Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Mathematical literacy
Description: Best for grade 12

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


SENIOR CERTIFICATE EXAMINATIONS/
SENIORSERTIFIKAAT-EKSAMEN
NATIONAL SENIOR CERTIFICATE EXAMINATIONS/
NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/
WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE
2021
MARKS: 150
PUNTE: 150

These marking guidelines consist of 23 pages
...


Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
2
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

NOTE:
 If a candidate answers a question TWICE, only mark the FIRST attempt
...

 Consistent accuracy applies in ALL aspects of the marking memorandum
...

 Assuming answers/values in order to solve a problem is NOT acceptable
...

 As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die
doodgetrekte poging na
...
Hou op
nasien by die tweede berekeningsfout
...


GEOMETRY
A mark for a correct statement
(A statement mark is independent of a reason)
S
'n Punt vir 'n korrekte bewering
('n Punt vir 'n bewering is onafhanklik van die rede)
A mark for the correct reason
(A reason mark may only be awarded if the statement is correct)
R
'n Punt vir 'n korrekte rede
('n Punt word slegs vir die rede toegeken as die bewering korrek is)
Award a mark if statement AND reason are both correct
S/R
Ken 'n punt toe as die bewering EN rede beide korrek is

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
3
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION/VRAAG 1
1
...
1
...
1
...
1
...
1
...
2
Wind speed
in km/h (x)
Temperature
in °C (y)

2

6

15

20

25

17

11

24

13

22

28

26

22

22

16

20

24

19

26

19

1
...
1

a  29,35
b  0,46
yˆ  29,35  0,46 x

 a
b
 equation

1
...
2

y = 25,20 °C (calculator)

 answer

(3)
(2)

OR
yˆ  29,35  0,46(9)

y = 25,21 °C
1
...
3

b  0 , indicating that as the wind speed increases the
temperature decreases
...
1

Number of learners
34
45
98
43
7
3

Cumulative frequency
34
79
177
220
227
230

Modal class: 10 ≤ x < 15

 answer
(1)

2
...
3

 answer

230 learners

(1)
2
...
5

The median is at position 115
...
1

3
...
3

mLQ  2  1
 mLQ  

 subst N and Q or N
and Q or Q and S into
gradient formula
 answer
(2)

[LQ  NS]

1
2

 mLQ

1
 8   (4)  c OR
2
c  6

1
y  8   ( x  4)
2
1
y 8   x2
2

 substitution of Q
 calculation of c or
simplification

1
y   x6
2

(3)
3
...
5

mRM  mLQ  
1
 4   (6)  c
2

1
2

[RM || LQ]
1
y  4   ( x  6)
2
1
y4   x3
2

OR

c  1

1
 y   x 1
2
T(0 ;  1)

3
...
7

area of PTMQ = area of TSM – area of PSQ
1
1
=
...
 hM 
...
 hQ
2
2
1
1
= (15)(6)  (10)(4)
2
2
= 45 – 20
= 25 square units

 area of TSM –
area of PSQ
 area TSM = 45
 area PSQ = 20
 answer
(4)

OR
TM  45  3 5  6,71

 TM  3 5

MQ  20  2 5  4,47

MQ  2 5

PQ  20  2 5  4,47

PQ  2 5

area of trapezium PTMQ =



  

1
5 5 2 5
2
= 25 square units

=

 

1
3 52 5 2 5
2

 area of trapezium =

1
2

(sum of ||sides)(height)
 substitute into formula
 answer
(4)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
7
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

OR

MQ  20  2 5
PQ  20  2 5
TP  5

area of PTMQ  area of ΔMTP area of ΔPQM

 area of MTP +
area of PQM

area of PTMQ  10  15  25

  

1
5  6  1 2 5 2 5
2
2
 area MTP = 10
 area PQM = 15

area of PTMQ 

 answer
(4)
[19]

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
8
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION 4
y
W

B
P(–3 ; 4)
C

V(k ; 1)
T

4
...
2

x  6 x  y  8 y  15  0
2

2

y-intercepts: (0) 2  6(0)  y 2  8 y  15  0
( y  3)( y  5)  0
y C  3 or y B  5

 BC = 2 units

x=0
 factors
 both values
 answer
(4)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
9
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

4
...
1

DBE/2021

3 1
0  (2)
=1
tan  1
  45

 substitution into
gradient formula

mTC 

 tan  1
 answer
(3)

OR
y  mx  3
1  m(2)  3

mTC  1

 substitution into
equation of a line

tan  1
  45

 tan  1
 answer
(3)

4
...
2

ˆ V  135
BC
ˆ B  45
 VW

[ext  of /buite  v ]

ˆ V  135
 BC

[opp s of cyclic quad/teenoorst
...
4
...
4
...
4
...
1

tan x 
...
sinx  180 1
  tan x
...
sin(180  x) 1
 sin x


...
( sin x)  1
cos x
 sin 2 x 1

 –tan x
 –sin x 

 sin x
cos x

 sin 2 x  1

  cos 2 x

 answer
(5)

5
...
1

cos 215°
= –cos 35°
= –m

 reduction
 answer
(2)

5
...
2

sin 20°
 co-function

= cos 70°
= cos 235

 double angle
expansion

= 2 cos 2 35  1
= 2m 2  1

 answer in terms of m
(3)

OR
= sin (55° – 35°)
= sin55°cos35° – cos55°sin35°

 compound angle
expansion

= m
...
1  m 2



= m2  1  m2

 cos 55  1  m 2 or



sin 35  1  m2
 answer in terms of m
(3)

= 2m 2  1
5
...
cos x  sin 4 x
...
  k
...
  k
...
360
x  44,81  k
...
360
x  75,19  k
...
120°; k  Z
(4)

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
11
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

5
...
cos 2 x  2 cos 4 x
...
cos x
tan 2 x
sin 4 x
...
sin 2 x

sin 2 x
cos 2 x
 cos 2 x 
 sin(4 x  2 x)

 sin 2 x 
 cos 2 x

LHS 

 sin 2 x
sin 2 x

cos 2 x
 sin(4 x  2 x)
 cos 2 x

 cos x  sin x
2

2

LHS = RHS

Copyright reserved/Kopiereg voorbehou

(4)
[18]

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
12
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION/VRAAG 6
6
...
360
or x  330  k
...
360

 sin x  1

1
2

 –150° and –30°
 90° (A)
(6)

x  150 or x   30 or x  90

OR

cos 2 x   sin x

cos 2 x   cos(90  x)

 co-functions

2 x  180  (90  x)  k
...
360
x  90  k
...
360

2 x  270  x  k
...
120

x  150 or x   30 or x  90

OR

 2x in quadrant 2
 2x in quadrant 3
 both general
solutions
 –150° and –30°
 90° (A)
(6)

cos 2 x   sin x

cos 2 x  cos(90  x)

2 x  90  x  k
...
360

 co-functions
or
or

2 x  360  (90  x)  k
...
360
x  90  k
...
360

 co-functions
or

x  30  k
...
360

x  270  k
...
2
y

f
A

B

180° x



g

6
...
1

6
...
2

A(–150°; 0,5) B(–30°; 0,5)
AB = –30° – (–150°)
AB = 120°
Answer only: Full marks

 AB = –30° – (–150°)
 answer

x  (0; 90) or x  (90; 180)

 x  (0; 90)  x  (90; 180)

(2)
(2)

OR
 0  x  90  90  x  180

0  x  90 or 90  x  180

(2)
6
...
3

cos 2x  k  3
k  3  1 or k  3  1
k  2 or k  4

Answer only: Full marks

 k  3  1 or k  3  1
 k<2  k >4
(3)

OR
x
4
y = cos2x + 3

2

 graph of y = cos2x + 3
O
k  2 or k  4

y

Answer only: Full marks

Copyright reserved/Kopiereg voorbehou

 k<2  k >4
(3)
[13]
Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
14
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION/VRAAG 7
A

B

D

30°

C
x
2x
E

7
...
sin30
tan x 
DC 
sin 2 x
BC
 sin x 
DC 


4 sin x cos x  cos x 
BC
DC 
4 cos 2 x

 correct use of sine rule
 CE 

BCsin30
sin 2 x

 correct trig ratio
 Subst CE
 2 sin x cos x 

sin x
cos x

(6)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
15
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

7
...
sye
v reghoek]
 BC  3AB
= (AB)(BC)
= (AB)(3AB)
=3AB2

Copyright reserved/Kopiereg voorbehou

 substitution into area
formula
(3)
[9]

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
16
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION/VRAAG 8
8
...
1
...
1
...
1
...
 = 2× omtreks ]

 S R
(2)

[s in the same segment/e in dieselfde  S R
sirkel segment]

OR
ˆ  N  180  138
M
1
1
ˆ
 M  21
1

(2)

[sum of s in ∆/e v ∆ ]
[s opp equal sides/e teenoor gelyke sye]

 S R
(2)

8
...
4

ˆ  42
O
2
Pˆ  42

ˆ  48
M
2
OR
ˆ  Rˆ  21
N
2

S

[alt s; NO || PR/Verw
...
e, NO || PR]
[sum of s in ∆/e v ∆]

[ s opposite equal sides/e teenoor gelyke sye]  S
[sum of s of Δ NMR//e v ∆NMR]
S
(4)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
17
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

8
...
2

ˆ  4x
D
1
ˆ
D 2  180  4 x
ˆ  5x
B

[ext  of /buite  v ∆]

 S/R

[s on a str line/e op ´n reguitlyn]

S

[ext  of /buite  v  ]

S

ˆ D
ˆ
B
1
2

[ext  of cyclic quad/buite  v kvh]

S R

1

180  4 x  5x
9x  180
x  20

 answer
(6)

OR
ˆ  3x
C
1
ˆ  4x
B
2

Cˆ 1  Cˆ 3  3x
ˆ  5x
D
2
4 x  5x  180
x  20

[ext  of cyclic quad/buite  v kvh]
[ext  of /buite  v ]

SR
S

[vert opp s]

S

[ext  of /buite  v ]
[opp  of cyclic quad/teenoorst
...
1
A

h2

h1

D
E

B
C
9
...
2

M

B

A
Q

1

4

2

x

3
2

1

C

1 2
3

R

P
9
...
1

ˆ x
A
1
ˆB  x
ˆ x
A

[corresp s; PQ || CA/ooreenkomstige e, PQ || CA]

SR

[s opp equal sides/e teenoor gelyke sye]
[tan-chord theorem/ tussen raaklyn en koord]

 S/R

Pˆ  x

[alt s; PQ || CA/verw
...
2
...
2
...
2
...
2
...
2
...
2
...
2
...
2
...
1
...

sirkel; midpt koord]
[converse:  in semi circle/
Omgekeerde:  in halwe sirkel]

 S/R

[tan  rad/raaklyn  radius]
[converse: tan  rad/Omgekeerde:
raaklyn  radius ]

S  R
 R

(3)

TM  MQ

ˆ  90
M
2
 SQ is a diameter

R
(3)

OR
SQ  QP
 SQ is a diameter

Copyright reserved/Kopiereg voorbehou

(3)

Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2
23
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

10
...
2 In  RTQ and ΔRQP
ˆ
Tˆ  Q
3

ˆ Q
ˆ  90
Q
1
2

ˆ Q
ˆ  Pˆ  90
Q
1
2
ˆ
ˆ
R R
1

2

DBE/2021

[tan-chord theorem/ tussen raaklyn
S R
en koord]
[co-interior s, MS || QR/ko-binne e,  S
MS || QR]
or [ in semi circle/ in halwe sirkel ]
S
[s of /e van ]

 S

 RTQ ||| ΔRQP

RT RQ

RQ RP

 ratio
(6)

RQ 2
RT 
RP

OR
In  RTQ and ΔRQP
ˆ
Tˆ  Q
3

ˆ Q
ˆ  90
Q
1
2

[tan-chord theorem  tussen raaklyn
en koord]
[co-interior s, MS || QR/ko-binne
e, MS || QR]
or [ in semi circle/ in halwe sirkel ]

ˆ Q
ˆ  Pˆ  90
Q
1
2
 RTQ ||| ΔRQP

10
...
stelling]

S R

[Pythagoras/Pythagoras]

S
 RP = 12

RT 

 RT
 answer

(6)
[15]

TOTAL/TOTAAL: 150
Copyright reserved


Title: Mathematical literacy
Description: Best for grade 12