Single Inheritance

Python program to demonstrate
single inheritance
Base class
class Parent:
def funci(self):
print("This function is in parent class.")
Derived class
class Child(Parent):
def func2(self):
print("This function is in child class.")

Driver's code
object = Child()
object.funcl()
object.func2()

teS

Output:

This function is in parent class.

This function is in child class.

A cO K

Multiple Inheritance: When a class can b
inheritance is called multiple in

classes are inherited.in "m
eNg < P ag

Multiple Inheritance

Syntax:

e features of the base

riv ur*ore tha e base class this type of
uItlpIe mherLﬁnc %

class A:
variable of class A
functions of class A

class B:
variable of class A
functions of class A

class C(A, B):
class C inheriting property of both class A and B
add more properties to class C

d = Dog()
d.speak()

Real Life Example of method overriding

class Bank:
def getroi(self):
return 10;
class SBI(Bank):
def getroi(self):

return 7;

class ICICI(Bank):
def getroi(self):

return 8;
. b1 = Bank()
. b2 = SBI()
. b3 = ICICI()

. print("Bank Rate of interest:",b1.getroi());
. print("SBI Rate of interest:",b2.getroi());

. print("ICICI Rate of interest:",b3.getroi

oot vigﬂ:\n\p’)orﬁa

Abstra

Output:

Bank Rate of interest: 10

SBI Rate of interest: 7
ICICI Rate of interest: 8

cagaject oriented programming. In python, we can also
perform data hiding by addmg the double underscore (____

) as a prefix to the attribute

which is to be hidden. After this, the attribute will not be visible outside of the class through

the object.

Example

class Employee:
__count=0;
def (self):

Employee. |

__init__
count = Employee.__count+1

def display(self):

print("The number of employees",Employee.

emp = Employee()
emp2 = Employee()
try:

print(emp.__count)

Output:

The number of employees
2

AttributeError: 'Employee’
object has no attribute

__count'

count)

The output is:

File "C:/Users/User/.spyder-py3/temp.py”, line 18, in <module:
b=Bus()

TypeError: Can't instantiate abstract class Bus with abstract methods getNoOfWheels

If we remove the @abstractmethod decorator, then the method becomes a normal method
and the child class may or may not give implementation to it.

rom abc import ABC, abstractmethod
class Vehicle(ABC):

def getNoOfWheels(Self):
pass

class Bus(Vehicle):
pass

b=Bus()

The output is: It is not giving any output, but it is not giving any error.
In [9]: runfile('C:/Users/User/.spyder-py3/temp.py’

In [10]: |
LA ‘D‘
| —V—

extendjag ABC class then

1.If a class containing one abstract method a

instantiation id not possible; Qm
s&a(t ethod in

for Abstract class with

e Y@ti@&ea Ing an object) is not possible.
Consi Keal\o!w example agoencrete class that does not contain an abstract

method and an abstract class, and hence we can perform instantiation/create an object

class Test:
pass

t=Test()

The below example contains an abstract class but does not include an abstract method, and
therefore, we can perform instantiation/can create an object.
An abstract class can contain a zero number of abstract methods

from abc import *
class Test(ABC):
pass

t=Test()

But, the following example contains an abstract method and does not include an abstract
class, and hence we can perform instantiation.

‘ from abc import *

The Purpose of Interface

An abstract class containing only abstract method acts as requirement specification, anyone can
provide an implementation in their way, and hence a single interface contain multiple applications in
their form.

The following example demonstrates the purpose of the interface.

from abc import *
class CollegeAutomation(ABC): ##trequirement apecification
@abstractmethod
def method1(self):pass
@abstractmethod
def method2(self):pass
@abstractmethod
def method3(self):pass

class AaruSoftimpl(CollegeAutomation):
def method1(self):
print("Method1 implementation")

def method2(self):
print("Method2 implementation")

def methods3(self): . 0. u\(

print("Method3 implementation") C

d=AaruSoftimpl() ##creating an object and callan @&@nd method3

d.method1()
d.method2() ‘l\l _‘(Om -‘ 28

d.method3()

‘

The output |s

Meth? C LbEPPﬁgﬁ o

1m|:llemer1tat1|:|r1
Method2 implementation
Method3 implementation

The difference between Interface vs Abstract class vs Concrete class

Interface Abstract class Concrete class

If we do not know anything about |If we are talking about If we are talking about complete
implementation and we want to implementation but not implementation and ready to
know requirement specification, wholly, then we should go |provide service, then we should
then we should go for Interface for abstract class go for a concrete class

The following example demonstrates the difference between interface, abstract class, and concrete
class.

from abc import *

class CollegeAutomation(ABC): ##Interfcae, because it contains only abstract methods
@abstractmethod
def method1(self):pass
@abstractmethod

