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1 Air Resistance

1.1 Linear Air Resistance

In freefall, we know there are two forces acting on an object. The gravitational force that
accelerates the object to the ground, given by mg, and a force of drag that slows the object
down, given by −bv. Notice how the force of drag is proportional to the negative of speed,
meaning the faster the object travels, the more the force air will exert on it to slow it down.
Now lets add together the forces and use Newton’s second law. We will take the downwards
direction as positive here.

mg − bv = m
dv

dt

F = ma is written in a slightly different form. Recall that a = dv
dt . Keep in mind that other

than v and t, everything else are constants. Dividing through by m gives

dv

dt
= g − b

m
v (1)

Now, we can multiply both sides by dt
g− b

mv
and get

dv

g − b
mv

= dt (2)

Now we just need to integrate both sides to get an expression that relates v and t. The left
hand side is ∫

dv

g − b
mv

=
m

b

∫
dv

mg
b − v

(3)

= −m

b
ln |mg

b
− v|+ C (4)

Which is just a simple u-sub. The right hand side is∫
dt = t+ C (5)

We now equate the two expressions. Note that the two constants of integration combine into
one big C. After equating them, we rewrite it so that v is in terms of t

t = −m

b
ln |mg

b
− v|+ C =⇒ v =

mg

b
−Ae−

b
m t (6)
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Where A = e−
b
mC . Lets determine A. We know that v(0) = 0 since the objects are dropped.

Plugging 0 into v(t), we have

v(0) =
mg

b
−A = 0 =⇒ A =

mg

b
(7)

That means the velocity can be modelled by the function

v(t) =
mg

b
(1− e−

b
m t) (8)

To know the terminal speed (the speed at which the object will stop accelerating in either
direction), we simply need to evaluate the limit as t → ∞, or

lim
t→∞

mg

b
(1− e−

b
m t) =

mg

b
(9)

Since the exponential vanishes at infinity, leaving behind the linear term. If we want to find
the object’s position with respect to time, we simply need to integrate (8) once.

1.2 Quadratic Air Resistance

When an object is large and travels fast through air, linear air resistance fails to accurately
predict its equations of motion. Instead, quadratic air resistance is needed. It is given by
F = −bv2 This results in the differential equation

mg − bv2 = mv̇

We can repeat the steps above, separating variables and obtaining the full equations of motion.

2 Oscillations

2.1 Resistive Forces

Lets consider the same air resistance, but encountered by the mass on spring system. Using
Newton’s Laws, we arrive at

mẍ+ bẋ+ kx = 0 (10)

This time, it is advantaguous to solve for the displacement x from the equillibrium point directly
rather than solve for the velocity first. We first make an ansatz that

x = Aeαt (11)

Where A and α are arbitrary coefficients. We now take its derivative and obtain

ẋ = Aαeαt (12)

ẍ = Aα2eαt (13)

We use these results to substitute into (10), leaving us with the simple task of finding the
coefficients A and α

Aeαt(mα2 + bα+ k) = 0 (14)
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We arrive at the quadratic equation

mα2 + bα+ k = 0 (15)

Which has the solution

α = − b

2m
±
√
γ2 − ω2 (16)

Where we defined the parameter ω0 ≡
√

k
m and γ ≡ b

2m . From here, lets define the quantities

Ω ≡
√
γ2 − ω2

0 (17)

η ≡ b

2m
(18)

We can now rewrite (16) as

α = −η ± ω (19)

And we can begin to examine the results. If γ2 > ω2
0 , then the equation of motion will be

x = e−ηt(Aeω0t +Be−ω0t) (20)

Where A and B are constants determined by the initial conditions. This is known as overdamp-
ing, since the particle simply slows down exponentially. If γ2 < η2, Ω will be imaginary. If we
define Ω′ ≡

√
ω2
0 − γ2 and apply Euler’s formula,

x = Ae−ηt cos(Ω′t− ϕ) (21)

Where A and ϕ are constants determined by the initial conditions. This is known as under-
damping, since the particle oscillates for a while before settling down.

2.2 Driving Forces

Lets consider the previous system, but this time there exists an external driving force on the
particle. This external force can be modelled by the function F = F0 cosω1t. Using Newton’s
Laws, we arrive at the solution that

mẍ+ bẍ+ kx = F0 cosω1t (22)

If we define the quantities ω0 ≡
√

k
m , γ ≡ b

m and F1 ≡ F0

m . We can rewrite (22) as

ẍ+ γẍ+ ω2
0x =

F1

2
(eiω1t − e−iω1t) (23)

We know the homogenous solution x0 from last section, which is simply (21). Assuming under-
damping gives us

x0 = Ae−ηt cos(Ω′t− ϕ) (24)

Now we seek a particular solution. We guess a solution in the form of

xp = B(eiζt − e−iζt) =⇒ ẋp = iζB(eiζt + e−iζt) (25)

ẍp = −ζ2B(eiζt − e−iζt) (26)
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Now we substitute this into (23) and find the coefficients. Immediately, we notice that

ζ = ω1 (27)

B =
F

2(ω2
0 − ω2

1 + iγω1)
(28)

Now we find that our particular solution xp becomes

xp =
F

2(ω2
0 − ω2

1 + iγω1)
(eiω1t − e−iω1t) (29)

If we define the quantity R ≡
√
ω2
0 − ω2

1 + (2γω0)2 and simplify (29), we arrive at

xp =
F

R
(
ω2
0 − ω2

1

R
cosω1t+

2ω1

R
sinω1t) (30)

A little rearranging and particular choice of coefficients ϕ2 and ν gives

xp =
F

R
cos(νt− ϕ2) (31)

Putting everything together we finally have

x = Ae−ηt cos(Ω′t− ϕ) +
F

R
cos(νt− ϕ2) (32)

Notice how the amplitude of oscillation is proportional to R−1, and R gets smaller when the
difference between the natural frequency of the object, ω0 and the driving frequency ω1 gets
smaller. This means that as the difference between the frequencies gets smaller, the amplitude
of oscillation will get larger, and the amplitude is at its maximum when the driving frequency is
exactly equal to the natural frequency. This is phenomenon known as resonance. Additionally,
notice how the first term will eventually vanish, leaving the motion completely dictated by the
driving force. We call the first term the ”transient” and the second term the ”attractor”, since
the system gets ”attracted” towards the second term as time goes on.

2.3 Two Coupled Oscillators

Imagine you have four identical masses m attached to each other by identical springs with spring
constant k, where the outermost masses are pinned down and cannot move, while the middle
two masses are confined to move along the x-axis. We denote the positions of each mass, from
left to right, as x0, x1, x2, x3. The displacement of the spring between any two masses can be
found by the difference of their positions. Using Newton’s laws, we can easily find an expression
for the positions of the middle two springs.

mẍ1 = k(x1 − x0)− k(x2 − x1) (33)

mẍ1 = k(x2 − x1)− k(x3 − x2) (34)

The first terms are positive because of Newton’s third law. For example, the first term of (34)
is positive because it forms a third law pair with the latter term of (33), and is therefore the
reaction force from the spring between the two middle masses. We know that x0 = x3 = 0, so
using this fact and simplifying (33) and (34), we arrive at

ẍ1 = −ω2(2x1 − x2) (35)

ẍ2 = −ω2(2x2 − x1) (36)
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Where ω ≡
√

k
m . We can now begin to solve. Lets guess a solution in the form

xn = Ane
ηnt =⇒ ẍn = Anη

2eiηt (37)

Substituting this into (35) and (36), we have

−A1η
2eiηt = −ω2(2A1e

iηt −A2e
iηt) (38)

−A2η
2eiηt = −ω2(2A2e

iηt −A1e
iηt) (39)

We seek to find the coefficients An and η. First, we rewrite the above into

−A1η
2 = −2ω2A1 + ω2A2 (40)

−A2η
2 = ω2A1 − 2ω2A2 (41)

Notice that this system of equations can be rewritten in matrix form, giving the eigenvalue
equation for η2 and the eigenvector equation for the vector < A1, A2 >. Rewriting in vector
form gives [

−2ω2 ω2

ω2 −2ω2

] [
A1

A2

]
= −η2

[
A1

A2

]
(42)

To find η, we simply have to take the determinant of the matrix and set it to 0∣∣∣∣−2ω2 + η2 ω2

ω2 −2ω2 + η2

∣∣∣∣ = 0 (43)

η2 = ±ω2 + 2ω2 (44)

η = {±ω,±
√
3ω} (45)

To find A1 and A2 is trivial, for η2 = ω2, A1 = A2 = 1. For η2 = 3ω2, A = −A2 = 1. Using
the identity that A(eiωθ + e−iωθ) = A

2 cos(ωθ + ϕ), the equations of motion are

x1 = B1 cos(ωt+ ϕ1) +B2 cos
(√

3ωt+ ϕ2

)
(46)

x2 = B1 cos(ωt+ ϕ1)−B2 cos
(√

3ωt+ ϕ2

)
(47)

Where Bn = An

2 . Whats called the normal modes of oscillation is obtained by setting either of
the Bn to 0, and represents what would happen if the intial displacements of the masses are
the same.

2.4 Generalised Coupled Oscillators

Now imagine N different masses oscillating in the same manner, with the leftmost mass x0 and
the rightmost mass xN+1 fixed. Generally, the equation of motion on any individual mass will
be

ẍn = −ω2(2xn − xn+1 − xn−1) (48)

If we make the same assumptions as (37) and follow the same steps, we arrive at the eigen-
equation 

−ω2 2ω2 −ω2 0 . . . 0
0 −ω2 2ω2 −ω2 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . −ω2 2ω2 −ω2 0
0 . . . 0 −ω2 2ω2 −ω2




A0

A1

...
AN

AN+1

 = −η2


A0

A1

...
AN

AN+1

 (49)
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Where we know A0 = AN+1 = 0. If we know N , we can then solve for the eigenvectors and
eigenvalues to obtain the equations of motion and thus, the normal modes.
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