

Python program to demonstrate
single inheritance
Base class
class Parent:
 def func1(self):
 print("This function is in parent class.")
Derived class
class Child(Parent):
 def func2(self):
 print("This function is in child class.")

Driver's code
object = Child()
object.func1()
object.func2()

Output:

This function is in parent class.

This function is in child class.

Multiple Inheritance: When a class can be derived from more than one base class this type of
inheritance is called multiple inheritance. In multiple inheritance, all the features of the base
classes are inherited into the derived class.

Syntax:

class A:
 # variable of class A
 # functions of class A

class B:
 # variable of class A
 # functions of class A

class C(A, B):
 # class C inheriting property of both class A and B
 # add more properties to class C

Preview from Notesale.co.uk

Page 7 of 28

7. d = Dog()
d.speak()

Real Life Example of method overriding

1. class Bank:

2. def getroi(self):

3. return 10;

4. class SBI(Bank):

5. def getroi(self):

6. return 7;

7.

8. class ICICI(Bank):

9. def getroi(self):

10. return 8;

11. b1 = Bank()

12. b2 = SBI()

13. b3 = ICICI()

14. print("Bank Rate of interest:",b1.getroi());

15. print("SBI Rate of interest:",b2.getroi());

16. print("ICICI Rate of interest:",b3.getroi());

Output:

Bank Rate of interest: 10
SBI Rate of interest: 7
ICICI Rate of interest: 8

===

Data abstraction in python
Abstraction is an important aspect of object-oriented programming. In python, we can also
perform data hiding by adding the double underscore (___) as a prefix to the attribute
which is to be hidden. After this, the attribute will not be visible outside of the class through
the object.

Example

1. class Employee:

2. __count = 0;

3. def __init__(self):

4. Employee.__count = Employee.__count+1

5. def display(self):

6. print("The number of employees",Employee.__count)

7. emp = Employee()

8. emp2 = Employee()

9. try:

10. print(emp.__count)

Output:

The number of employees
2
AttributeError: 'Employee'
object has no attribute
'__count'

Preview from Notesale.co.uk

Page 16 of 28

The output is:

If we remove the @abstractmethod decorator, then the method becomes a normal method
and the child class may or may not give implementation to it.

from abc import ABC, abstractmethod
class Vehicle(ABC):

 def getNoOfWheels(Self):
 pass

class Bus(Vehicle):
 pass

b=Bus()

The output is: It is not giving any output, but it is not giving any error.

==
Points to be remembered on Abstract Methods and Classes in python
1.If a class containing one abstract method and if we are extending ABC class then
instantiation id not possible;
 for Abstract class with an abstract method instantiation(creating an object) is not possible.

Consider the below example which is a concrete class that does not contain an abstract
method and an abstract class, and hence we can perform instantiation/create an object

class Test:
 pass

t=Test()

=====================
The below example contains an abstract class but does not include an abstract method, and
therefore, we can perform instantiation/can create an object.
An abstract class can contain a zero number of abstract methods

from abc import *
class Test(ABC):
 pass

t=Test()

===============================
But, the following example contains an abstract method and does not include an abstract
class, and hence we can perform instantiation.

from abc import *

Preview from Notesale.co.uk

Page 19 of 28

The Purpose of Interface
An abstract class containing only abstract method acts as requirement specification, anyone can
provide an implementation in their way, and hence a single interface contain multiple applications in
their form.

The following example demonstrates the purpose of the interface.

from abc import *
class CollegeAutomation(ABC): ##requirement apecification
 @abstractmethod
 def method1(self):pass
 @abstractmethod
 def method2(self):pass
 @abstractmethod
 def method3(self):pass

class AaruSoftImpl(CollegeAutomation):
 def method1(self):
 print("Method1 implementation")

 def method2(self):
 print("Method2 implementation")

 def method3(self):
 print("Method3 implementation")

d=AaruSoftImpl() ##creating an object and calling method1, method2 and method3
d.method1()
d.method2()
d.method3()

The output is:

The difference between Interface vs Abstract class vs Concrete class

Interface Abstract class Concrete class

If we do not know anything about
implementation and we want to
know requirement specification,
then we should go for Interface

If we are talking about
implementation but not
wholly, then we should go
for abstract class

If we are talking about complete
implementation and ready to
provide service, then we should
go for a concrete class

The following example demonstrates the difference between interface, abstract class, and concrete
class.

from abc import *
class CollegeAutomation(ABC): ##Interfcae, because it contains only abstract methods
 @abstractmethod
 def method1(self):pass
 @abstractmethod

Preview from Notesale.co.uk

Page 27 of 28

