (
1β2 8+2
2
,
2
1
) = (β 8 , 5)
-------------------------------------------------------------------------------------------------------------------------
ii) π¦ = ππ₯ + 6 β (1)
π¦ = π₯ 2 + 3π₯ + 2π β (2)
From (2) into (1):
π₯ 2 + 3π₯ + 2π = ππ₯ + 6
π₯ 2 + 3π₯ β ππ₯ + 2π β 6 = 0
π=1
π =3βπ
π = 2π β 6
For the line to be a tangent to the curve β= 0
(3 β π)2 β 4(1)(2π β 6) = 0
9 β 6π + π 2 β 8π + 24 = 0
π 2 β 14π + 33 = 0
β΄π=3
,
π = 11
P
...
121
Ο
CHAPTER 2
Quadratic functions
ii) Let A (2, 6) and B (-3, 11)
2β3 6+11
β΄ πππ πππππ‘ ππ π΄π΅ = (
11β6
2
,
2
) = (β0
...
5)
5
ππ΄π΅ = β3β2 = β5 = β1 β πβ₯ = 1
β΄ π¬quation of β₯bisector of AB:
π¦β8
...
5
π¦ β 8
...
5
β΄π¦βπ₯ =9
-------------------------------------------------------------------------------------------------------------------------
21) i) π¦ = π₯ 2 β 3π₯ + 4
If the whole curve lies above x-axis, then the curve has no real roots
...
-------------------------------------------------------------------------------------------------------------------------
iii) When π = π
π¦ + 2π₯ = 6 β (1) ,
π¦ = π₯ 2 β 3π₯ + 4 β (2)
From (2) into (1):
π₯ 2 β 3π₯ + 4 + 2π₯ = 6
π₯2 β π₯ β 2 = 0
π₯ = β1
π¦=8
,
π₯=2
π¦=2
β΄Points of intersection of the line and the curve are (β1, 8) πππ (2, 2)
P
...
75
-------------------------------------------------------------------------------------------------------------------------
22) i) 2π₯ 2 β 4π₯ + 1 β‘ π(π₯ + π)2 + π
β‘ π (π₯ 2 + 2ππ₯ + π 2 ) + π
β‘ ππ₯ 2 + 2πππ₯ + ππ 2 + π
by equating coefficients:
π=2
2ππ = β4
ππ 2 + π = 1
4π = β4
π = β1
2(β1)2 + π = 1
2+π =1
π = β1
β΄ 2π₯ 2 β 4π₯ + 1 = 2(π₯ β 1)2 β 1
β΄ Min point on the curve is π΄ = (1, β1)
-------------------------------------------------------------------------------------------------------------------------
ii) π₯ β π¦ + 4 = 0 β (1) , π¦ = 2π₯ 2 β 4π₯ + 1 β (2)
From (2) into (1): π₯ β (2π₯ 2 β 4π₯ + 1) + 4 = 0 β π₯ β 2π₯ 2 + 4π₯ β 1 + 4 = 0 (Γ-1)
2π₯ 2 β 5π₯ β 3 = 0
1
π₯ = β2
π¦ = 3
...
5)
P
...
5
β΄ π = 2+0
...
5
2
...
5 , 3
...
124
π¦=2
π=2
Ο
CHAPTER 2
Quadratic functions
At m = 2 into equation (3):
π₯ 2 β 6π₯ + 9 = 0
π₯=3 , π¦=2
β΄Coordinates of point of tangency is (3, 2)
-------------------------------------------------------------------------------------------------------------------------
iii) π₯ 2 β 4π₯ + 5 β‘ (π₯ + π)2 + π
β‘ π₯ 2 + 2ππ₯ + π2 + π
β΄ 2π = β4
π2 + π = 5
π = β2
4+π = 5
π=1
β΄ π₯ 2 β 4π₯ + 5 β‘ (π₯ β 2)2 + 1
β΄ Coordinates of minimum point on the curve π¦ = π₯ 2 β 4π₯ + 5 ππ (2, 1)
-------------------------------------------------------------------------------------------------------------------------
24) i) π¦ = 2π₯ β (1)
π¦ = 2π₯ 5 + 3π₯ 3 β (2)
From (2) into (1):
2π₯ 5 + 3π₯ 3 = 2π₯
2π₯ 5 + 3π₯ 3 β 2π₯ = 0
π₯(2π₯ 4 + 3π₯ 2 β 2) = 0
β΄ πΈππ‘βππ π₯ = 0 (ππππππ‘ππ) ππ 2π₯ 4 + 3π₯ 2 β 2 = 0
Equation satisfied by A & B
-------------------------------------------------------------------------------------------------------------------------
ii) 2π₯ 4 + 3π₯ 2 β 2 = 0
let m =π₯ 2
β΄ 2π2 + 3π β 2 = 0
1
π=2
π = β2
π₯2 =
π₯ 2 = β2 (rejected)
1
π₯π΅ = β2 =
π¦π΅=β2
1
2
β2
2
,
,
1
π₯π΄ = ββπ₯ = β
π¦π΄ =ββ2
β2
2
β΄π΄=(
P
...
126
(rejected)
Ο
CHAPTER 2
Quadratic functions
27) π₯ 2 + 2π₯ + 2 = (π₯ + 1)2 β 1 + 2 = (π₯ + 1)2
Vertex (-1, 1)
-------------------------------------------------------------------------------------------------------------------------
28) π₯ 2 β 8π₯ β 3 = (π₯ β 4)2 β 16 β 3 = (π₯ β 4)2 β 19
Vertex (4, -19)
-------------------------------------------------------------------------------------------------------------------------
29) 5 β 6π₯ β π₯ 2 = βπ₯ 2 β 6π₯ + 6
= β(π₯ 2 + 6π₯) + 5
= β[(π₯ + 3)2 β 9] + 5 = β(π₯ + 3)2 + 9 + 5
= 14 β (π₯ + 3)2
Vertex (-3, 14)
-------------------------------------------------------------------------------------------------------------------------
30) 2π₯ 2 + 12π₯ β 5 = 2(π₯ 2 + 6π₯) β 5
= 2[(π₯ + 3)2 β 9] β 5
= 2(π₯ + 3)2 β 18 β 5 = 2(π₯ + 3)2 β 23
= 14 β (π₯ + 3)2
Vertex (-3, -23)
-------------------------------------------------------------------------------------------------------------------------
31) 3π₯ 2 β 12π₯ + 3 = 3(π₯ 2 β 4π₯) + 3
= 3[(π₯ β 2)2 β 4] + 3
= 3(π₯ β 2)2 β 12 + 3 = 3(π₯ β 2)2 β 9
Vertex (2, -9)
P
...
value of π(π₯) is β 8 & occurs when π₯ = 4
5 9
( ,β )
4 8
-------------------------------------------------------------------------------------------------------------------------
34) i) π(π₯) = 3 β 7π₯ β 3π₯ 2
7
= β3π₯ 2 β 7π₯ + 3
7 2
= β3 (π₯ 2 + 3 π₯) + 3
7 2
49
49
= β3 [(π₯ + 6) β 36] + 3 = β3 (π₯ + 6) + 12 + 3
7 2
85
6
12
= β3 (π₯ + ) +
85
7 2
π(π₯ ) = 12 β 3 (π₯ + 6)
(
85
ii) Max
...
128
β7
6
β7 85
, )
6 12
Ο
CHAPTER 2
Quadratic functions
35) i) 7 β 10π₯ β π₯ 2 = βπ₯ 2 β 10π₯ + 7
= β1(π₯ 2 + 10π₯) + 7
= β1[(π₯ + 5)2 β 25] + 7
= β(π₯ + 5)2 + 25 + 7 = β(π₯ + 5)2 + 32
7 β 10π₯ β π₯ 2 = 32 β (π₯ + 5)2
(β5, 32)
ii) Max
...
129