
Introduction to the Science of Statistics The Method of Moments

13.4 Answers to Selected Exercises
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Figure 13.2: Densities f(t|↵) for the values of ↵ = �1
(yellow). �1/3 (red), 0 (black), 1/3 (blue), 1 (light blue).

13.2. Let T be the random variable that is the angle between
the positron trajectory and the µ+-spin
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� ⇡2/3)/2. This leads to the method of mo-
ments estimate
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where t2 is the sample mean of the square of the observations.

13.4. Let X be the random variable for the number of tagged fish. Then, X is a hypergeometric random variable with
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The variance of ˆN

Var( ˆN) ⇡ g0(µ)2�2
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Now if we replace µX by its estimate r we obtain

�2

ˆN
⇡ k2t2

r3
(k � r)(t� r)

kt� r
.

For t = 200, k = 400 and r = 40, we have the estimate �
ˆN = 268.4. This compares to the estimate of 276.6 from

simulation.
For t = 1709, k = 6375 and r = 138, we have the estimate �

ˆN = 6373.4.
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