4 (d) Range of ff(x) is 0, ff(x) $\in 3$	M1	1.1b	
Alt				
	As $\frac{7}{2} > 3$, then ff (x) = $\frac{7}{2}$ has no solutions	A1	2.4	
		(2)		
Quest	ion 4 Notes:			
(a)	f(x) = 0 (ref. $x = 0$) or $f(x) = 0$ (ref. $x = 0$) or $f(x) = 0$ (ref. $x = 0$)	= 4		
M1:	For one "end" fully correct; e.g. accept $f(x) \dots 0$ (not $x \dots 0$) or $f(x) \in 4$ (not $x \in 0$ or for both correct "end" values; e.g. accept $0 \in f(x)$, 4.	= 4);		
A1:	Correct range using correct notation. Accept 0 , $f(x) \in 4$, 0 , $y \in 4$, [0, 4), $f(x) \dots 0$ and $f(x) \in 4$			
(b)				
M1:	Attempts to find the inverse by cross-multiplying and an attempt to collect all the <i>x</i> -terms (or swapped <i>y</i> -terms) <u>onto one</u> side.			
M1:	A fully correct method to find the inverse.			
A1:	A correct $f^{-1}(x) = \frac{4x}{12 - 3x}$, 0, $x \in 4$, o.e. expressed fully in function notation, including the			
	domain, which may be correct or followed through from their part (a) answer for t	heir range o	of f	
Note:	Writing $y = \frac{12x}{3x+4}$ as $y = \frac{4(3x+4) - 16}{3x+4} \rightarrow y = 4 - \frac{16}{3x+4}$ leads to a correct	JK		
	Writing $y = \frac{12x}{3x+4}$ as $y = \frac{4(3x+4) - 16}{3x+4} \rightarrow y = 4 - \frac{16}{3x+4}$ leads to a correct $f^{-1}(x) = \frac{1}{3} \begin{bmatrix} 16 \\ 4 - x \end{bmatrix} 0$, $x \in 4$ Attempts to submitter $f(x) = \frac{12x}{3x+4}$ into $\frac{12\pi(x)}{31(x)+4}$ Applies a method of "rationalising me denominator" for their denominator.			
(c)	from 120x) of 32			
M1:	Attempts to subortify $(x) = 1$ into 3f(x) + 4 applies a method of "rationalising me denominator" for their denominator.			
M1:	9r			
A1*:	Shows $\Pi(x) = $ with no errors seen. 3x + 1			
	Note: The domain of $ff(x)$ is not required in this part.			
(d)				
M1:	Sets $9x$ to 7 and solves to find $x =$ 3x + 1 2			
A1:	Finds $x = -\frac{7}{3}$, rejects this solution as ff (x) is valid for x0 only			
	Concludes that $ff(x) = \frac{7}{2}$ has no solutions.			

Question	Scheme	Marks	AOs
11 (i)	$\begin{cases} y = a^x \rightarrow \\ & y = \ln a^x \rightarrow \ln y = x \ln a \rightarrow \\ & y dx \end{cases} \xrightarrow{1 dy} = \ln a$	M1	2.1
	$\frac{dy}{dx} = y \ln a \longrightarrow \frac{dy}{dx} = a^x \ln a *$	A1*	1.1b
		(2)	
(i) Alt 1	$\begin{cases} y = a^x \rightarrow \\ y = e^{x \ln a} \rightarrow \frac{dy}{dx} = (\ln a)e^{x \ln a} \\ \frac{dx}{dx} = (\ln a)e^{x \ln a} \end{cases}$	M1	2.1
AILI	$ \xrightarrow{dy}_{dx} = a^x \ln a^x $	A1*	1.1b
		(2)	
(ii)	$\begin{array}{c} d \\ \boxed{2} 2 \tan y \\ \boxed{2} = 2 \sec^2 y \\ dy \\ \qquad \qquad$	M1	1.1b
	$ \left\{ x = 2 \tan y \rightarrow \right\} \underbrace{dx}_{dy} = 2 \sec^2 y \text{or} 1 = (2 \sec^2 y) \frac{dy}{dx} $	A1	1.1b
	$\frac{dx}{dy} = 2(1 + \tan^2 y) \text{or} 1 = 2(1 + \tan^2 y) \frac{dy}{dx}$	M 1	1.1b
	$\frac{dx}{dy} = 2(1 + \tan^2 y) \text{or} 1 = 2(1 + \tan^2 y) \frac{dy}{dx}$ $\frac{dx}{dy} = 2(1 + \tan^2 y) \text{or} 1 = 2(1 + \tan^2 y) \frac{dy}{dx}$ $E.g. dy = \frac{2}{4} + \frac{1}{2} + \frac{1}$	A1	2.1
P	rev page	(4)	
(ii)	$ \{x = 2 \tan y \rightarrow \} y = \arctan \begin{bmatrix} x \\ 2 \end{bmatrix} \rightarrow \frac{dy}{dx} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} $	M1	1.1b
Alt 1		M1	1.1b
		A1	1.1b
	$ \begin{array}{c} \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \\ \hline$	A1	2.1
		(4)	
(6 mark			marks)

Question	Scheme	Marks	AOs
12 (a)	$y = ax^{2} + c$ $x = 0, y = 4 \longrightarrow c = 4$	M1	3.3
	$x = 50, y = 24 \rightarrow 24 = a(50)^2 + 4 \rightarrow a = \frac{20}{50^2} = \frac{1}{125}$ or 0.008	M1	3.4
	$y = \frac{1}{125}x^2 + 4 \{-50, x, 50\}$	A1	1.1b
		(3)	
(a) Alt 1	$y = ax^{2} + bx + c$ $x = 0, y = 4 \longrightarrow c = 4$ $x = 50, y = 24 \longrightarrow 24 = 2500a + 50b + 4$	M1	3.3
	$x = 50, y = 24 \rightarrow 24 = 2500a - 50b + 4$ $0 = 100b \rightarrow b = 0$ $24 = 2500a + 4 \rightarrow a = 20 = 1$ or 0.008 $\overline{2500} = 125$	M1	3.4
	$y = \frac{1}{125}x^{2} + 4 \{-50, x, x, 50\}$ $x = 50 - 19 = 31 \rightarrow y = \frac{1}{(31)^{2}}$		1.1b
	- totesaio-	(3)	
(b)		M1	3.4
	$y = 11.688 \{ \in 1. \} \rightarrow \text{Lee can safe y it spect the defect}$	A1	2.2b
p	revier page -	(2)	
(b) Alt 1	$12 = \frac{1}{125} x^2 + 4 \longrightarrow 8 = \frac{1}{125} x^2 \longrightarrow x = 1000$	M1	3.4
	$x = 31.6227766 \rightarrow$ Distance from tower $= 50 - 31.6227766$ = 18.3772234 { $\in 19$ } \rightarrow Lee can safely inspect the defect	A1	2.2b
		(2)	
(c)	 E.g. The thickness/diameter of the cable has not been incorporated into the current model Weather conditions (e.g. strong winds) may affect the shape of the curve Walkway may not be completely horizontal 	B1	3.5b
		(1)	
			marks)

Quest	on 12 Notes:
(a)	
M1:	Attempts to use a model of the form $y = ax^2 + c$ (containing no x term)
M1:	Uses the constraints $x=0$, $y=4$ and $x=50$, $y=24$ (or $x=-50$, $y=24$) to find the
	values for their c and for their a
A1:	$y = \frac{1}{125}x^2 + 4 (\text{Ignore} - 50, x, 50)$
(a)	
Alt 1	
M1:	Attempts to use a model of the form $y = ax^2 + bx + c$ and finds or deduces that $b = 0$
M1:	Uses the constraints $x = 0$, $y = 4$; $x = 50$, $y = 24$ and $x = -50$, $y = 24$ to find the
	values for their c, for their b and for their a
A1:	$y = \frac{1}{125}x^2 + 4$ (Ignore - 50 , x , 50)
(b)	
M1:	Substitutes $x = 50 - 19 \{=31\}$ or $x = -50 + 19 \{=-31\}$ into their quadratic model
A1:	Obtains $y = awrt 11.7$ and infers from the model that Lee can sate Purspect the defect
(b)	Notesale 22
Alt 1	6 m N 6 32
M1:	Substitutes $y = 12$ into their function model and realizing us to find $x =$
A1:	Obtains distinct from tower as awrt $^{\circ}$ and infers from the model that Lee can safely inspect the refeat
(c)	
B1:	See scheme

$\frac{1}{4x} = \frac{4e^{-x} - 8xe^{-x}}{4}$ A1	Question	Scheme	Marks	AOs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$y = 4xe^{-2x} \longrightarrow \begin{bmatrix} 2 & u & =4x \\ 0 & du \\ 1 & dx \end{bmatrix} \xrightarrow{v} = e^{-2x} \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{v} = 2e^{-2x} \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{du} = 4 \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{du} = 4 \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{u} \xrightarrow{du} = 4 \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{u} \xrightarrow{du} = 4 \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{u} \xrightarrow{du} = 4 \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{u} \xrightarrow{du} = 4 \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{u} \xrightarrow{du} \xrightarrow{du} = 4 \begin{bmatrix} 2 & u & =4x \\ 0 & dx \end{bmatrix} \xrightarrow{u} \xrightarrow{du} \xrightarrow{u} \xrightarrow{u} \xrightarrow{u} \xrightarrow{u} \xrightarrow{u} \xrightarrow{u} \xrightarrow{u} $		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{dy}{dy} = 4e^{-2x} - 8xe^{-2x}$	M1	2.1
$ \frac{1}{1: y - 4e^{-2}} = \frac{e^2}{4}(x - 1) \text{ and } y = 0 \rightarrow -4e^{-2} = \frac{e^2}{4}(x - 1) \rightarrow x = \dots \qquad M1 \qquad 3.1 $ $ \frac{1}{1: y - 4e^{-2}} = \frac{e^2}{4}(x - 1) \text{ and } y = 0 \rightarrow -4e^{-2} = \frac{e^2}{4}(x - 1) \rightarrow x = \dots \qquad M1 \qquad 3.1 $ $ \frac{1}{1: y - 4e^{-2}} = \frac{1}{4}(x - 1) \text{ and } y = 0 \rightarrow -4e^{-2} = \frac{e^2}{4}(x - 1) \rightarrow x = \dots \qquad M1 \qquad 3.1 $ $ \frac{1}{1: y - 4e^{-2}} = \frac{1}{4}(x - 1) \text{ and } y = 0 \rightarrow -4e^{-2} = \frac{1}{4}(x - 1) \rightarrow x = \dots \qquad M1 \qquad 3.1 $ $ \frac{1}{1: y - 4e^{-2}} = \frac{1}{4}(x - 1) \text{ and } y = 0 \rightarrow -4e^{-2} = \frac{1}{4}(x - 1) \rightarrow x = \dots \qquad M1 \qquad 3.1 $			A1	1.1b
$\begin{cases} y = 0 \rightarrow x = 1 - 16e^{-4} \\ 4xe^{-2x} & e^{-2x} \\ 4xe^{-2x} & -2xe^{-2x} \\ 4xe^{-2x} & -2e^{-2x} \\ 4xe^{-2x} & -12e^{-2x} \\ 4xe^{-2x} & -12e^{-$			M1	1.1b
$4xe^{-2x} dx = -2xe^{-2x} - 2e^{-2x} dx$ $M1 2.$ $A1 1.1$		<i>l</i> : $y - 4e^{-2} = \frac{e^2}{4}(x - 1)$ and $y = 0 \rightarrow -4e^{-2} = \frac{e^2}{4}(x - 1) \rightarrow x =$	M1	3.1a
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\left\{ y = 0 \rightarrow x = 1 - 16e^{-4} \right\}$		
$4xe dx = -2xe - 2e dx$ $= -2xe^{-2x} - e^{-2x}$ $4xe dx = -2xe dx$ $= -2xe^{-2x} - e^{-2x}$ $A1 = 1.1$		-2x $-2x$ $-2x$	M1	2.1
$= -2xe^{-2x} - e^{-2x}$ $A1 = 1.1$ $\frac{Criteria}{[-2xe^{-2x} - e^{-2x}]_{-0}^{1}} = [-2e^{-2} - e^{-2}] - [0 - 1] = 1-36^{2}$ $M1 = 2.$ $Area triangle = -1[16e^{-4}][4e^{-2}] = [-2e^{-2} - e^{-2}] - [0 - 1] = 1-36^{2}$ $M1 = 2.$ $M1 = 2.$ $M1 = 2.$ $M1 = 3.1$ $M1 = 3.1$ $Area(R) = C = 1 - 32e^{-6} \text{ or } e^{-6} = 3e^{-6} = 320$ $M1 = 3.1$ $A1 = 1.1$		4xe dx = -2xe -2e dx		1.1b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$= -2xe^{-2x} - e^{-2x}$	A 1	1.1b
Area(R) = e^{A} - $32e^{-6}$ or e^{-6} 320^{-6} $A1$ $A1$ $A1$ $A1$		$ \begin{array}{c} \underline{\text{Criteria}} \\ \bullet & \left\ -2xe^{-2x} - e^{-2x} \right\ _{0}^{1} = \left -2e^{-2} - e^{-2} \right - \left 0 - 1 \right = 1536^{\circ} \\ \bullet & \text{Area triangle} = \left 1 \left 16e^{-4} \right \left 4e^{-2} \right = \left 0 - 1 \right = 236^{\circ} \\ \hline & 2 \\ \hline & 3 \\ \hline & 4 \\ \hline & 5 $	M1	2.1
Prev page e A1 1.1		$Area(B+O) = 32e^{-6} \text{ or } e^{-6} 2e^{-32O}$	M1	3.1a
		rev bade e	A1	1.1b
	r	1- Pas	(10)	
(10 mark			(10 marks)	