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00duld_o

y-1
and % %H §< [{1+ylog x)H
Again gg x¥~t and % =11 +y(xtlogx) =x'"1(1+ylog x)
Using (2),
®u _o000ul_a

-1
axdydx _ OX HayaxH ax X (A+ylogx)g

From (1) and (3) follows the result.

2 2
Example 9: If v = log(x? + y2 + z2), prove that (x* +y? + ZZ)S?IO_V v V SZ\Z/E 2

Solution: Given v = log(x? + y? + 7%
ovd  _ 1

- DxE, T oy ) CO.
e

?v _ 0 ov_ E(x2+y +22) { +722-x9) 0
And ox2 ~ ox DoxO™ TR +y2+222H
(x Y QXS\ g
Slmllarly X2 +y2+ 22 2
? 62v D(XZP
an

2 Bx2+y +z2 H

Adding (2), (3) and (4), we get

|:|a2v azv aZVD HXZ + y2 - XZ) + (XZ + ZZ — yz) + (XZ + y2 _ 22) 0

Box2 "oy T o22E” °H (X* +y? + 2%y
0o%v | d%v v 0V ?vO_ 2
O W 0y? 0z E 02 +y2 +22)

o%v | 0°v asz
2 2 2
or (x“+y +Z)B&7 oy zza

Hence the result.

2
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Example 10: If =1, prove that

oucf , moull , oucf _,0, 9 ,ul]

(1)

..(2)

..(3)

..(4)

oox0 * BayH * Doz O Q‘ * 2928 [UP Tech, 2003]
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On using results given by (7), (8), (9) into equation (6), we get

o+ S S v B Bl rog

X2 +y2 +720]

= PO gt 1) EBELr; r o=+ 1)

ASSIGNMENT 2

1. If x=rcosB, y = rsin6, show that (i) a)r( g—)r( (i %%-r— (i) Eg;g %—;g_l.
X =rcoso 0%u  d%u _ .,
2. If u=f(r) and y:rsine} , prove that W-'-W f (r)+ f'(r). [Burdwan, 2003]
_cos@ _ _sin® DOXD oul Ek?yD DauD \(
3. If x=—"—,y=——, show that
v G TRy v.x - _ca.V

4.4 HOMOGENEOUS FUNCTIONS AND W
Homogeneous Function

An expression of the form ﬂ@ +§‘ 2y2 -‘ %‘Qﬁ which all the terms are of
functl é)ﬂ

degree n, is caILed 0
The ab nYmathematj ewritten as

W (y/x) + az(y? /x)”] or more precisely x"@(y/x),
wheére @(y/x) is a polynomial of degree nin (y/x).

Thus, any function f(x, y) which is expressible as either x"@(y/x) or y"Q(x/y) is called a
homogeneous function of degree nin x and .
E.g. (i) x*tan(y/x) is a homogeneous function of degree 3 in x and .

1

1 3H
oy POBEE

x3+ys 8_ %+, -, . -
T = ==X e(y/x)=x 76 @y/x) is a homogeneous function of
X/Z +y/2 1 % ZE
e BEE
g g

degree -1/6 in x and .

In general, a function f(x;, X,, X3, ...) is said to be a homogeneous function of degree n in

if it ible i noBe X X[
(Xq, Xy, ..., X,) if it is expressible in the form as x{ (paz, %N H

(ii)

Euler’s Theorem

If u be homogeneous function of degree n in X, y and has continuous first derivatives then

au ou
Xox Yy TNU [KUK, 2004]
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Now multiply (3) by x and (4) by y and, then add the two, we get

Z, 007, 0z,0 ,0Z, _ 02,0
X ox? B‘ax TYoay B 2Xy6y6x Y oy E(ax Yoy B
(2, 0z, 0, 0’z _ -2
O X ox2 B‘ax ey H 2’q’ayax Y g TNnA=nZ - (5)

Similarly on differentiating (2) partially with respect to x (when y constant) and with
respect to y (when x constant),

¥z, 02, ¥#Z, __ 0%,
ax Tox Yayax T Mox --(6)

X——=
6222 622 6222 - 0Z,
On multiplying (6) by x and (7) by y and, then adding the two

R T yzzigb o o

On adding (5) and (8), we have
x2 0 Z V2 9’z D

G ’€
Ex$ple é\l\@i}l 1$:x)— @e Q,%luate x2 +2xy aiay y 37 2u

2xy

[GJU, 2005]

Solution: u = u; + u,, where u; = x’tan~}(y/x), u, = -y’tan-!(x/y) are both homogeneous
function of degree 2 in x and .

O By Euler’s Theorem, x%—w+y%l;2 2, ..(1)
au2 ou, _
and Xax TV %5y dy =2[W, ..(2)
Differentiating (1) partially with respect to x and y
62 0 0° 0
oy | oy Y _,04% .(3)

X2 Tax Yaxay T ox

Pu oy 0%Uy _ 0
and Xayox oy TV 2oy --(4)

Now multiply (3) by x, (4) by y and, add the two

g, 0%y oy, 0°uy, , ou 0% 0 o0 0u 0w [
e P T 2"yaxay Yoy "V a2 BT 2E o Y ayH
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200U P azulﬂ oy .
O Q‘ a2 T2 axay +y? 0= B y 3y E— (using (1))

d’u, , 02U, 0
Similarly Q( axz +2xy axdy +y? oy 5 2U,,  (using (2))

On adding the two, we get the desired result.

Example 26: If u is a homogeneous function of nth degree in X, y, z, prove that

du du du

X3 + yW + 25, =nu [NIT Kurukshetra, 2006]

Solution: u is a homogeneous function of degree nin x, y and z

Let u= X”f% 2H or u=xf(s ) with L=s and Z=t ()
Differentiating (1) partially with respect to x u\(
ou _ 0B 05 _ of 9t0] CO

ox X"L(s, 1) + X n%ax ot aXH Sa\e

au nlf(St)'f‘X‘W% atmm (1)

e\,@t\‘g” 1f(st Q— atH (2
?multlplymg (2) by x?oughout we get

ou_ . 1Daf afD
X ox = X f(s,t)—x" B/ atH ...(3)

Now on differentiating (1) partially with respect to y, we get
au Eaf s | of ot 0

X" Bos ay * ot oy
au Eﬁf Lo, of - _,Of
. X" s o O at(O)H a5 (4
On multiplying (4) by y throughout, we get
ou _ .- of
Yay = i ...(5)

Similarly, on differentiating equation (1) with respect to z, we get

au _ Eaf as of otO

Ea?az ot ozH
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(i) If we take y = constant implying dy = 0, (5) gives

5
ﬂdx+ﬂdz 0 or Odzp _ _ BOX
0X 0z Cdx O, of O ...(5a)
HozH5
(ii) If we take x = constant implying dx = 0, (5) gives
5
of of ,_ _ OdzO _ B0y
ay W a792=0 of BgyH = rerp ...(5b)
28
(iii) If we take z = constant implying dz = 0, (5) gives
of
of of . Odx0 _ 9y
&dX‘Fwdy—o or %HZ— W (5C)
0x

Multiplying (5a), (5b), (5c), we get CO ‘\)
Odx O OdyD 0dz0 _ 4 o, xD oy O a)e
Hdy H BdzH Oax) %@@g ...(5d)

Example 27: If u = sm‘l(x Gm y =4t s m % 31 —t2)_71 [PTU, 2005]
50$()€é@\6\5}| % égt@ @& u ‘é>t< gl; S'ft/ ()

Now, X 12 -y2+axy  J1-(3tP- (4t3)2 +2(3)(4t%)
- 1 - 1 , . (2)
JA-42P1-0)  (1-42)J1-1)
oy _ 1 - 1
oy JI-xX2-y*+2xy (1-42N1-8° ++(3)
dx _, dy _ ... .
at - 3, Tt =12t°. (from given) ..(4)
N dy .
On substituting values of u,, u,, % d_)t/ in (1), we get
du 1 3(1-41%) 1
T —————[3-128=—— 5 =3(1-1) 2.
dt a- 421 - 2 1- 4t2)(1 _ t2)§
Example 28: Find the total differential coefficient of x?y with respect to x when x and y
are connected by the relation x? + xy + y? = 1. [KUK, 2008; NIT Kurukshetra, 2008]

Solution: Let z = x?, then in this problem we need to find g_)z(
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Example 42: If u = f(x, y) and x=rcosB| prove that
y=rsin@|’

_ Ek?u[f Dou f Dau[f 1 oucf
) oox0 *BayH “ooro T meen
. 0u 0u_0%u, 10°%u 10u ]
(i) 3% ay o2 T Ze@ Tror [Pb. Univ, 2002]
Solution: This example is an another way of understanding the previous example. In the

o’u 6 u =0 transforms to 1 2u 1au

e oy =t e rar O

previous example we have just proved that

) d%u 62 S . .
Means the expression, —— +—=— which is in cartisian coordinate system has value

ox? 6y2
u_ 10% 1ldu .
F"‘r—zw"‘ I’% n (I’ e) system
In the previous example, under equation (3), we had

ou ou _sinBdu
X (co 05 - ) nd

cos0 UK
or r 06

On squaring and adding these two results { \
E@u[’[ ElauD2 e%‘ Eose durf
ox Ol H‘T% 260

P(e\,\ :E:os g‘;g? Slnercosegl:ggé

+ mzeEk?uﬁ cos G@E’uzsmecose@@D
" oor0 T 2 9D r or 06H
ze)mautf mudf _moucf | 1 courf
rQd oed DOorO r2 0060
Example 43: Given that u(x, y, z) where x = r cos® cos@, y = r cos0 singand z = r sin@, find

ou du
0 and acp

Solution: Here by change of variable, we have
ou _duodx  Qudy duodz

=(cos? 0 +sin riz(cosze+sin29)

[NIT Kurukshetra, 2008]

0 ax00 ayae 0z 90 --(1)
%:—rsinecoscp,g
—rcosecoscpH ge g
Now y =rcos@sing,0 O a—g:—rSinesin(p,D

z=rsin® H -(2)

(o3
N
1
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?f _o9of _O., a 0 00,08 69D

similarly 52 =3y 3y =0 o Zavo0 Y au T v

Pt _ ., 50 &0 &0
ay 4y a a2 4yX

) , 0
avou ~ MY auav T vz (1)

Add (6) and (7), we get the desired result

Pf P _ o, 0020, #60
o2 6y2 Ay )%uz EYas

ASSIGNMENT 5

1.

5.

If u=f(r,s), r=x+ at, s=y+ bt, and X, y, t are independent variables, show that

ou _ 6u du
- 6x+bay'
. fu=FxXx-y,y-z z-Xx), prove that gg g;+glzj 0 \(

Ifu=f(r,s tyand r= V S= y t— , prove that x— +% au€‘9€)a?nataka 2006]

Ifx:u+v+wy—uw+vw+uvand 6‘(@
oF oF
R ﬁ@ﬁéﬂ&%ﬁ of 02

If x = rW\;@M\L z = f(x, @VMT(W cosnB) =-n(n-2)r"2sin(n -2)6

z, show that

5inb 00 6 cose 0
%—mt FoIIowEx——? 900 3y % 6 - %EH

6.

u 6_u:e_2rEk?2 2uld
e ay? Ha? FEds

it Use 2 o0 8 0.8 90
H‘ax Yoy a6 TH Y ax T Xy H]

If z is a function of x and y and u = Ix + my and v = ly — mx, then prove that

If X = e'cosB, y = e'sind; prove that

Pz, P2 _ o, o D¥2, #200
ox? +6y2 =E+rmSe v
_ _ _ X _O apg X=_9%
If w= u(x,y), where x = x(u, v), y = y(u, v), 6___v av o’ show that

62W+62W 02w . 9*w D xf [Bx[’[D
oz "o Eoxt " ay? BBuD DavDD

If u=1~(x,y,z)and x = rsind cosg, y = rsme sing, z = rcos6, then show that

mof O | oof f Dafﬁ ot O mafﬁ 1 aff
EaTH ETH HozH ~HorE " v2 BpeH T 17 sinze HogH

[Hint: Follow Example 42 (ii), Section 4.6]
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Further the expression (1) is valid for u being function of any number of variables say X, v,
.. then,

_dug  Bus  du -
ou a)(6x+ay6y+az_6z-+ . approximately ..(2)

Note: For percentage error, it is always advisable to take log on both sides of the governing equation first and
then proceed as usually.

Example 52: How sensitive is the volume V = 1o?h of a right circular cylinder to small
changes in its radius and height near the point (ry, hy) = (1, 3)?

Solution: By increment method, we get

oV O Wo\AR!
== Ar+ o
Dor Qg DN Gy
= V(1 3)Ar + V,(1, 3)Ah
=611 Ar + 11- Ah
The above result shows that a one-unit
change in r will change V nearly by 6 1T units
and a one-unit change in h will change V nearly

by 6 tunits. Therefore, the volume of a cyIi
with radius r = 1 and height h = 3

AV = Ah

times as sensmve to small c t |s to
small change insh

In cont and h a
SO =1, the + 9n

Ah. olume is now morg se to small
change in h to that it is to change in r. Thus the
sensitivity to change depends not only on the
increment but also on the relative size of r and
h (See Fig. 4.3 (ii)).

4.3.(if)

Fig. 4.3

Example 53: How sensitive is the change in V = 1r?h related to the relative change in r and
h? How are the percentage changes related?

Solution: By error approximation, V = 1r?h gives

AV =V, -Ar+Vh-Ah:2T[rh-Ar+T[r2Ah (1)
AV _ 21rh L A
or NS A+ hAh 2 +5 .2)

Clearly the relative change in V is the relatlve change in h plus two times the relative
change in r.

[AV 0., Ar O, Ah O
Further, x 100 2 5~ x 100 5 - %100 ...(3)

indicates that the percentage change in V is the percentage change in h plus two times the
percentage change in r.
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Solution: Given,

| is decreased by 2% i.e. ? x100 = -2
r is increased by 2% i.e. Q x100=2
. 6 3
t is increased by 1.5% ie. — *100=1.5= =5
8T[| I
Torsional rigidity, N(,t,r)=
implies  logN = log(8m) + Iogl - 2logt — 4logr ..(D
Taking differentials on both sides,
ON _ol ot  or
NCoT T4
or géNN ><:|.00|:| ?XlOOH ZH—XlOOH —4(gx100) UK
3 O-
=-2-2x5-4x2=-13 \e,c

Hence N diminishes by 13% if with theﬂ‘ entage changesin I, r, t.
Example 62: At a distance cjﬁ\r e foot 0 9@; the elevation of its top is
30°. If the possible err ihg th levation are 2 cm and 0.05 degrees,
find the apw‘@éjﬁor in calcul ht [NITK, 2002; UPTech, 2004]
A(top)
So o“ePhe

? given probl? as helght of the top
(point A) from the bottom (point B) and a the elevation of
the top with the ground is a° as explained in Fig. 4.5. From h=xtana
the figure, it is apparant that height h is a function of the
elevation, o and the distance of point of elevation from

bottom, X, i.e. C B(bottom)
h(x, a) = xtana ..(1) X=50em
Fig. 4.5
so that oh = h,dx + h 80 = tana dx + xsec?a da  ...(2)
For given x =50, 0x = 20m—imt a =30° da = 005"—il radians,
100 100 180
5 T g2 ﬁ 5 L

oh = (tan 30 EI—+50E'l;eC2 30° — = +50
( ) 100 100 180 \/— 100 E:/ 100 180

= 0.0116 + 0.0582 = 0.0698 =~ 0.07 mts. = 7 cms.

Example 63: If the sides and angles of a triangle ABC vary in such a way that its circum-

radius remains constant. Prove that da + db + dc =
cosA cosB cosC
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+1

Go,.00 f(a+0hb+6K), 0<B<1
an dyH aren. ’ -(2)

T In+1
If this remainder R, -~ 0 as h - o, then the Taylor’'s Theorem becomes Taylor’s Infinite
series as:

_ d ﬁ 0
f(a+h,b+k)_f(a,b)+H1—X+k—Hf( ,b) + LH](? H f(a,b)+...... ...(3)

Proof: Let x = a + ht, y = b + kt, where t is the parameter which takes the values in the interval
[0, 1]. Define a function

F(t) = f(x, y) = f(a + ht, b + kt) ..(4)
Then by chain rule on (1),

f af O
X ayH

d of dx , of dy _0 9
S FR=F — 2=
gt O=FO=5 0 "oyt an

cO LK

Precisely, F'(t) = a]%+k%§f,

\e.
s
“aﬂ"@ NO O“ 92

/L ...(5)
eVt ”*kﬁe@%
On using Taylor’s Theorem for functions of one variable, when t =1, a =0, we obtain
F(1) = FO) + F'(0) +... F”(0)+ F“”(O)
B=FO+FO+..+o (6)
where F(O)=fa+h,b+k)
F(O) = f(a, b) O
0 o o 0
F'0)=fh—+k—qf(ab 0
R (P PR Ve 0
O
0 o alf[
F'(0) = th-= +k—7 f(a,b =
O=gax kg @D i (D)
O
.................................... 0
0o . ,9 0
F'*0)=h—+k—q f(a+6h,b+06k),0<6<10
© an ayH @ ) 8

With above values of F(1), F(0), F’(0), ..., F™*1(0), in (6), we get the Taylor’s Theorem for
functions of two variables given by equations (1) and (2) in the statement.



328 Engineering Mathematics through Applications

o 1 10
0 f(x,y) = log [{1.03)% +(0.98)4 — 1= f(L,1) + [0.03f,(1,1) + (-0.02) (L, DF+ ...
O 0

=0+ @.03 %E— 0.02 BL89= 0 .005 approx.

CaCH™

ASSIGNMENT 8

s
1. Expand e*cosy about the point @zﬁ by Taylor’s Theorem.

Tt
2. Expand f(x, y) = sinxy in powers of (x — 1) and @‘75 upto the second degree term.

If f(x, y) = tan~*xy, compute (0.9, —1.2) approximately.
Expand sinx siny in powers of x and y as far as terms of third degree.
Expand e*log(l + y) in powers of x and y upto terms of third degree. W 2009]

AR

LS
4.10 MAXIMA-MINIMA OF TWO FUNCTIONS \ﬂ CO ’

Definition: A function f(x, y) of two variables is saﬁ.a um at (a, b) if f(a+ h, b +
k) — f(a, b) < 0 for sufficiently small posm value

h and k, and minimum if

f(a+ h, b+ k) - f(a, b) > 0. ?2
In other words, if f(a + '% 0 a, b) = g@"fo Il values of h, k, then f(a, b)
isa maxmuqi\ce +Kk)— f(a SI for small values of h, k, then f(a, b) is

‘?ms at which m?n mlnlmum values occur are also known as points of
n

extrema of critical points a he maximum and minimum values taken together are extreme
values of the function.

Observations:

1. A function f(x, y) may also attain its extreme values on the boundary.

2. The maxima-minima so defined are local relative maxima or local relative minima. Thus, a maximum
value may not be the greatest and minimum may not be the least of all the values of the function in any
finite region.

3. The greatest and smallest values attained by a function over the entire region including the boundary
are called global (absolute) maximum and global (absolute) minimum values of the function.

E.g. for a function z = f(x, y) say representing a dom, maximum value of z occurs at the top from where
surface descends in all directiosns. If z = f(x, y) represents the equation of a bowl, minimum is attained
at the bottom from where surface ascends in all directions. Otherwise, a maximum or minimum value
may form a ridge such that the surface ascends or descends in all directions.

Besides, there are points on the surfaces, from where surface rises for displacement in certain
directions and fall for displacement in the other directions, called saddle points.

Necessary Conditions for Having Extremum: f,(a, b) = 0 = f,(a, b).
By Taylor’s Theorem,

fa+hb+k) = f(a b) +(n fab) +k f,(ab)) + é(h2 @ h) + 2nkfy (. b) + K2 f (2 b)) + .. (1)
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4.11 LAGRANGE’S METHOD OF UNDETERMINED MULIPLIERS: CONSTRAINED
MAXIMA-MINIMA

In many engineering and science problem it is desired to find extrema of a function of
several variables that are not all independent but are connected to one another by certain
conditions. In such cases, generally the conventional method becomes either very complex
or impracticable, then we employ an alternate method which is very easy in its approach,
called Lagrange’s method of undetermined multipliers. Another name of it viz. constrained
maxima-minima is very obvious as here the variables involved in the function of which
extreme values are to be obtained are linked to each other by certain relations which are to
be taken care in the process of finding extreme values.

Ilustration: Say, if we want to find the Maximum and Minimum values of
u=1(x,y, 2z ..(1)
Consider function of three variables x, y, z which are connected by an implicit relation,

oy, 2)= ...(2)
For function u to possess stationary values, it is necessary that u\(
Do Wog Xg cO-Y o
0x ay 0z a\e .

du

0 a—dx+—dy+—dz N (%)
Also from (2)X ( m ’( 0 O-‘ 92
P( bdx a(pd 3 ...(5)
We see that (3) + )\(4) results in

[Pu )\ach

ot 990, -
Vo By NG Yy Ay =0 -(6)

but this will hold true only if

M a%=g, ()

0X 0X E

ou 00 .

—+A==0, (iNg (7
oy oy 0

ou 09 _ O

e +A P =0, ("')E

whence these three equation of (7) taken together with (2) will determine those x, y, z and A
for which u is a stationary.

Observation: Though this method is very simple in its approach, but it fails to determine the nature of the
stationary points whether they are points of maximum or minimum or saddle points.
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Solution: Let edges of the parallelopiped be 2x, 2y, 2z parallel to the coordinate axes so that
volume,

V = 8xyz ..(1)
Our object is to maximise V(X, y, z) subject to the condition,
X2 y2 22 _ _ X2 y2 22 _
¥+b_2+c_2_1 or ([(X,y,z)_?+b—2+c—2—l—0 ...(2)

Define function,

2
F(X,y,2) =V +A@= 8xyz+)\a— y—+——1H ...(3)
So that for stationary values,
g
g—§—8yz+)\——0 ()
oF 2y _ M \(
—=8xz+A==0 (“)D
ay ? CO AV (@)
aF 8xy+)\2—22—0 (|||) tesa\
Equating the values of A rom (i and (||| e
X
previET s Paa
. _ x_y2 22 _ 1. 0. X _y _ 20
implying thereby ?—?—?—g, EJ g 2 P _2gin (2) ...(5)
-a y-b ,_cC
or TEITETS

When x = 0, the parallelopiped mearly becomes a rectangular sheet and in that case the
volume, V = 0.

Hence V is maximum when x = i, y= b z=-% and Vi = 8XyZ = 8a7bcl

V3T O3 B

Example 77: Find the maximum value of the function cosA cosB cosC.

Solution: If A, B, C are the angles of a triangle ABC, then
A+ B+ C=180° (an implicit relation) ..(1)
For f(A, B, C) = cosAcosBcosC, ..(2)
define Lagrange’s function,
F(A, B, C)=f+ Ap=cosA cosBcosC+ A\A+B+C-m) ...(3)
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Alternately: By Conventional Method;

x2h [
h x2h 0 30 xh
V =X @HSE X(xy) + 3 O WEE——F % 3@ (5)
1
S = dxy + x5+ an? = 4B - XNHy 5 (k2 + an2y2
y % SE ( ) ...(6)

Thus by elimination of y, surface area S has been made a function of two variables x and
h only.

Now for minimum surface area, S, =0 =S,

2
Therefore, S (x,h) = E—4V EIX1—2 —gha+ DE’«/XZ +4h% + ﬁg: 0 (7

and Sh(x,h):—gx+%h4hzzo \(...(8)
A B .CcO AS
From(8) 3 Xt Ny 0 or (x%+4h? =9h? or \gh
Putting x =./5h into (7), te

preV! %W@;%H %@‘ %_ﬁ@ b

ASSIGNMENT 9

1. Find the maximum and minimum values of

3 3
(i) xy +a; +f"7 (ii) 202 = y?) = x4 + [NIT Kurukshetra, 2005]
2. Find the minimum value of x? + y? + 72, given that ax + by + cz=p

3. Find the dimensions of a rectangle box without top with a given capacity so that the
material used is minimum.

4. Determine the maxima of the function given by u = (x + 1)(y + 1)(z + 1)
subject to the condition x2y®z° = k.

[Hint: Take log of both functions]

5. Divide 24 into three parts such that the continued product of the first, square of the
second and the cube of the third may be maximum.

6. Given x +y + z = a, find the maximum value of x™ y" zP. [KUK, NIT Kurukshetra, 2004]
7. Find the point on the surface z2 = xy + 1 nearest to the origin.
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By Leibnitz’s Rule 1,

d * 0 *sinmx ° 9 . —ax
—Fm=] — = -Z (sinmx) E—dx
dm m) o dm X de _L am( ) X
:.ro x(cos mx)ﬂ dx :.roe‘ax cosmx dx
0 X 0
dF _ 0 e i) a

—— = F————(-acosmx + msinmx) =

dm  g//f(-af +m? g & +m -(2)

£ . O
Eusing_[ e cosbx dx = (acosbx +bsin bx)a
0

ea
(@ +b)

Integrating both sides with respect to X,

F(m) = aIa > dx =apg-tan” 1—E+C—tan 1;+C a>0 u\(...(S)

When m=0; from (3), F(0)=tan0+C = CD |mply|ng C= 0\6 CO
from (1), F(0)=0

N \(s
0 I e sinmx d%— t"()@(‘\ NO O-‘ 92
oW O @)
X@J@ @\l e that J’?ﬁ%@ log(l1+a), (a>-1)

Solution: Let | :J' —(1—e‘ax)dx (1)
o X
dl * _ _
ul 1 — gax @ ax d ~xg=axd
so that i L aaa—( e )de I (=x)dx = I edx

ﬂ:re‘(“a)xdxz ge_(ha)x g __ 1 Cas>-1
da Jo ol+ag (@+a

On integration,
I=log(l+a)+C ..(2)
Now when a = 0 then from (1), | :.roﬂ(l -Ddx = OE thereby implying C=0
0 X
from (2), 1 =log(l+0)+C=C H
O I =log (1 +a),a>-1.

2 |og (1 + ysin?x)
sin?x

Example 85: Show that dx=n(JI+y -1) [NIT Kurukshetra, 2002]



