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11 3 ANALYTICITY

Lemma 2 (Conformality lemma.). Assume that A =

(
a b
c d

)
is a 2 × 2 real

matrix. The following are equivalent:

(a) A preserves orientation (that is, detA > 0) and is conformal, that is

〈Aw1, Aw2〉
|Aw1| |Aw2|

=
〈w1, w2〉
|w1| |w2|

for all w1, w2 ∈ R2.

(b) A takes the form A =

(
a b
−b a

)
for some a, b ∈ R with a2 + b2 > 0.

(c) A takes the form A = r

(
cos θ − sin θ
sin θ cos θ

)
for some r > 0 and θ ∈ R. (That

is, geometrically A acts by a rotation followed by a scaling.)

Proof that (a) =⇒ (b). Note that both columns of A are nonzero vectors by
the assumption that detA > 0. Now applying the conformality assumption
with w1 = (1, 0)>, w2 = (0, 1)> yields that (a, c) ⊥ (b, d), so that (b, d) = κ(−c, a)
for some κ ∈ R \ {0}. On the other hand, applying the conformality assump-
tion with w1 = (1, 1)> and w2 = (1,−1)> yields that (a+ b, c+d) ⊥ (a− b, c−d),
which is easily seen to be equivalent to a2 + c2 = b2 + d2. Together with the
previous relation that implies that κ = ±1. So A is of one of the two forms(
a −c
c a

)
or

(
a c
c −a

)
. Finally, the assumption that detA > 0 means it is the

first of those two possibilities that must occur.

Exercise 3. Complete the proof of the lemma above by showing the implica-
tions (b)⇐⇒ (c) and that (b) =⇒ (a).

Another curious consequence of the Cauchy-Riemann equations, which
gives an alternative geometric picture to that of conformality, is that analyt-
icity implies the orthogonality of the level curves of u and of v. That is, if
f = u+ iv is analytic then

〈∇u,∇v〉 = (ux, uy) ⊥ (vx, vy) = uxvx + uyvy = vyvx − vxvy = 0.

Since ∇u (resp. ∇v) is orthogonal to the level curve {u = c} (resp. the level
curve {v = d}, this proves that the level curves {u = c}, {v = d} meet at right
angles whenever they intersect.

Yet another important and remarkable consequence of the Cauchy-Riemann
equations is that, at least under mild assumptions (which we will see later
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18 5 CONTOUR INTEGRALS

As a further reminder, the basic result known as the fundamental theorem
of calculus for line integrals states that if F = ∇u then∫

γ

F · ds = u(γ(b))− u(γ(a)).

Definition 2 (contour integrals and arc length intervals). For a function
f = u+ iv of a complex variable z and a curve γ, define∫

γ

f(z) dz = “

∫
γ

(u+ iv)(dx+ idy)”

=

(∫
γ

u dx− v dy
)

+ i

(∫
γ

v dx+ u dy

)
=

∫ b

a

f(γ(t))γ′(t) dt (contour integral),∫
γ

f(z) |dz| =
∫
γ

f(z) ds =

∫
γ

u ds+ i

∫
γ

v ds (arc length integral).

If γ is a closed curve (the two endpoints are the same, i.e., it satisfies γ(a) =
γ(b)), we denote the contour integral as

∮
γ

f(z) dz, and similarly
∮
γ

f(z) |dz| for

the arc length integral.

A special case of an arc length integral is the length of the curve, defined
as the integral of the constant function 1:

len(γ) =

∫
γ

|dz| =
∫ b

a

|γ′(t)| dt.

As mentioned above, our convention of mildly abusing terminology puts
on us the burden of having to remeber to check that these definitions do
not depend on the parametrization of the curve. Indeed: if γ1 ∼ γ2 are
representatives of the same equivalence class of parametrized curves, that
is, γ2(t) = γ1(I(t)) for some nicely-behaved function, then using a standard
change of variables in single-variable integrals we see that∫

γ2

f(z) dz =

∫ d

c

f(γ2(t))γ′2(t)dt =

∫ d

c

f(γ1(I(t)))(γ1 ◦ I)′(t) dt

=

∫ d

c

f(γ1(I(t)))γ′1(I(t))I ′(t) dt =

∫ b

a

f(γ1(τ))γ′1(τ) dτ

=

∫
γ1

f(z) dz.
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30 7 CONSEQUENCES OF CAUCHY’S THEOREM

To make this precise, write

1

w − z
=

1

(w − z0)− (z − z0)
=

1

w − z0

· 1

1−
(
z−z0
w−z0

)
=

1

w − z0

∞∑
n=0

(
z − z0

w − z0

)n
=
∞∑
n=0

(w − z0)−n−1(z − z0)n.

This is a power series in z − z0 that, assuming w ∈ CR(z0), converges abso-
lutely for all z such that |z − z0| < R (that is, for all z ∈ DR(z0)). Moreover
the convergence is clearly uniform in w ∈ CR(z0). Since infinite summations
that are absolutely and uniformly convergent can be interchanged with in-
tegration operations, we then get, using the extended version of Cauchy’s
integral formula, that

f(z) =
1

2πi

∮
CR(z0)

f(w)

w − z
dw

=
1

2πi

∮
CR(z0)

f(w)
∞∑
n=0

(w − z0)−n−1(z − z0)n dw

=
∞∑
n=0

(
1

2πi

∮
CR(z0)

f(w)(w − z0)n−1 dw

)
(z − z0)n

=
∞∑
n=0

f (n)(z0)

n!
(z − z0)n,

which is precisely the expansion we were after.

Remark 4. In the above proof, if we only knew the simple (n = 0) case of
Cauchy’s integral formula (and in particular didn’t know the regularity the-
orem that follows from the extended case of this formula), we would still
conclude from the penultimate expression in the above chain of equalities
that f(z) has a power series expansion of the form

∑
n an(z − z0)n, with

an = (2πi)−1
∫
CR(z0)

f(w)(w − z)−n−1. It would then follow from earlier re-

sults we proved that f(z) is differentiable infinitely many times, and that
an = f (n)(z0)/n!, which would again give the extended version of Cauchy’s
integral formula.

Theorem 15 (Liouville’s theorem). A bounded entire function is constant.

Proof. An easy application of the (case n = 1 of the) Cauchy inequalities
gives upon taking the limit R → ∞ that f ′(z) = 0 for all z, hence, as we
already proved, f must be constant.
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43 10 THE ARGUMENT PRINCIPLE

positive if the curve goes in the positive direction around the origin; negative
if the curve goes in the negative direction around the origin; or zero if there
is no net change in the argument. This number is more properly called the
winding number of f around w = 0 (also sometimes referred to as the
index of the curve around 0), and denoted

Ind0(f) =
1

2πi

∮
γ

f(z)

z
dz.

More generally, one can define the winding number at z = z0 as the number
of times a curve γ winds around an arbitrary point z0, which (it is easy to
see) will be given by

Indz0(f) =
1

2πi

∮
γ

f(z)

z − z0

dz,

assuming that γ does not cross z0.

Note that winding number is a topological concept of planar geometry
that can be considered and studied without any reference to complex anal-
ysis; indeed, in my opinion that is the correct approach. It is possible, and
not especially difficult, to define it in purely topological terms without men-
tioning contour integrals, and then show that the complex analytic and topo-
logical definitions coincide. Try to think what such a definition might look
like.

Theorem 26 (Rouché’s theorem). Assume that f, g are holomorphic on a
region Ω containing a circle γ = C and its interior (or, more generally, a toy
contour γ and the region U enclosed by it). If |f(z)| > |g(z)| for all z ∈ γ then
f and f + g have the same number of zeros inside the region U .

Proof. Define ft(z) = f(z) + tg(z) for t ∈ [0, 1], and note that f0 = f and
f1 = f + g, and that the condition |f(z)| > |g(z)| on γ implies that ft has no
zeros on γ for any t ∈ [0, 1]. Denote

nt =
1

2πi

∮
γ

f ′t(z)

ft(z)
dz,

which by the argument principle is the number of “generalized zeros” (zeros
or poles, counting multiplicities) of ft in U . In particular, the function t 7→ nt
is integer-valued. If we also knew that it was continuous, then it would have
to be constant (by the easy exercise: any integer-valued continuous function
on an interval [a, b] is constant), so in particular we would get the desired
conclusion that n1 = n0.
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49 12 SIMPLY-CONNECTED REGIONS AND CAUCHY’S THEOREM

open covering of the interval [0, 1], so again using the Heine-Borel property,
we can extract a finite subcovering. This enables us to find a sequence 0 =
s0 < s1 < . . . < sn = 1 that we claimed exist at the beginning of the proof,
namely where the relation∫

γsj−1

f(z) dz =

∫
γsj

f(z) dz

holds for each j = 1, . . . , n (with sj−1 playing the role of s and sj playing the
role of s′ in the discussion above).

Theorem 29 (Cauchy’s theorem (general version)). If f is holomorphic on a
simply-connected region Ω, then for any closed curve in Ω we have∮

γ

f(z) dz = 0.

Proof. Assume for simplicity that γ is parametrized as a curve on [0, 1]. Then
it can be thought of as the concatenation of two curves γ1 and −γ2, where
γ1 = γ|[0,1/2] and γ2 is the “reverse” of the curve γ|[1/2,1]. Note that γ1 and γ2

have the same endpoints. By the invariance property of contour integrals
under homotopy proved above, we have∫

γ

f(z) dz =

∫
γ1−γ2

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz = 0.

Corollary 9. Any holomorphic function on a simply-connected region has a
primitive.

Exercise 10. The proof of Theorem 28 above still involves a minor amount of
what I call “dishonesty”; that is, the proof is not actually formally correct as
written but contains certain inconsistencies between what the assumptions
of the theorem are and what we end up actually using in the body of the
proof. Can you identify those inconsistencies? What additional work might
be needed to fix these problems? And why do you think the author of these
notes, and the authors of the textbook [11], chose to present things in this
way rather than treat the subject in a completely rigorous manner devoid of
any inaccuracies? (The last question is a very general one about mathemati-
cal pedagogy; coming up with a good answer might help to demystify for you
a lot of similar decisions that textbook authors and course instructors make
in the teaching of advanced material, and make the study of such topics a bit
less confusing in the future.)
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52 14 THE EULER GAMMA FUNCTION

14 The Euler gamma function

The Euler gamma function (often referred to simply as the gamma function)
is one of the most important special functions in mathematics. It has ap-
plications to many areas, such as combinatorics, number theory, differential
equations, probability, and more, and is probably the most ubiquitous tran-
scendental function after the “elementary” transcendental functions (the ex-
ponential function, logarithms, trigonometric functions and their inverses)
that one learns about in calculus. It is a natural meromorphic function of a
complex variable that extends the factorial function to non-integer values.
In complex analysis it is particularly important in connection with the theory
of the Mellin transform (a version of the Fourier transform associated with
the multiplicative group of positive real numbers in the same way that the
ordinary Fourier transform is associated with the additive group of the real
numbers).

Most textbooks define the gamma function in one way and proceed to
prove several other equivalent representations of it. However, the truth is
that none of the representations of the gamma function is more fundamental
or “natural” than the others. So, it seems more logical to start by simply
listing the various formulas and properties associated with it, and then prov-
ing that the different representations are equivalent and that the claimed
properties hold.

Theorem 31 (the Euler gamma function). There exists a unique function
Γ(s) of a complex variable s that has the following properties:

1. Γ(s) is a meromorphic function on C.

2. Connection to factorials: Γ(n+ 1) = n! for n = 0, 1, 2, . . ..

3. Important special value: Γ(1/2) =
√
π.

4. Integral representation:

Γ(s) =

∫ ∞
0

e−xxs−1 dx (Re s > 0).

5. Hybrid series-integral representation:

Γ(s) =
∞∑
n=0

(−1)n

n!(n+ s)
+

∫ ∞
1

e−xxs−1 dx (s ∈ C).
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54 14 THE EULER GAMMA FUNCTION

I leave it as an exercise to check (or read the easy explanation in [11]) that
the function it defines is holomorphic in that region.

Next, perform an integration by parts, to get that, again for Re(s) > 0, we
have

Γ(s+ 1) =

∫ ∞
0

e−xxs dx = −e−xxs
∣∣x=∞
x=0

+

∫ ∞
0

e−xsxs−1 dx = sΓ(s),

which is the functional equation.

Combining the trivial evaluation Γ(1) =
∫∞

0
e−x dx = 1 with the functional

equation shows by induction that Γ(n+ 1) = n!.

The special value Γ(1/2) =
√
π follows immediately by a change of vari-

able x = u2 in the integral and an appeal to the standard Gaussian integral∫∞
−∞ e

−u2
du =

√
π:

Γ(1/2) =

∫ ∞
0

e−xx−1/2 dx =

∫ ∞
0

e−u
2

2 du =

∫ ∞
−∞

e−u
2

du =
√
π.

The functional equation can now be used to perform an analytic contin-
uation of Γ(s) to a meromorphic function on C: for example, we can define

Γ1(s) =
Γ(s+ 1)

s
,

which is a function that is holomorphic on Re(s) > −1, s 6= 0 and coincides
with γ(s) for Re(s) > 0. By the principle of analytic continuation this provides
a unique extension of Γ(s) to the region Re(s) > −1. Because of the factor
1/s and the fact that Γ(1) = 1 we also see that Γ1(s) has a simple pole at s = 0
with residue 1.

Next, for Re(s) > −2 we define

Γ2(s) =
Γ1(s+ 1)

s
=

Γ(s+ 2)

s(s+ 1)
,

a function that is holomorphic on Re(s) > −2, s 6= 0,−1, and coincides with
Γ1(s) for Re(s) > −1, s 6= 0. Again, this provides an analytic continuation of
Γ(s) to that region. The factors 1/s(s + 1) show that Γ2(s) has a simple pole
at s = −1 with residue −1.

Continuing by induction, having defined an analytic continuation Γn−1(s)
of Γ(s) to the region Re(s) > −n+ 1, s 6= 0,−1,−2, . . . ,−n+ 2, we now define

Γn(s) =
Γn−1(s+ 1)

s
= . . . =

Γ(s+ n)

s(s+ 1) · · · (s+ n− 1)
.
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58 14 THE EULER GAMMA FUNCTION

Proof. Lemma 8 above implies that the infinite product
∏∞

n=1(1 + fn(z)) con-
verges to a nonzero limit for any z ∈ Ω. By repeating the same estimates
in the proof of that lemma in the context of z being allowed to range on
a compact subset K ⊂ Ω, one sees that the sequence of partial products∏n

k=1(1 + fn) actually converges uniformly on compacts, so the limiting func-
tion is holomorphic.

Proof that
∏∞

n=1

(
1 + z

n

)
e−z/n is an entire function.

∞∑
n=1

∣∣∣(1 +
z

n

)
e−z/n − 1

∣∣∣ =
∞∑
n=1

∣∣∣∣(1 +
z

n

)(
1− z

n
+O

(
z2

n2

))
− 1

∣∣∣∣
=
∞∑
n=1

∣∣∣∣O( z2

n2

)∣∣∣∣ <∞
(where the big-O notation hides a universal constant — the dependence on
z is encapsulated in the z2 factor). In particular, the convergence is uniform
on compacts on C. So we are almost in the setting of Lemma 9, except that
in order to apply that result, which requires the functions participating in
the product to be nonzero, one needs to be a bit more careful and separate
out the zeros: for a fixed disc DN+1/2(0) of radius N + 1/2 around 0, consider
only the product starting at n = N + 1 — those functions are nonzero in
the disc so the previous result applies to give a function that’s holomorphic
and nonzero in DN(0). Then separately the factors (1 + z/n), n = 1, . . . , N
contribute simple zeros at z = −1, . . . ,−N .

Corollary 11 (the reflection formula). Γ(s)Γ(1− s) =
π

sinπs
.

Proof.

1

Γ(s)Γ(1− s)
= Γ(s)−1(−s)−1Γ(−s)−1

=
−1

s
· seγs

∞∏
n=1

(
1 +

s

n

)
e−s/n · (−s)e−γs

∞∏
n=1

(
1− s

n

)
es/n

= s

∞∏
n=1

(
1− s2

n2

)
= s

sin(πs)

πs
=

sin(πs)

π
,

where we used the product representation sin(πz) = πz
∏∞

n=1(1 − z2/n2) for
the sine function derived in a homework problem.
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74 16 THE PRIME NUMBER THEOREM

implies that

lim inf
x→∞

ψ(x)/x ≥ lim
x→∞

(1− ε)
(

1− log x

xε

)
= 1− ε.

Again, since ε ∈ (0, 1) was arbitrary, it follows that lim infx→∞
ψ(x)
x

= 1. Com-

bining the two results about the lim inf and lim sup proves that limx→∞
ψ(x)
x

=
1, as claimed.

Lemma 12. For Re(s) > 1 we have

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)n−s.

Proof. Using the Euler product formula and taking the logarithmic deriva-
tive (which is an operation that works as it should when applied to infinite
products of holomorphic functions that are uniformly convergent on compact
subsets), we have

−ζ
′(s)

ζ(s)
=
∑
p

d
ds

(1− p−s)
1− p−s

=
∑
p

log p · p−s

1− p−s

=
∑
p

log p (p−s + p−2s + p−3s + . . .) =
∑
p prime

∞∑
k=1

log p · p−ks

=
∞∑
n=1

Λ(n)n−s.

Lemma 13. There is a constant C > 0 such that ψ(x) < Cx for all x ≥ 1.

Proof. The idea of the proof is that the binomial coefficient
(

2n
n

)
is not too

large on the one hand, but is divisible by many primes (all primes between n
and 2n) on the other hand — hence it follows that there cannot be too many
primes, and in particular the weighted prime-counting function ψ(x) can be
easily bounded from above using such an argument. Specifically, we have
that

22n = (1 + 1)2n =
2n∑
k=0

(
2n

k

)
>

(
2n

n

)
≥

∏
n<p≤2n

p = exp

( ∑
n<p≤2n

log p

)
= exp

(
ψ(2n)− ψ(n)−

∑
n<pk≤2n, k>1

log p
)
.

≥ exp
(
ψ(2n)− ψ(n)−O(

√
n log2 n)

)
.
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75 16 THE PRIME NUMBER THEOREM

(The estimate O(
√
n log2 n) for the sum of log p for prime powers higher than

1 is easy and is left as an exercise.) Taking the logarithm of both sides, this
gives the bound

ψ(2n)− ψ(n) ≤ 2n log 2 + C1

√
n log n ≤ C2n,

valid for all n ≥ 1 with some constant C2 > 0. It follows that

ψ(2m) = (ψ(2m)− ψ(2m−1))

+ (ψ(2m−1)− ψ(2m−2)) + . . .+ (ψ(21)− ψ(20))

≤ C2(2m−1 + . . .+ 20) ≤ C22m,

so the inequality ψ(x) ≤ C2x is satisfied for x = 2m. It is now easy to see that
this implies the result also for general x, since for x = 2m + ` with 0 ≤ ` < 2m

we have

ψ(x) = ψ(2m + `) ≤ ψ(2m+1) ≤ C22m+1 ≤ 2C22m ≤ 2C2x.

Theorem 37 (Newman’s tauberian theorem). Let f : [0,∞)→ R be a bounded
function that is integrable on compact intervals. Define a function g(z) of a
complex variable z by

g(z) =

∫ ∞
0

f(t)e−zt dt

(g is known as the Laplace transform of f ). Clearly g(z) is defined and holo-
morphic in the open half-plane Re(z) > 0. Assume that g(z) has an analytic
continuation to an open region Ω containing the closed half-plane Re(z) ≥ 0.
Then

∫∞
0
f(t) dt exists and is equal to g(0) (the value at z = 0 of the analytic

continuation of g).

Proof. Define a truncated version of the integral defining g(z), namely

gT (z) =

∫ T

0

f(t)e−zt dt

for T > 0, which for any T is an entire function of z. Our goal is to show
that limT→∞ gT (0) = g(0). This can be achieved using a clever application of
Cauchy’s integral formula. Fix some large R > 0 and a small δ > 0 (which
depends on R in a way that will be explained shortly), and consider the con-
tour C consisting of the part of the circle |z| = R that lies in the half-plane
Re(z) ≥ −δ, together with the straight line segment along the line Re(z) = −δ
connecting the top and bottom intersection points of this circle with the line
(see Fig. 6(a)). Assume that δ is small enough so that g(z) (which extends an-
alytically at least slightly to the right of Re(z) = 0) is holomorphic in an open
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78 16 THE PRIME NUMBER THEOREM

Recall that −ζ ′(s)/ζ(s) has a simple pole at s = 1 with residue 1 (because
ζ(s) has a simple pole at s = 1; it is useful to remember the more general
fact that if a holomorphic function h(z) has a zero of order k at z = z0 then
the logarithmic derivative h′(z)/h(z) has a simple pole at z = z0 with residue

k). So − 1
z+1
· ζ
′(z+1)
ζ(z+1)

has a simple pole with residue 1 at z = 0, and therefore

− 1
z+1
· ζ
′(z+1)
ζ(z+1)

− 1
z

has a removable singularity at z = 0. Thus, the identity

g(z) = − 1
z+1
· ζ
′(z+1)
ζ(z+1)

− 1
z

shows that g(z) extends analytically to a holomorphic
function in the set

{z ∈ C : ζ(z + 1) 6= 0}.

By the “toy Riemann Hypothesis” — the theorem we proved according to
which ζ(s) has no zeros on the line Re(s) = 1, g(z) in particular extends
holomorphically to an open set containing the half-plane Re(z) ≥ 0. Thus,
f(t) satisfies the assumption of Newman’s theorem. We conclude from the
theorem that the integral∫ ∞

0

f(t) dt =

∫ ∞
0

(ψ(et)e−t − 1)dt =

∫ ∞
1

(
ψ(x)

x
− 1

)
dx

x

=

∫ ∞
1

ψ(x)− x
x2

dx

converges.

Proof of the prime number theorem. We will prove that ψ(x) ∼ x, which we
already showed is equivalent to the prime number theorem. Assume by con-
tradiction that lim supx→∞

ψ(x)
x

> 1 or lim infx→∞
ψ(x)
x

< 1. In the first case,
that means there exists a number λ > 1 such that ψ(x) ≥ λx for arbitrarily
large x. For such values of x it then follows that∫ λx

x

ψ(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt =

∫ λ

1

λ− t
t2

dt =: A > 0,

but this is inconsistent with the fact that the integral
∫∞

1
(ψ(x) − x)x−2 dx

converges.

Similarly, in the event that lim infx→∞
ψ(x)
x

< 1, that means that there exists
a µ < 1 such that ψ(x) ≤ µx for arbitrarily large x, in which case we have
that ∫ x

λx

ψ(t)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt =

∫ 1

λ

λ− t
t2

dt =: B < 0,

again giving a contradiction to the convergence of the integral.
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Figure 7: Illustration of the inequality cos(t) ≤ 1− t2/8.

17.2 Second example: the central binomial coefficient

Let an =
(

2n
n

)
= (2n)!

(n!)2 . A standard way to find the asymptotic behavior for an
as n→∞ is to use Stirling’s formula. This easily gives that(

2n

n

)
= (1 + o(1))

4n√
πn

.

(Note that this is not too far from the trivial upper bound
(

2n
n

)
≤ (1 + 1)2n =

22n.) It is instructive to rederive this result using the saddle-point method,
starting from the expansion

(1 + z)2n =
2n∑
k=0

(
2n

k

)
zn,

which in particular gives the contour integral representation(
2n

n

)
=

1

2πi

∮
|z|=r

(1 + z)2n

zn+1
dz.

By the same trivial method for deriving upper bounds that we used in the
case of the Taylor coefficients 1/n! of the function ez, we have that for each
x > 0, (

2n

n

)
≤ (1 + x)2n/xn = exp (log(1 + x)− n log x) .

We optimize over x by differentiating the expression log(1+x)−n log x inside
the exponent and setting the derivative equal to 0. This gives x = 1, the
location of the saddle point. For this value of x, we again recover the trivial
inequality

(
2n
n

)
≤ 22n.
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Figure 8: An illustration (with n = 40) of the random walks enumerated by
(a) the central binomial coefficients and (b) the central trinomial coefficients.

Like their more famous cousins the central binomial coefficients, these coef-
ficients are important in combinatorics and probability theory. Specifically,
an and bn correspond to the numbers of random walks on Z that start and end
at 0 and have n steps, where in the case of the central binomial coefficients
the allowed steps of the walk are −1 or +1, and in the case of the central
trinomial coefficients the allowed steps are −1, 0 or 1; see Fig. 8.

Using a saddle point analysis, show that the asymptotic behavior of bn as
n→∞ is given by

bn ∼
√

3 · 3n√
πn

.

17.3 A conceptual explanation

In both the examples of Stirling’s formula and the central binomial coeffi-
cient we analyzed above, we made what looked like ad hoc choices regard-
ing how to “massage” the integrals, what value r to use for the radius of the
contour of integration, what change of variables to make in the integral, etc.
Now let us think more conceptually and see if we can generalize these ideas.
Note that the quantities we were trying to estimate took a particular form,
where for some function g(z) our sequence of numbers could be represented
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under each of the following maps w = f(z):

a. w = 1
2
z

b. w = iz

c. w = z

d. w = (2 + i)z − 3

e. w = 1/z

f. w = z2 − 1

6. Prove that the complex numbers a, b, c form the vertices of an equilat-
eral triangle if and only if a2 + b2 + c2 = ab+ ac+ bc.

7. Illustrate the claim from page 11 regarding the orthogonality of the
level curves of the real and imaginary parts an analytic functions by
drawing (by hand after working out the relevant equations, or using a
computer) the level curves of Re(f) and Im(f) for f = z2, f = ez.

8. An immediate corollary of the Fundamental Theorem of Algebra (to-
gether with standard properties of polynomials, namely the fact that c
is a root of p(z) if and only if p(z) is divisible by the linear factor z − c)
is that any complex polynomial

p(z) = anz
n + an−1z

n−1 + . . .+ a0,

(where a0, . . . , an ∈ C and an 6= 0), can be factored as

p(z) = an

n∏
k=1

(z − zk)
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z1

z2

z3

z4

w1

w2

w3

Figure 10: An example of the roots of a complex polynomial and of its deriva-
tive. Here z1 = 0, z2 = 3 − i, z3 = 2 + 2i, z4 = 1+3i

2
and w1

.
= 0.375 + 0.586i,

w2
.
= 2.336− 0.335i, w3

.
= 1.414 + 1.624i.

(b) Show that assuming a solution to (5) of the form w = u + v, the
equation (5) for w can be solved by finding a pair u, v of complex
numbers such that the equations

p = −3uv, (6)

q = −(u3 + v3) (7)

are satisfied.

(c) Explain why, in order to solve the pair of equations (6)–(7), one can
alternatively solve

p3

27
= −RS, (8)

q = −(R + S), (9)

where we now denote new unknowns R, S defined by R = u3, S =
v3. More precisely, any solution of (6)–(7) can be obtained from
some (easily determined) solution of (8)–(9).

(d) Explain why the problem of solving (8)–(9) in the unknowns R, S is
equivalent to solving the quadratic equation

t2 + qt− p3

27
= 0 (10)

in a (complex) unknown variable t.
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27. Let f(z) = p(z)/q(z) be a rational function such that deg q ≥ deg p + 2
(where deg p denotes the degree of a polynomial p). Prove that the sum
of the residues of f(z) over all its poles is equal to 0.

28. (A generalization of the result from problem 21) If p(z) = anz
n+an−1z

n−1+
. . . + . . . + a0 is a polynomial of degree n such that for some 0 ≤ k ≤ n
we have

|ak| >
∑

0≤j≤n
j 6=k

|aj|,

prove that p(z) has exactly k zeros (counting multiplicities) in the unit
disk |z| < 1.

29. Suggested reading: go to the Mathematics Stack Exchange website
(https://math.stackexchange.com) and enter "Rouche" into the search
box, to get an amusing list of questions and exercises involving appli-
cations of Rouché’s theorem to count zeros of polynomials and other
analytic functions.

30. Show how Rouché’s theorem can be used to give yet another proof
of the fundamental theorem of algebra. This proof is one way to make
precise the intuitively compelling “topological” proof idea we discussed
at the beginning of the course.

31. (a) Draw a simply-connected region Ω ⊂ C such that 0 /∈ Ω, 1, 2 ∈ Ω,
and such that there exists a branch F (z) of the logarithm function on Ω
satisfying

F (1) = 0, F (2) = log 2 + 2πi

(where log 2 = 0.69314 . . . is the ordinary logarithm of 2 in the usual
sense of real analysis).

(b) More generally, let k ∈ Z. If we were to replace the above condition
F (2) = log 2+2πi with the more general condition F (2) = log 2+2πik but
keep all the other conditions, would an appropriate simply-connected
region Ω = Ω(k) exist to make that possible? If so, what would this
region look like, roughly, as a function of k?

32. Prove the following properties satisfied by the gamma function:

i. Values at half-integers:

Γ
(
n+ 1

2

)
=

(2n)!

4nn!

√
π (n = 0, 1, 2, . . .).
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(e) Show that ψ(s) satisfies the reflection formula

ψ(1− s)− ψ(s) = π cot(πs).

(f)* Here is an amusing application of the digamma function. Consider
the sequence of polynomials

Pn(x) = x(x− 1) . . . (x− n) (n = 0, 1, 2, . . .)

and their derivatives
Qn(x) = P ′n(x).

Note that by Rolle’s theorem, Qn(x) has precisely one root in each
interval (k, k + 1) for 0 ≤ k ≤ n − 1. Denote this root by k + αn,k,
so that the numbers αn,k (the fractional parts of the roots of Qn(x))
are in (0, 1).

A curious phenomenon can now be observed by plotting the points
αn,k, k = 0, . . . , n − 1 numerically, say for n = 50 (Figure 11(a)). It
appears that for large n they approximate some smooth limiting
curve. This is correct, and in fact the following precise statement
can be proved.

Theorem. Let t ∈ (0, 1). Let k = k(n) be a sequence such that
0 ≤ k(n) ≤ n − 1, k(n) → ∞ as n → ∞, n − k(n) → ∞ as n → ∞,
and k(n)/n→ t as n→∞. Then we have

lim
n→∞

αn,k(n) = R(t) :=
1

π
arccot

(
1

π
log

(
1− t
t

))
.

In the above formula, arccot(·) refers to the branch of the inverse
cotangent function taking values between 0 and π. The limiting
function R(t) is shown in Figure 11(b).

Prove this.

Guidance. Take the logarithmic derivative of Pn(x) to see when
the equation Qn(x)/Pn(x) = 0 (which is equivalent to Qn(x) = 0)
holds. This will give an equation with a sum of terms. Find a
way to separate them into two groups such that the sum in each
group can be related, in an asymptotic sense as n → ∞, to the
digamma function evaluated at a certain argument (using prop-
erty (b) above). Take the limit as n → ∞, then simplify using the
reflection formula (part (c)).
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44. (a) Reprove Theorem 36 (the “toy Riemann hypothesis” — the result
that the Riemann zeta function has no zeros on the line Re(s) = 1) by
considering the behavior of

Y = Re

[
−3

ζ ′(σ)

ζ(σ)
− 4

ζ ′(σ + it)

ζ(σ + it)
− ζ ′(σ + 2it)

ζ(σ + 2it)

]
for t ∈ R \ {0} fixed and σ ↘ 1, instead of the quantity

X = log |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)|.

Use the series expansion

−ζ(s)

ζ(s)
=
∞∑
n=1

Λ(n)n−s,

where Λ(n) is von Mangoldt’s function (equal to log p if n = pk is a prime
power, and 0 otherwise).

(b) Try to reprove the same theorem in yet a third way by considering

Z = log |ζ(σ)10ζ(σ + it)15ζ(σ + 2it)6ζ(σ + 3it)|,

and attempting to repeat the argument involving expanding the loga-
rithm in a power series and deducing that Z ≥ 0. Does this give a proof
of the theorem? If not, what goes wrong?

Hint. (a+ b)6 = a6 + 6a5b+ 10a4b2 + 15a3b3 + 10a2b4 + 6ab5 + b6.

45. Define arithmetic functions taking an integer argument n, as follows:

µ(n) =

{
(−1)k if n = p1p2 · · · pk is a product of k distinct primes,

0 otherwise,

(the Möbius µ-function),

d(n) =
∑
d|n

1, (the number of divisors function),

σ(n) =
∑
d|n

d, (the sum of divisors function),

φ(n) = #{1 ≤ k ≤ n− 1 : gcd(k, n) = 1}, (the Euler totient function),

Λ(n) =

{
log p if n = pk, p prime,

0 otherwise,
(the von Mangoldt Λ-function).
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absolutely convergent, 13
Airy function, 79
an-formula, 16
analytic continuation, 32
analytic function, 7

geometric view, 7
angle preserving map, 8
arc length integral

definition, 18
argument: arg w ; w = reiϕ, arg w = ϕ

, 42
argument principle, 41
Arg z, 50
asymptotic analysis, 79

Basel problem, 60
Bernoulli numbers, 60

calculus
fundamental theorem, 18

Cardano
cubic equation, 1

Cardy-Smirnov formula, 2
Casorati-Weierstrass

theorem, 40
Cauchy inequalities, 29
Cauchy’s integral formula, 26

extended, 28
Cauchy’s theorem, 21

consequences, 26
for a disc, 25
general version, 49
toy contour (?), 25

Cauchy-Riemann equations, 9
central binomial coefficient, 83
change of variables, 18
clopen

connected and open set, 31

closed curve, 18∮
, 18

closed disc, 39
compact set, 31
compactification

one point, 39
complex differentiable, 7
complex dynamics, 3
complex-valued function, 17
complicated integrals, 2
conformal map, 8
conformal maps, 2
conformality lemma, 11
constant function

criterion, 21
contour integral, 16

definition, 18
contour integrals

Fundamental Theorem of Calcu-
lus, 19

properties, 19
contours C, C+, C− , C ′−, 76
convergence

uniform, 28
convergence disc, 15
convergent

absolutely, 13
covering, 31
cubic equation, 1
curve

closed, 18
equivalence class, 16
equivalent, 16
length len γ, 18
parametrization, 18
piecewise continuously differentiable,
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Euler’s product formula, 60
Euler-Maclaurin summation, 68
functional equation, 61, 67
in prime counting, 62
location of zeroes, 60
Mellin transformed, 61
no zeroes with Re(s) = 1, 69
pole, 67
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