Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Basic Engineering Mathematics -Decimals
Description: Basic Engineering Mathematics -Decimals

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Chapter 3

Decimals
3
...

There are a number of everyday occurrences in which we
use decimal numbers
...
5 MHz FM; 107
...

In a shop, a pair of trainers cost, say, £57
...
95 is
another example of a decimal number
...
95 is a decimal
fraction, where a decimal point separates the integer, i
...

57, from the fractional part, i
...
0
...
95 actually means (5 × 10) + (7 × 1)

 

1
1
+ 9×
+ 5×
10
100

3
...

Problem 1
...
375 to a proper fraction in
its simplest form
0
...
375 may be written as
i
...

1000
375
0
...
1016/B978-1-85617-697-2
...

3
Hence, the decimal fraction 0
...

Problem 2
...
4375 to a mixed number

0
...
4375 may be written as
i
...

10000
4375
0
...

7
(v) Hence, 0
...
4375 = 3
16
number
...
Express as a decimal fraction
8
To convert a proper fraction to a decimal fraction, the
numerator is divided by the denominator
...
8 7 5
8 7
...
Place the 0 above the 7
...
000
(iii) 8 into 70 goes 8, remainder 6
...

(iv) 8 into 60 goes 7, remainder 4
...

(v) 8 into 40 goes 5, remainder 0
...

7
Hence, the proper fraction = 0
...

13
Problem 4
...
Place the 5 above
the next zero
...
8125
16
13
Thus, the mixed number 5 = 5
...

Now try the following Practice Exercise
Practice Exercise 8 Converting decimals to
fractions and vice-versa (answers on
page 341)
1
...
65 to a proper fraction
...


Convert 0
...


3
...
175 to a proper fraction
...


Convert 0
...


5
...

(a) 0
...
84
(c) 0
...
282
(e) 0
...
Convert 4
...

7
...
44 to a mixed number
...


Convert 10
...


9
...
4375 to a mixed number
...
Convert the following to mixed numbers
...

 0
...
0 0 0 0

(a) 1
...
35

12
...
Place the 8 above
the first zero after the decimal point and carry the
2 remainder to the next digit on the right, making
it 20
...
Place the 1 above
the next zero and carry the 4 remainder to the next
digit on the right, making it 40
...
Place the 2 above
the next zero and carry the 8 remainder to the next
digit on the right, making it 80
...
125

5
as a decimal fraction
...

16
7
as a decimal fraction
...

16
9
Express as a decimal fraction
...
Express

(i) 16 into 13 will not go
...

(ii) Place the decimal point above the decimal point
of 13
...
275
(e) 16
...

14
...


3
...


18 Basic Engineering Mathematics
For example,
3

3
= 3
...
For
example,
5
1 = 1
...
is a non-terminating decimal
7

Note that the zeros to the right of the decimal point do
not count as significant figures
...
Express 14
...


The answer to a non-terminating decimal may be
expressed in two ways, depending on the accuracy
required:

2
...
7846 correct to 4 significant figures
...
Express 43
...


correct to a number of significant figures, or

(b) correct to a number of decimal places i
...
the
number of figures after the decimal point
...

For example,

3
...
3792 correct to 2 decimal places
...
Express 1
...

6
...
0005279 correct to 3 significant
figures
...
714285
...
714 correct to 4 significant figures
= 1
...

The last digit in the answer is increased by 1 if the next
digit on the right is in the group of numbers 5, 6, 7, 8 or
9
...
7142857
...
7143 correct to 5 significant figures
= 1
...

Problem 5
...
36815 correct to
(a) 2 decimal places, (b) 3 significant figures,
(c) 3 decimal places, (d) 6 significant figures
(a)

15
...
37 correct to 2 decimal places
...
36815 = 15
...

(c)

15
...
368 correct to 3 decimal places
...
36815 = 15
...

Problem 6
...
004369 correct to
(a) 4 decimal places, (b) 3 significant figures
(a)

0
...
0044 correct to 4 decimal places
...
004369 = 0
...


3
...
This is demonstrated in the
following worked examples
...
Evaluate 46
...
06 + 2
...
09
and give the answer correct to 3 significant figures
The decimal points are placed under each other as
shown
...

46
...
06
2
...
09
52
...
Place 5 in the hundredths column
...

(ii) 8 + 0 + 4 + 0 + 1 (carried) = 13
...
Carry the 1 into the units
column
...
Place the 2 in
the units column
...


Decimals
(iv) 4 + 1(carried) = 5
...

Hence,
46
...
06 + 2
...
09 = 52
...
4, correct to 3
significant figures

19

Now try the following Practice Exercise
Practice Exercise 10 Adding and
subtracting decimal numbers (answers on
page 341)
Determine the following without using a calculator
...
Evaluate 64
...
77 and give the
answer correct to 1 decimal place
As with addition, the decimal points are placed under
each other as shown
...
46
−28
...
69
(i) 6 − 7 is not possible; therefore ‘borrow’ 1 from
the tenths column
...
Place
the 9 in the hundredths column
...
This gives 13 − 7 = 6
...

(iii) 3 − 8 is not possible; therefore ‘borrow’ from the
hundreds column
...
Place
the 5 in the units column
...


Evaluate 37
...
6, correct to 3 significant figures
...


Evaluate 378
...
85, correct to 1 decimal
place
...


Evaluate 68
...
84 − 31
...


4
...
841 − 249
...
883, correct
to 2 decimal places
...


Evaluate 483
...
44 − 67
...


6
...
22 −349
...
336 +56
...


7
...
1
...

82
...
Place the 3 in the hundreds column
...
41

8
...
67

Hence,
64
...
77 = 35
...
7 correct to 1 decimal place
Problem 9
...
64 − 59
...
66 +
38
...
64 + 38
...
14
...
826 + 79
...
486
...
140
−139
...
654
Hence, 351
...
486 = 211
...
7, correct to 4 significant figures
...
1

3
...

This is demonstrated in the following worked examples
...


Evaluate 37
...
4

(vi) 6 × 12 = 72; place the 72 below the 82
...

(viii) Bring down the 5 to give 105
...
500
(x) 8 × 12 = 96; place the 96 below the 105
...


(i) 376 × 54 = 20304
...


(ii) As there are 1 + 1 = 2 digits to the right of
the decimal points of the two numbers being
multiplied together, 37
...
4, then

(xiii) 12 into 90 goes 7; place the 7 above the first
zero of 442
...
6 × 5
...
04

(xiv) 7 × 12 = 84; place the 84 below the 90
...

(xvi) Bring down the 0 to give 60
...
Evaluate 44
...
2, correct to
(a) 3 significant figures, (b) 2 decimal places
44
...
2 =

44
...
2

The denominator is multiplied by 10 to change it into an
integer
...
Thus,
44
...
25 × 10 442
...
2
1
...

 36
...
500
36
82
72
105
96
90
84
60
60
0
(i) 12 into 44 goes 3; place the 3 above the second
4 of 442
...
500
(iii) 44 − 36 = 8
...
500
442
...
875
(xviii) Hence, 44
...
2 =
12
So,
(a)

44
...
2 = 36
...


(b) 44
...
2 = 36
...

2
Problem 12
...
666666
...
666666
...
667 correct to 4 significant figures
...
6666

...
6 recurring and is

...
6
Now try the following Practice Exercise
Practice Exercise 11 Multiplying and
dividing decimal numbers (answers on
page 341)
In Problems 1 to 8, evaluate without using a
calculator
...


1
...
57 × 1
...
500

2
...
92 × 0
...


Evaluate 167
...
3

4
...
6 × 1
...


Evaluate 548
...
2

6
...
3 ÷ 1
...


7
...
48 ÷ 0
...


8
...
4 ÷ 1
...

4
, correct to 3 significant figures
...

10
...
1 , correct to 4 significant figures
...


5
, correct to 3 decimal places
...
13 , correct to 2 decimal places
...
8 , correct to 3 significant figures
...
53

15
...
8 ÷ 17, (a) correct to 4 significant figures and (b) correct to 3 decimal
places
...
0147
, (a) correct to 5 decimal
2
...


16
...



...
6
(b) 5
...
Evaluate (a)
1
...
A tank contains 1800 litres of oil
...
75 litres can be filled from
this tank?

21

List of formulae
Laws of indices:

Areas of plane figures:

a m × a n = a m+n
a m/n =


n m
a

am
an

= a m−n (a m )n = a mn

a −n =

Quadratic formula:
If ax 2 + bx + c = 0

1
an

Area = l × b

(i) Rectangle

a0 = 1
b


−b ± b2 − 4ac
x=
2a

then

Equation of a straight line:

l

(ii) Parallelogram Area = b × h

y = mx + c

Definition of a logarithm:
If y = a x

then

h

x = loga y

Laws of logarithms:
log(A × B) = log A + log B
 
A
= log A − log B
log
B

b

(iii) Trapezium

log An = n × log A

1
Area = (a + b)h
2
a

Exponential series:
ex = 1 + x +

x2 x3
+
+···
2! 3!

h

(valid for all values of x)
b

Theorem of Pythagoras:
b 2 = a 2 + c2

(iv) Triangle

Area =

1
×b×h
2

A

c

B

b
h

a

C
b

List of formulae
Area = πr 2 Circumference = 2πr

(v) Circle

(iii) Pyramid
If area of base = A and
perpendicular height = h then:

r

s



Volume =

1
× A×h
3

r

2π radians = 360 degrees

Radian measure:

h

For a sector of circle:
θ◦
(2πr) = rθ
360

(θ in rad)

1
θ◦
(πr 2 ) = r 2 θ
360
2

(θ in rad)

s=

arc length,

shaded area =

Equation of a circle, centre at origin, radius r:
x 2 + y2 = r 2
Equation of a circle, centre at (a, b), radius r:

Total surface area = sum of areas of triangles
forming sides + area of base
(iv) Cone
1
Volume = πr2 h
3
Curved Surface area = πrl

(x − a)2 + (y − b)2 = r 2

Total Surface area = πrl + πr2

Volumes and surface areas of regular
solids:
l

(i) Rectangular prism (or cuboid)

h

Volume = l × b × h
Surface area = 2(bh + hl + lb)

r

(v) Sphere

l

h

4
Volume = πr3
3
Surface area = 4πr2

b

(ii) Cylinder
Volume = πr2 h
Total surface area = 2πrh + 2πr2
r

r

h

337

338 Basic Engineering Mathematics
Areas of irregular figures by approximate
methods:
Trapezoidal rule


 
width of 1 first + last
Area ≈
interval
2 ordinate

+ sum of remaining ordinates
Mid-ordinate rule
Area ≈ (width of interval)(sum of mid-ordinates)
Simpson’s rule

 

1 width of
first + last
Area ≈
ordinate
3 interval




sum of even
sum of remaining
+4
+2
ordinates
odd ordinates

For a general sinusoidal function y = A sin (ωt ± α),
then
A = amplitude
ω = angular velocity = 2π f rad/s
ω
= frequency, f hertz


= periodic time T seconds
ω
α = angle of lead or lag (compared with
y = A sin ωt )

Cartesian and polar co-ordinates:
If co-ordinate (x, y) = (r, θ) then

y
r = x 2 + y 2 and θ = tan−1
x
If co-ordinate (r, θ) = (x, y) then
x = r cosθ and y = r sin θ

Mean or average value of a waveform:
area under curve
length of base
sum of mid-ordinates
=
number of mid-ordinates

mean value, y =

Triangle formulae:
Sine rule:
Cosine rule:

b
c
a
=
=
sin A sin B
sin C
a 2 = b2 + c2 − 2bc cos A

B

b

a

If a = first term and d = common difference, then the
arithmetic progression is: a, a + d, a + 2d,
...

The n’th term is: arn−1
Sum of n terms, Sn =

A
c

Arithmetic progression:

a (1 − r n )
a (r n − 1)
or
(1 − r )
(r − 1)

If − 1 < r < 1, S∞ =

a
(1 − r )

C

Area of any triangle
1
= × base × perpendicular height
2
1
1
1
= ab sin C or
ac sin B or
bc sin A
2
2
2

a +b+c
= [s (s − a) (s − b) (s − c)] where s =
2

Statistics:
Discrete data:

#
mean, x¯ =

x

n
)
(
 #

(x − x¯ )2

standard deviation, σ =
n

List of formulae
Grouped data:

#
fx
mean, x¯ = #
f

)
 #$
%(

f (x − x)
¯ 2

#
standard deviation, σ =
f

Standard integrals
y
axn
cos ax

Standard derivatives
sin ax

y or f(x)

dy
= or f (x)
dx

axn

anxn−1

sin ax

a cos ax

cos ax

−a sin ax

eax

aeax

ln ax

1
x

eax
1
x

&

a

y dx
x n+1
+ c (except when n = −1)
n +1

1
sin ax + c
a
1
− cos ax + c
a
1 ax
e +c
a
ln x + c

339

Answers

Answers to practice exercises
Chapter 1

Chapter 2

Exercise 1 (page 2)
1
...

7
...

13
...

17
...
16 m
3
...
£565
6
...
−36 121
9
...
1487
12
...
−70872
15
...
25 cm
d = 64 mm, A = 136 mm, B = 10 mm

1
...

4
...

7
...


5
...

13
...


Exercise 2 (page 5)
(a) 468 (b) 868
2
...

(a) 259 (b) 56
8
...


2
...

6
...

10
...


(a) 12 (b) 360
(a) 90 (b) 2700
(a) 3 (b) 180
(a) 15 (b) 6300
(a) 14 (b) 53 900

Exercise 4 (page 8)
2
...
68

3
...
5

DOI: 10
...
00040-5

3
...

10
1
14
...
1
21
6
...


16
...


2
6
8
2
...

35
9
11
3
1
7
...

5
13
5
3
2
12
...
3
2
5
12
4
3
1
17
...
13
4
9
(a) £60, P£36, Q£16

7
...

15
...


22
9
8
25
3
16
4
27
17
60

4
...

12
...

20
...
5
9
...
−33
10
...
1
2
12
14
...


71
8
11
15
3
16
51
8
52
17
20

19
...

15
5
...
4
20
...
2880 litres

Exercise 7 (page 14)
1
18
7
6
...
2
1
...
22
11
...

(a) 4 (b) 24
(a) 10 (b) 350
(a) 2 (b) 210
(a) 5 (b) 210
(a) 14 (b) 420 420

2
...

3
...

7
...


1
7
4
11
17
30
43
77
9
1
40

1
...
4

1
9
19
7
...
2
20
2
...
1
8
...
7
3

4
...

15
5
...
0
...
14
...
1
...


13
20

7
40
21
1
141
(b)
(c)
(d)
(e)
25
80
500
11
3
7
...
10
25
200
11
1
7
(b) 4
(c) 14
(d) 15
40
8
20
2
...
4
40
41
10
...
(a)

11
...
625

9
250

3
...


6
125

9
...

4
...

10
...


2
...
11
...
185
...
8307
5
...
1581
6
...
571
5
...
1
...
0
...
068
11
...
5 ×10
12
...
5 ×103
−6
−3
4
...
202
...
18
...
6
...
0
...
11
...
0
...
14
...
1
...
2
...
65
...
0
...
329
...
18
...
43
...
72
...
12
...
−124
...
4
...
0
...


9
10

4
...
732
8
...
0
...
0
...
0
...
−0
...
0
...
0
...
5
...
2
...
0
...
0
...
0
...
998 2
...
544
3
...
02 4
...
42
456
...
434
...
626
...
1591
...
444 10
...
62963
11
...
563 12
...
455
13
...
8
...
(a) 24
...
812
(a) 0
...
0064 17
...
4˙ (b) 62
...
4
...
0
...
3
...
13
...
50
...
53
...
36
...
12
...
0
...
46
...
1
...
2
...
2
...
30
...
0
...
219
...
5
...
5
...
52
...
0
...
25
...
591
...
69
...
17
...

4
...

10
...
11927
6
...
0944
10
...
325

2
...
30
...
84
...
10
...
2
...


Exercise 10 (page 19)

1
...

9
...

16
...


2
...
0
...
137
...
19
...
515
...
15
...
52
...
0
...
80
...
295
...
59 cm2
159 m/s
0
...

5
...

11
...
78 mm
0
...
8 m2
281
...

6
...

12
...
5
5
...
5
2
...

4
...

10
...


£58
Title: Basic Engineering Mathematics -Decimals
Description: Basic Engineering Mathematics -Decimals