Semi Group : Let G be a non-empty set and '*' be a binary operation on G. Then G with '*' denoted by (G,*) is called a semi group if and only if the following condition satisfies :

- Closure, if a, b ϵ G then a*b ϵ G. ⇒
- Associativity, if a, b, c ϵ G then a*(b*c) = (a*b)*c ⇔

SOME EAXMPLES

1. Prove that (z,+) is an abelian group.

Proof :- Z is a set of integers, we can write it as

 $Z = (-\infty, ..., -3, -2, -1, 0, 1, 2, 3, ..., \infty)$

Now, \forall a, b, c ϵ Z

co.uk In order to show whether the set of interference under addition operation is Abelian behot, we will check its condition 10 necking the conditions,

- ⇔ $a+b \in Z$ { This shows closure property} As the addition of two integers will always gives an integer, therefore this is closed.
- a+(b+c) = (a+b)+c {This shows ⇔ associative property}