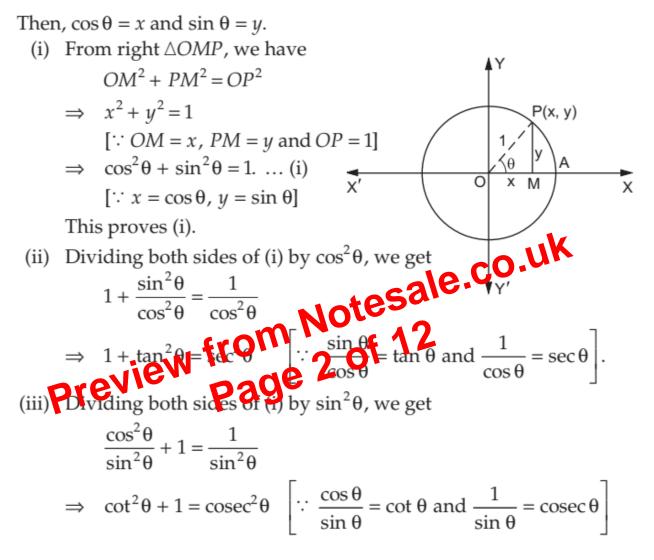
PROOF Let X'OX and YOY' be the coordinate axes. Taking O as the centre and a unit radius, draw a circle, meeting OX at A. Let P(x, y) be a point on the circle with $\angle AOP = \theta$. Join OP. Draw $PM \perp OA$.



NEGATIVE ARC LENGTH If a point moves in a circle then the arc length covered by it is said to be positive or negative depending on whether the point moves in the anticlockwise or clockwise direction respectively.

(iii) $180^{\circ} = \pi^{c}$ $\Rightarrow 600^\circ = \left(\frac{\pi}{180} \times 600\right)^\circ = \left(\frac{10\pi}{3}\right)^\circ.$ $\therefore \quad \cot(-600^\circ) = -\cot 600^\circ \qquad [\because \cot(-\theta) = -\cot \theta]$ $=-\cot\left(\frac{10\pi}{3}\right)$ $=-\cot\left(3\pi+\frac{\pi}{3}\right)$ $= -\cot \frac{\pi}{2}$ [: $\cot (n\pi + \theta) = \cot \theta$] $=-\frac{1}{\sqrt{3}}$. (v) $\tan \left(\frac{5\pi}{4}\right)$ = $e^{5\pi}$ Find the value of EXAMPLE 5 (*ii*) sin 16π (i) $\cos 15\pi$ (*iv*) $\sin 5\pi$ (i) $\cos 15\pi = \cos (24\pi + \pi)$ SOLUTION Previe (ii) $\sin 16\pi = \sin (16\pi + 0)$ $= \sin 0^{\circ}$ [$\because \sin (2n\pi + \theta) = \sin \theta$] = 0.(iii) $\cos(-\pi) = \cos \pi$ [$\because \cos(-\theta) = \cos \theta$] = -1.(iv) $\sin 5\pi = \sin (4\pi + \pi)$ $[\because \sin (2n\pi + \theta) = \sin \theta]$ $=\sin \pi$ = 0.(v) $\tan \frac{5\pi}{4} = \tan \left(\pi + \frac{\pi}{4}\right)$ $= \tan \frac{\pi}{4}$ [: $\tan (n\pi + \theta) = \tan \theta$] = 1.