Comments

e Theaddition of commentsinside pr%%\a/r@@ r}gk able. These may be added to
C programs by enclosi r&th

Cbnpu Iﬁ‘énrmﬂ r(f;|s section of code we inplenent the

‘) {%&5 n1for t he nunerical solution of the
dlfferent nstei n Equati ons.

*/

* Notethat the/ * opensthe comment field and the */ closes the comment
field. Comments may span multiple lines. Comments may not be nested one
Inside the another.

/[* this is a comment. /* this comment is inside */ wong */

* Inthe above example, the first occurrence of */ closes the comment

statement for the entire line, meaning that the text wrong isinterpreted asa C
statement or variable, and in this example, generates an error.

12

osc C Programming

Symbolic Constants

* Namesgiven to valuesthat cannot be changsd\y\(pl emented with the
#def i ne preprocessor di rectlve G

#def I\$O§ |_§_|Q)

a\f
eWN Mg 3. 14159
P(e\,\ éfl ne FI GURE "triangl e"

» Note that preprocessor statements begin with a# symbol, and are NOT

terminated by a semicolon. Traditionally, preprocessor statements are listed at
the beginning of the sourcefile.

» Preprocessor statements are handled by the compiler (or preprocessor) before
the program is actually compiled. All # statements are processed first, and the
symbols (like N) which occur in the C program ar e replaced by their value
(like 3000). Once this substitution has taken place by the preprocessor, the
program is then compiled.

e Ingeneral, preprocessor constants are written in UPPERCASE. Thisactsasa
form of internal documentation to enhance program readability and reuse.

* Inthe program itself, values cannot be assigned to symbolic constants.

0SC -

C Programming

Declaring Variables

A variableisanamed memory locgtion l\l&‘data of acertain type can be

stored. The contents of a vagég hange thus the name. User defined
variables must be can be used in aprogram. It isduring

the dec &?%C emory for the variable isreserved. All
eb lared before use.

Get into th ITof declaring variables using lowercase characters.
Remember that C is case senditive, so even though the two variables listed
below have the same name, they are considered different variablesin C.

sum Sum

The declaration of variables is done after the opening brace of main().
mai n() {

| Nt sum

It is possible to declare variables elsewhere in a program, but lets start ssmply
and then get into variations later on.

0SC o

C Programming

Basic Format

« Thebasic format for declaring varlag és cO- \)\(

note?
dat a J‘i (y@@(‘\/ erl
eW Q0
\1\
eredat @ge |s one of the four basic types, an integer, character, float,
or doubletype Examples are

Int 1,],Kk;

fl oat | ength, hei ght;
char mdinit;

19
Osc C Programming

Basic Data Types: INTEGER

 |INTEGER: These are whole numb b@ﬁ)aés‘}ﬁ/e and negative. Unsigned
Integers(positive values onl gﬁggﬂpported. In addition, there are short
and long integers. R&@%&ﬁﬁ\ i '@eger types will be discussed |ater.
. (O %& 0" ﬁ’e%
-P {@k@b‘é‘g%@ eintegersis
| nt

 Anexample of aninteger valueis 32. An example of declaring an integer
variable called age is

| nt age,

20
OSC C Programming

Advanced Assignment Operators

» A further example of C shorthand ar fép@;@‘% ch combine an arithmetic
operation and aassgnment te@a one form. For example, the following
statement

Lé_\lf\ﬁ(gn(g\ ttebﬁas)c
P\’fﬁe general\gydeal | e:y\)'z

vari able = vari abl e op expression;

e can aternatively be written as
vari abl e op= expressi on;

e common forms are:

+= - = * = [= 05
 Examples:

JERE3HX) S) = 3K

a=al (s-5); a /= s-5;

32

Osc C Programming

Automatic Type Conversion

 How does C evaluate and type expression ﬁ \ﬂatam amixture of different
data types? For example, if x is aﬁx@l ‘I aninteger, what is the type of

the expression eS

WF@I * wil Ié)@@vgted to type double and the expression will
P@@\I ate as NOTE: thevalueof | storedin memory is unchanged
A temporary copy of | isconverted to a double and used in the expression
evaluation.

« Thisautomatic conversion takes place in two steps. First, all floats are
converted to double and all characters and shorts are converted to ints. In the
second step “lower” types are promoted to “higher” types. The expression
itself will have the type of its highest operand. Thetype hierarchy isas

follows
| ong doubl e
doubl e
unsi gned | ong
| ong
unsi gned

' 39
OSC I nt C Programming

Format Specifiers Table

« Thefollowing table show what forn\aés;@ﬂi é%&ould be used with what
data types: |
yp Q’(.esa

character

%l decimal integer

%0 octal integer (leading 0)

U hexadecimal integer (leading Ox)
% unsigned decimal integer

% d long int

% floating point

% f double or long double

%e exponentia floating point

%s character string

45
OSC C Programming

Basic Output Examples

P

0SC

printf(“ABC"); ‘.

printf(“%\n

prJnW g\/{@ﬁ')a%c)
F

printf (Yt égenlng

printf (“C)
printf(* Fromsea\n)
printf(“to shining \n*);

printf (“C);

| eg1=200. 3; |eg2=357. 4;
printf(“lt was %
mles”, | egl+tl eg?2);

nunl=10; nunP=33;
printf(“%l\t%\n”, nunl, nun) ;
bi g=11e+23;

printf(“% \n”, big);
printf(“% \n”,’ ?");

printf(“% \n”,’ ?");

printf(“\007 That was a beep\n”);

ABC (cursor after the C)

5 (cursor at start of next line)
ABC

From sea to shining C

From sea
t o shining
C

It was 557.700012 m | es

10 33

1. 100000e+24
?

63

try it yourself 47

C Programming

f or Loop Example

o Sample Loop:

0SC

0)
1
2
3
4
5
6

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE

Su

Iteration |1 1<6

10
11
13
16
20
25
25

m

55

C Programming

whi | e Loop

e Thewhil e loop providesa mechar(%n @Oeb&& ng C statements while a

condition istrue. Its format lees
8

XAt roy @Y 2551 on
P(ev\wg@gé1@%t e§nent)

e Thewhi | e statement works as follows:

1) Control expression isevaluated (“entry condition”)
2) If itisFALSE, skip over theloop.

3) If it isTRUE, loop body is executed.

4) Go back to step 1

59

OSC C Programming

do whi | e Loop Example

 Hereisasample program that reverieéa@@eéér withado whi | e loop:

naln() ‘f3€5€1
KR e B

d
Iﬁésnunber to be reversed.\n");
P(e\,\e anf@ vaI ue) ;

r digit = val ue % 10;
prlntf(%", r dlglt);
val ue = val ue J 10;
} while (value !'= 0);
printf("\n");

62
OSC C Programming

| f Statement

« Thei f statement allows branching Sd%aeqn ﬁq% ng) depending upon a

condition. Program code s [skipped. The basic syntax is
WO~ ag
A e

« If the control expression is TRUE, the body of thei f isexecuted. If itis
FALSE, the body of thei f is skipped.

« Thereisno “then” keyword in Cl

» Because of the way in which floating point types are stored, it makesit very
difficult to compare such types for equality. Avoid trying to comparereal
variablesfor equality, or you may encounter unpredictable results.

66

OSC C Programming

| f - el se Statement

e Used to decide between two coursis of ec@oh.)\éhe syntax of thei f - el se
statement is \Eﬁ5£i '

o O i B8

\\e e
P(e Pa@ st at ement 2;

o |ftheexpressionis TRUE, st at enent 1 isexecuted; st at enent 2 is
SKipped.

o |ftheexpressionis FALSE, st at enment 2 isexecuted; st at enent 1 is
skipped.

o Some examples

1T (x<y) 1f (letter == "e') {
m n=x; ++e_count;

el se ++vowel count; }
m n=y; el se

++0t her _count;

68

Osc C Programming

swi t ch Statement Example: Menus

* A common application of the swi t i%s@@ﬁét\(s to control menu-driven
software: ‘ega

Swi \;: hé([qhﬁgm_{;\z‘ ol 180
(e Ch?sé‘(%pel |1 ng();

br eak;
case 'C:
correct _errors();
br eak;
case 'D:
di splay_errors();
br eak;
def aul t:
printf("Not a valid option\n"); }

74
Osc C Programming

Logical Operators

» These operators are used to create
which can then be used in
we have just disc

operator\f{frﬁef i\

Opaaar

@ﬁbi s\r%&ed conditional expressions
looping or decision making statements
ns are combined with alogical

LSE (i.e., 0) isreturned.

Operation

LOGICAL && expl && exp2 Requiresboth expl and exp?2 to be
AND TRUE to return TRUE. Otherwise, the
logical expressionis FALSE.

LOGICAL | | expl || exp2 Will be TRUE if either (or both) expl or
OR exp2 is TRUE. Otherwise, it is FALSE.
LOGICAL ! lexp Negates (changes from TRUE to FALSE
NOT and visa versa) the expression.

77
OSC C Programming

Arrays of Characters

o Stringsare 1D arrays of char acteriét e terminated by the null
character ' \ O' which |s(na{h led the end-of-string character. Don’t

forget to rememb T%% -string character when you calculate the

size of

Wl\ aﬁ\’ ngs must be declared before they are used. Unlike
other 1D ar st e number of elements set for astring set during declaration
isonly an upper limit. The actual strings used in the program can have fewer
elements. Consider the following code:

static char nane[18] = "lvanova",;
 Thestring called nane actually has only 8 elements. They are
B A VAR~ B | D¢ D VAR B)
* Notice another interesting feature of this code. String constants mar ked with
double quotes automatically include the end-of-string character. The curly

braces are not required for string initialization at declaration, but can be used
iIf desired (but don’t forget the end-of-string char acter).

91
OSC C Programming

More String Functions

 Includedinthestri ng. h aresev &% tvig-related functions that are

free for you to use. Here is e € of some of the more popular ones
.

Function Open ailon

% (@},c r P ageéi

dsfirst occurrence of a given character

strcnp Compares two strings

strcnpi Compares two, strings, non-case sensitive

strcpy Copies one string to another

strlen Finds length of astring

strncat Appends n characters of string

strncnp Compares n characters of two strings

strncpy Copies n characters of one string to another
strnset Sets n characters of string to a given character
strrchr Finds last occurrence of given character in string
strspn Finds first substring from given character set in string

95
OSC C Programming

More String Functions Continued

man pages prowdeafull of their operation. Take for example,

st rcm“vgh§?ga&bl ‘ lgg
P(e\,\e pa Qec%p(st ringl, string2);:

» Most of the functions on the prev |ons a@@e\sg‘explanatory The UNIX

* |t returns an integer that is less than zero, equal to zero, or greater than zero
depending on whether st r i ngl islessthan, equal to, or greater than

string2.

e String comparison is done character by character using the ASCII numerical
code

96

OSC C Programming

More Character Functions

o Aswith strings, thereisalibrary of Lg:@a Agéned to work with character
tition

variables. Thefilect ype.
characters. Her

al routines for manipulating

el

tsfor alphanumeric character

Pvi%al pha Pag Testsfor alphabetic character
| sasci i Testsfor ASCII character
I scntrl Testsfor control character
I sdigit Testsfor 0to 9
I sgraph Testsfor printable character
I sl ower Testsfor lower case character
I sprint Testsfor printable character
I spunct Testsfor punctuation character
| sspace Testsfor space character
I supper Testsfor uppercase character
i sxdigit Testsfor hexadecimal
t oasci i Converts character to ASCII code
t ol ower Converts character to lower case
t oupper Converts character to upper

99
OSC C Programming

return Statement Examples

 Thedatatypeof ther et urn expressd;Q)\% match that of the declared
return_type for thefunc{@a‘:)a\

oa d‘“@nb f(D&,}’ oat n
fl\i%?ﬂﬁaﬁr@@%ag /*Iegal*/ st et

/[*illegal, not the sane data type*/
return 6. 0; [*l egal */ }

» Itispossiblefor afunction to have multipler et ur n statements. For example:

doubl e absol ut e(doubl e x) {

I f (x>=0.0)
return X;
el se
return -x;
}
0SC e

C Programming

Using Functions

« Thisistheeasiest part! To invokegii c@@ }Lgktype Its namein your
program and be sure to sup ts (if necessary). A statement using our
factorial program el | 88

i oW ’ﬂéh;en)&e&ga(a §>’| al (9);

 Toinvoke bur write header function, use this statement
write header();

* When your program encounters a function invocation, control passesto the
function. When the function is completed, control passes back to the main

program. In addition, if avalue was returned, the function call takes on that
return value. In the above example, upon return from thef act or i al

function the statement
factorial (9) — 362880
e and that integer is assigned to the variable nunber .

113
OSC C Programming

Using Function Example

» Theindependence of actual and dun\ E@ﬂ}e}l\éls demonstrated in the
following program. esa

\
i#lnPCIcgde <st dlﬁ-)&I A &EO O-‘ ’L%%

(n>0
sumt=n;
printf(" Local n in function is %\ n", n);
return sum }
mai n() {
i nt n=8, sum
printf ("Main n (before call) is %\ n",n);
sumeconput e_sum(n) ;
printf ("Main n (after call) is %\ n",n);
printf ("\nThe sumof integers froml to % is %\ n",n,sum;}

Main n (before call) is 8
Local n in functionis O
Main n (after call) is 8

The sumof integers froml1l to 8 is 36

115
OSC C Programming

extern Storage Class

* |ncontrast, extern variables are glok\aé CO u\(

 |favariableis decﬁgﬁ@&%m@ of aprogram outside all functions
[inclu ud|n It i&a@ external by default.
Yze\'\ %9%
xternal \Qr can be accessed and changed by any function in the

program.

o Their storage isin permanent memory, and thus never disappear or need to be
recreated.

What is the advantage of using global variables?
It isa method of transmitting infor mation between functionsin a program
without using arguments.

121
OSC C Programming

char and int Formatted Output Example

e Thisprogram and it output demonst\a§ \@|®u zed field widths and their

variants. So
o N 188
Wad '<st d
prefiie 2P
int i=1, 1—29
printf (%\n",lett);
printf ("@mc\n lett); 29
printf ("@630\n\n",|ett); 29
printf ("%l\n",i); 0000000029
printf ("%l\n",j); 29
printf ("%0d\n", j) 35
printf ("%010d\n", j) 1d
printf ("@éOlOd\n j)
printf ("%o\n",j);
printf ('”%Ex\n",j);

126
OSC C Programming

s Format Identifier

o For strings, the field length specifi @015 ore and will automatically
expand if the strmg Size |s.b§1 he specification. A more sophisticated

string format sp €U&%%

\Nﬁ QO
(eN\e e 3&%
v pad”_» - ~_

field width maximum number of characters printed

* where the value after the decimal point specifies the maximum number of
character s printed.

o For example;

printf("3.4s\n", " Sheridan"); —» Sher

130
Osc C Programming

Strings Formatted Output Example

#i ncl ude <stdi o. h> O. \XVL
mai n() { e.C
static char S 2()_ ﬁi@m presence";

printf

{ﬁdﬂﬂ " 04 (f%j\

e\ 6
P(Fga eg;) 5s\ n")

0SC

prlntf "@612s\n ,S);
printf (%45. 12s\ n", s);
printf ("% 15.12s\n",s);
printf ("%3.12s\n",s);

evil presence
evil presence
an evil presence
evil presence

ev
evil pres
an evil pres
evil pres
evil pres

131

C Programming

Pointer Arithmetic

* A limited amount of pointer ari é @d\a}&The "unit" for the
arithmetic isthe size of the @& ng pointed to in bytes. Thus,

Incrementing W -n automatically adds to the pointer
address @&d old an int (on that machine).
preV

— Integefs an poi nters can be added and subtracted from each other, and
— Iincremented and decremented.

— In addition, different pointers can be assigned to each other
* Some examples,

Int *p, *q;
p=p+2;
q=p.

0SC 139

C Programming

Introduction to Structures

* A structureisavariablein which diff e(r;(t)/p)& of data can be stored
together in one varlab enape er the data a teacher might need for a

high school stud % test scores, final score, ad final course
grade. é &uﬁtﬂ %’T (@m dent can hold all thisinformation:
preV'©oage
Struct student {
_— char nane[45];
keyword char cl ass;
f | oat gpa;\

structure

data type name ' nt t _est [3] member name & type
I nt final;
char grade;
}s

« Theaboveisadeclaration of adatatypecaledst udent . ltisnot a
variable declaration, but a type declaration.

151
Osc C Programming

Structure Variable Declaration

o Toactually declare astructure variaRIé ttg@a\a)&d syntax is used:

otese |
'\Set\rl\T Cﬁéwi?l of B%art, rorer,
\

'P ({%u can d@l@gestructure type and variables simultaneously. Consider the
following structure representing playing cards.

struct playing card {
| Nt pi ps;
char *suit;

} cardl, card2, card3;

152
Osc C Programming

Dynamic Memory Allocation: free

 Whenthevariablesareno longer r, \s(pace which was allocated to
themby cal | oc should %«g@:} thesystem Thisisdone by,
e
\eW “Pr e% t@‘ L
preV™ page
P

183
Osc C Programming

