Irreversible Process	The system and all parts of its surroundings cannot be exactly restored to	
	their respective initial states after the process has occurred	
Exergy	Maximum theoretical work obtainable form an overall system	

Chapter 2: Energy and First Law

- $Q - W = \Delta U + \Delta KE + \Delta PE$

Variable	Name
Q	Heat Transfer
W	Work
ΔU	Change in specific internal
	energy
ΔΚΕ	Change in kinetic energy
ΔΡΕ	Change in potential energy

-
$$W = \int p \, dv$$

Cycles:

- Performance of Refrigeration Cycle: $\beta = \frac{\text{Qin}}{\text{Wcy}}$ (β is the coefficient of performance)
- $\frac{1}{1}$ $= \frac{1}{1} Process 1-2, 2-3, 3-1 + \frac{1}{1} Process 1 + 2, 2-3, 3-1 + \frac{1}{1} Process 1 + 2, 2-3, 3-1 + \frac{1}{1} Process 1 + 2, 2-3, 3-1 + \frac{1}{1} Process 1 + \frac{1}{1} Process 1 + 2, 2-3, 3-1 + \frac{1}{1} Process 1 + \frac{1}{1} Proces 1 + \frac{1}{1} Proces 1 + \frac{1}{1} Proces 1 + \frac{1}{1}$ Performance of Heat Pump Cycle: $\gamma = \frac{\text{Qout}}{\text{Wcycl}}$ (γ is the coefficient of peroformance)

Chapter 3: Evaluating Properties

- Quality: $u = u_f + x(u_f u_g)$
- 2 properties are needed to lock in a state: _
 - o T, p
 - o x, T
 - o h, p
 - saturated liquid, p
 - Questions to ask when moving form state one to state two:
 - o Is v constant?