	λ/m	v/Hz		AM radio
cosmic rays	10-14	1022	Radio	Amateur radio
gamma räys	10-11	1019		Aircraft
X-rays	10-9	1017	9	communication
far ultraviolet	[10-7	1015	Microwave	Microwave oven
ultraviolet	10-7	1015	i G	OYCII
visible	10-6	1014	≥	TV Remote
infrared	10-5	$10^{13} \ (\tilde{v}, 10^2 \text{ cm}^{-1})$	De la	Control
far infrared	10-4	1012	Infrared	Night vision goggles
microwave	10-3	1011	0	io la v
radar	10-2	1010	Visible	UV light from the Sun
television	10°	108	Ultraviolet	
nuclear magnetic resonance	10	107	ravi	UV light from the Sun
radio	102	106	5	
alternating current	106	102	e ale	All port security scanner
eview f		Note	a-ray	PET scan
41	011	'A Of	7	Terrestrial
wieW'	-4	040.	. ලී	gamma-ray flashes
evi r	120			indico

Electromagnetic spectrums can be presented in different ways, as seen above or on the previous page. No matter what way they are presented you will be expected to interpret them correctly.

QUANTUM THEORY OF RADIATION

The wave theory did not adequately explain all of the phenomena associated with electromagnetic radiation and in 1905 Einstein proposed that electromagnetic radiation could in some respects be regarded as small packets of energy (quanta) called photons, the energy of these photons being proportional to frequency.

Low frequency = Low energy (long wavelength)

High frequency = High energy. and (short wavelength)

The energy of any photon is given by the expression :

F = hf

where E = energy of a photon (or quantum) expressed in joules (J)

h = Planck's constant, 6.63×10^{-34} Joule seconds (Js)

v = frequency of the radiation in Hertz (Hz)

Thus for 1 mole of photons E = Lhf (data booklet p4)

where L = Avogadro's constant, $6.02 \times 10^{23} \text{ (mol}^{-1}\text{)}$ ---- but

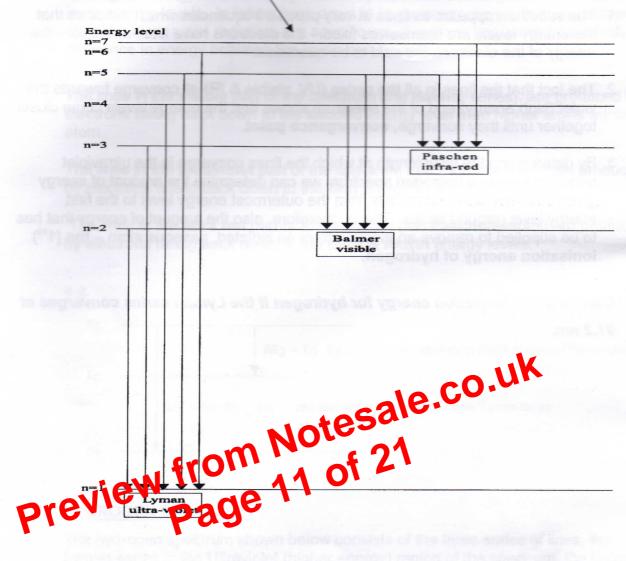
which gives - from E 520 21 for 1 moles and 21 for

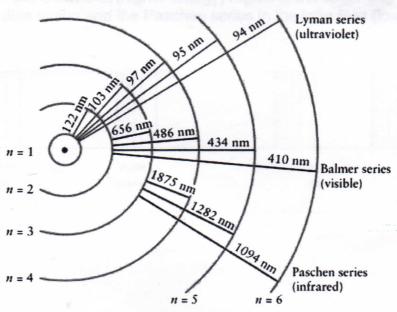
for 1 mole of photons of a given

ATING THE ENERGY ASSOCIATED WITH ONE MOLE OF PHOTONS

For example, calculate the energy associated with one mole of photons of wavenumber 2000 cm⁻¹.

since
$$\overline{v} = \underline{1}$$
 wavenumber = $\underline{1}$ wavelen


$$\lambda = 1$$
 = 5 x 10⁻⁴ cm or 5 x 10⁻⁶ m


Using the relationship -

=<u>6.02 X 10²³ X 6.63 X 10⁻³⁴ X 3 X 10⁸ x 10⁻³ (conversion factor for kJ)</u> 5 X 10⁻⁶

23.947 kJ.mol⁻¹

The lines converge because the energy levels get closer together as the quantum numbers increase

