In other words, x can't approach 3 from the left (through numbers less than 3) because $\sqrt{x^2-9}$ is undefined for x < 3. Hence, the limit is undefined.

Later on, I'll show that if x approaches 3 from the right, then the limit is indeed 0. \Box

The next result is often called the **Sandwich Theorem** (or the **Squeeze Theorem**). It is different from the other computational rules in that it produces an answer in an indirect way.

The **Sandwich Theorem** is an intuitively obvious result about limits. Suppose you have three functions f(x), q(x), h(x), and you're trying to compute the limit of q(x) as x approaches a.

Suppose you know that:

- 1. $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$.
- 2. $f(x) \le g(x) \le h(x)$ (at least for x's in some interval around a).

The result in reasonable because g is "sandwiched" between f and h.

Example. $\lim_{x \to 0} x^2 \sin \frac{1}{x}$

As $x \to 0$, $x^2 \to 0$, but $\sin \frac{1}{x}$ oscillates. And at x = 0, $\sin \frac{1}{x}$ is undefined. There's no "algebraic" rule which would allow you to compute the limit, but the Sandwich Theorem makes it easy.

 $\sin(\text{anything})$ always lies between -1 and 1:

$$-1 \le \sin\frac{1}{x} \le 1.$$

Multiply through by x^2 :

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2.$$

Now

$$\lim_{x \to 0} (-x^2) = 0 \text{ and } \lim_{x \to 0} x^2 = 0.$$

Hence, by the Sandwich Theorem

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0.$$