Abel means of the Fourier series of f:

$$\mathcal{A}_r f(\theta) = \hat{f}(0) + \sum_{n=1}^{\infty} r^n (\hat{f}(n)e^{in\theta} + \hat{f}(-n)e^{-in\theta}) = \sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n)e^{in\theta}$$

- As Fourier coefficients are bounded then the series converges for every 0 < r < 1

$$\mathcal{A}_r f(\theta) = \sum_{n \in \mathbb{Z}} r^{|n|} \left(\frac{1}{2\pi} \int_0^{2\pi} f(\tau) e^{-in\tau} d\tau \right) e^{in\theta}$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n \in \mathbb{Z}} r^{|r|} e^{in(\theta - \tau)} \right) f(\tau) d\tau.$$

$$\sum_{n \in \mathbb{Z}} r^{|n|} e^{in\theta} = 1 + \sum_{n=1}^{\infty} r^n e^{in\theta} + \sum_{n=1}^{\infty} r^n e^{-in\theta} = \frac{1 - r^n}{1 - 2r\cos\theta + r^2}.$$
n
$$A_n f(\theta) = \int_{-\infty}^{2\pi} p(-i\theta - i\pi) e^{-i\theta} e^{-i\theta} e^{-i\theta} e^{-i\theta} e^{-i\theta} e^{-i\theta} = \frac{1 - r^n}{1 - 2r\cos\theta + r^2}.$$

Then

$$\mathcal{A}_r f(\theta) = \int_0^{2\pi} P(re^{i\theta} e^{i\pi}) \mathbf{S} \mathbf{d} \mathbf{e}^{i\pi}$$

$$\mathbf{P} f(re^{i\theta}).$$
Corollary 1 civits continuous at θ , for $\mathcal{A}_r f(\theta) \to f(\theta)$ as $r \to 1$. If
$$\mathbf{E} \mathcal{E}(\mathbf{S}), \text{ then } \mathcal{A}_r f \text{ converses adjointly to } f \text{ on } \mathbb{S}.$$

Answering question 4

Let f be a Riemman integrable function on \mathbb{S}

- 1. If f is continuous at θ and its Fourier series converges at θ then it converges to $f(\theta)$. *Proof:* By Abel's theorem, if $s_n(\theta) \to L$ then $\mathcal{A}_r f(\theta) \to L$. But $\mathcal{A}_r f(\theta) \to f(\theta)$.
- 2. If f is continuous at θ and $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}$, then $f(\theta) = 0$. Corollary: If f, g have the same Fourier coefficients and are both continuous at θ then $f(\theta) = g(\theta)$.
- 3. If f is continuous at θ and $\sum |\hat{f}(n)| \leq \infty$, then its Fourier series at θ does not converge to $f(\theta)$. By M-test: Uniformly to f if $f \in C(\mathbb{S})$.