Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Trignometry
Description: All type of things int his notes about trignomeetry including questions

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Content marketed & distributed by FaaDoOEngineers
...
com
TRIGONOMETRY

BASICS

Some Formulae
1
...





 Cos3A
CosACos  A Cos  A  
4
3

3


3
...






tan+ tan      tan      3 tan 3
3
3



5
...


Sin(A  B)SinA  B  Sin 2 A  Sin 2 B

7
...


CosACos2ACos4A
...
n

9
...

cos
 n
2n  1
2n  1
2n  1
2n  1 2

10
...
Sin  + Sin(  + ) + Sin(  + 2) + ……+ Sin(  + n  1 )

=

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

n
n 1
}Sin
2
2

Sin
2

Content marketed & distributed by FaaDoOEngineers
...
Cos  + Cos (+ ) +Cos ( + 2) + …+ Cos (  + n  1 )

13
...
where   0,  
...
where     , 
 2 2

(f)



2/3

 b2/3



3/ 2

2

 

...

 2

    3 
2 ab
...

 2  2 

The minimum value of a tan + b cot  is

Trigonometrical Equations
(a) SinA = 0  A = n
(b) CosA = 0  A = (2n + 1)/2
(c) TanA = 0

 A = n

(d) Sin A = SinB  A = n + (-1)nB
(e) Tan A = TanB  A = n + B
(f) Cos A = Cos B  A = 2n  B
(g) Sin2A = Sin2B ; Cos2A = Cos2B ; Tan2A = Tan2B

all  A = n  B

Inverse Trigonometry

  
, 
Principal values sin-1x  
 2 2
cos-1x 

[0, π]

sec-1x  [0, π] except π/2

tan-1x  (-π/2, π/2)

  
cosec-1x   ,  except 0
 2 2

cot-1x

If angle is principal one then

sin-1sinx = x

cos-1cosx = x

cosec-1x+sec-1x= π/2 ,

tan-1x + cot-1x= π/2

14
...


sin-1

1
= cosec-1x,
x

cot-1x

 (0, π)


-1 1
, x 0
 tan x
=
cos-1x = sec-1 1/x
-1 1
  tan
, x 0
x


Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

etc

etc

Content marketed & distributed by FaaDoOEngineers
...
sin-1(–x) = – sin-1x

cosec-1 (–x)= –cosec-1x

sec-1 (–x)

tan-1(–x) = –tan-1x

cot-1 (–x) = π – cot-1x

cos-1(–x) = π – cos-1x

17
...
tan-1x - tan-1y = tan-1

= π – sec-1x

= π + tan-1

xy
, x y < -1 , x > 0
1  xy

= - π + tan-1
= π/2 , x y = -1 ,

x> 0

=-π/2

xy
, x y < -1 , x < 0
1  xy

, x y = -1 , x < 0

19
...
sin-1x- sin-1y

if

if

y > 0 &x < 0 & x2 +y2> 1

if

-1  x, y  1 , x + y  0

if

-1  x, ,y  1 , x + y  0

if

-1  x, y  1 , x  y

if

-1  y  0 , 0  x  1 , x  y

if

-1/√2  x  1/√2

21
...
cos-1x _ cos-1y

=cos-1 [ xy  1  x 2
= - cos-1 [ xy  1  x 2

23
...
2cos-1x
25
...
com
= π - sin-1 [3x – 4x3] if 1/2 < x  1

26
...
Projection Formulae
(iv)

a = b cosC + c cosB

(v)

b = c cosA + a cosC

(vi)

c = a cosB + b cosA

28
...
Semi Sum Formulae
(a) Sin

A

2

(s  b)(s  c)
bc

(b) Cos

s(s  a )
A

2
bc

(c) Tan

A

2

(s  b)(s  c)
s(s  a )

30
...
Let R, r, r1, r2, r3 be radii of circumcircle, incircle, excircles of  ABC then
(a) R 

a
b
c


2SinA 2SinB 2SinC

(b) R 

abc
4

(c) r1 


sa

r
r2 


;
sb

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880


s

r3 


sc

Content marketed & distributed by FaaDoOEngineers
...
Regular polygon & radii of the inscribed & circumscribing circles of a regular polygon :
Regular Polygon - It is a polygon whose sides are equal and also its angles are equal
...

(iii)

Area of a regular polygon of n sides =

1 2
 n
2

na cot  R 2 sin
= nr 2 tan
4
n 2
n
n

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

Content marketed & distributed by FaaDoOEngineers
...


BASIC
1
...


(a) 1

(d) N/T

9
...


Smallest
+ve
x
log cos x sin x  log sin x cos x  2
(a) π/2
(c) π /4

satisfying

(b) 2006

If x =

2  2  2  2 cos  then x is

(d) π /6

(a) 2 cos 100

(b) 2 cos 200

(c) 2 cos 400

(b) π /3

sin

(d) N/T

(b) l

(c) 4

then

(c) information insufficient

Number of solutions of sin8x = 1+ tan4x
(a) 0

4
...


[ sinx ] = cosx ,

(b) 2

(c) 3

(b) sin 2 > sin 2

(c) cos 2 > cos 2

Number of solutions of
x  [ 0 , 100 π ] is

(d) 2 cos 800

If tan-1 ( sin2 x ) > 1 then x 
(a) ( 1/√2 , 1)

5
...


(b) ( 0, 1/√2 )

(c) ( -1 , -1/√2 ) U ( 1/√2 , 1) (d) N/T
6
...


If sec  and cosec  are the roots of x2 - px + q
= 0, then

(a) 5

(a) p2 = q(q – 2)

(b) p2 = q(q + 2)

(c) ∞
7
...


cos


3
5
7
9
 cos
 cos
 cos
 cos
11
11
11
11
15

(a) 0

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

(b) – 1/2

Content marketed & distributed by FaaDoOEngineers
...


cos 7  7 cos 5  21cos 3  35 cos 
is equal to
cos 6  6 cos 4  15 cos 2  10
(a) 2 cos 

1
(c) cos 
2
15
...


In a triangle cos 2

A
B
C
A
B
C
cos cos (b) 2 cos sin sin
2
2
2
2
2
2

(c) 2 sin

4x2

If tan A is integral solution of
– 16x + 15 <
0 and cos B is slope of bisector of first
quardrant then sin (A + B) sin (A - B) =
(a) 4/5

26
...


Equation

sin6x

+

(d) N/T
cos6x

=  , has a solution if

1 
(a)    ,1
2 

28
...
terms 
n
n
n
n





Maximum of 3+ sin x    2 cos  x  , is
4
4


(a) 5

(b) – 4/5

(c) 1/5

21
...


A
B
C
sin sin (d) N/T
2
2
2

(c) 1

The equation a sin x + b cos x = c, where | c | >

(d) None of these
...


If sin A + sin B = 0= cos A + cos B , then
cos 2A + cos 2B is equal to

(a) 2 sin

20
...


24
...


(c)

(b) 0

1 
(b) y   ,3
3 

1
 y 3
3

If an angle  is divided into two parts A and B
such that A – B = x and tan A : tan B = k : 1,
then
sin
x
is
k 1
k
sin 
sin 
(a)
(b)
k 1
k 1

2 2

(a) 2

17
...


(d) - 1 + cot 
...


(b) cos 

 
3 
5 
7 

1  cos 1  cos 1  cos 1  cos  is
8 
8 
8 
8


1
(a)
2

16
...


(b) 45

(c) 4 9

(d) N/T

 
Maxmum of 5 cos  +3 cos     + 3 is
3

(a) 5

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

(b) 10

Content marketed & distributed by FaaDoOEngineers
...


(d) –11

(a) 0

(b) 1

(c) 2
31
...


(c) 0

(d) N/T

2

(c) 5
33
...


(d) N/T

41
...


Sum of all roots of cos 6x + sin
x [-, ]

4

x = 1 ,

(d) N/T

1  tan 2 2A tan 2 A

If tan 2  tan  =1, then  is equal to


6

6

(b) n 


6

(d) N/T

General solution of cos x cos 6x = -1
(a) ( 2n + 1) π/2

 tan KA tan A then K is

(a) 1

(b)2

(c) 3

44
...


(c) 2 n 
43
...


(b) {0}

(a) 0

(b) 8

(c) 12

36
...


(d) 3

(b)8

(c)9

(b) 1


(a)  
4

Minimum value of (sin θ + cosec θ )2 +
(sec θ + cos θ )2
(a) 7

No
...


2

(d) 4

(a) 0

Maximum value of 4 Sin2 x + 3 cos2 x +
sin x/2 + cos x/2
(a) 4 +

(b) 2

(c) 3
39
...
cos  + 3
sin2  +2 is
(a) 4 + 10

32
...


4



Maximum of cos2A + cos2B – cos2C

(d) nπ/2

If tan  + tan 4 + tan 7 = tan  tan 4 tan 7
then  is
(a) n/4

x

for

(c) n/12

which
45
...


4



(c) 8

(d) 9

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

Content marketed & distributed by FaaDoOEngineers
...


If the complex numbers sin x + i cos 2x and
cos x – i sin 2x are conjugate to each other,
then x is equal to

54
...


1

(b)  n  
2

(d) N/T

 2 5 
(c) 
, 
 3 6 

x
The number of solutions of 2 cos2   sin 2 x =
2
1

x2 + 2 , 0  x 
is
2
x
(a) 0

48
...


(a) 0

(b) 1

(c) 2
49
...



3

(b)

(c)

General solution for |sin x| = cos x is


3


,0
2

(a)

(d) 32

(a) 2n 

51
...


(b) 24

(c) 28

5
,
6

INVERSE

Number of solution for |sinx| = | cos3x | in
[ - 2π , 2π ] is
(a) 30

50
...


  2 
(b)  ,

2 3 

4
3

(d) N/T

tan-11 + tan-12 + tan-13 = ?
(a) 0
(c) 

58
...


(b) n   / 6
(d) 2 n   / 6

(c) 2 3

(d) 

If the solutions for  of cos p  + cos q  = 0,
p > 0, q > 0 are in A
...
, then the numerically
smallest common difference of A
...
is
(a)
(c)

53
...


(a) 4

60
...


(d) N/T

5
2

The value of cot  cos ec 1  tan 1  is
3
3

(a) 3/17

61
...
com
(c) x > y and y2 = x
62
...


(d) N/T

If sin-1x + sin-1y =  then x100 + y1005 = ?
(a) 0

(b) 2

(c) 1

72
...


If



cos 1x i  0 then

i 1

20

x

i

?

i 1

(a) 0

If

x2 + y2 + z2 = r2 ,
xy
yz
xz
is equal to
tan 1  tan 1  tan 1
zr
xr
yr

74
...


(d) 1
cos-1

(

1  ab
)+
ab

(b) π
(d) N/T

If p > q > 0 & pr < -1 < qr then tan-1

pq
1  pq

qr
rp
+ tan-1
is
1  pr
1  rq

(a) 0
(c) cant say
77
...


(d) N/T

cot -1 (

sin (cot-1(tancos-1x)) = ?
(a) x

69
...


(b) π

(b) 18

(c) 17
68
...


1  ab
) + cot -1 (
ab

1  bc
1  ac
)  cot -1 (
)
bc
ca

(b)  /2

(c) 0

(b) a/b

20

(d) N/T

(a) 

b
b
 1
 1
tan   cos 1  + tan   cos 1 
4 2
a
4 2
a


(c) 2b/a

(b) 1

(c) –1

(d) 

(a) 2a/b


then x2 + y2 + z2 +
2

(a) 0

(b) 1

(c) 2

(d) –1

If sin-1x + sin-1y + sin-1z =

tan 1 x(x  1)  sin 1 x 2  x  1   / 2 , No
...


(b) 0

(c) 3

66
...


(b) 1/2

(b) {-1, 2}

(c) {-1, 1, 0}

64
...


(d) y2 = 1 + x

(b) π
(d) - π
sin-1

If 0 < x < 1 &1 +
x + (sin-1 x )2 + (sin-1 x )3
+ --------∞ = 2 then sin-1x is
(a) π/6

(b) π/3

(c) π /12

(d) π / 4

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

Content marketed & distributed by FaaDoOEngineers
...


Solution

of

the

equation

 1 x
 2x 
3 sin 1 
  4 cos 1 
2
 1 x 2
 1 x 

2






 2x  
2 tan 1 
  for x is
1 x 2  3
(a) x =  3

(b) x = 1/  3

(c) x = 1

 cot r
1

3/ 4




, then the largest angle of a
2
triangle whose sides are 1, sin x, cos x is
If 0 < x <
(a) π/2

86
...




79
...


(d) x

In a triangle ABC, angle A is greater than
angle B
...


Range of

sin-1

x + tan-1 x + cos-1 x is

87
...


88
...


In a triangle ABC, if a,b,c are in A
...
, then
A
B
C
tan
, tan , tan , are in
2
2
2
(a) A
...


(b) G
...


(c) H
...


(c) 27
89
...

A bus on one road is 2 km away from the
intersection and a car on the other is 3 km
away from the intersection ; then the direct
distance between the two vehicles is
(a) 1 km

(d)

7 km

In a Δ ABC, C =

84
...


91
...


If c cos2

(b)1
(d) N/T

A
C 3b
 a cos 2  then a,b,c are in
2
2 2

(a) AP

93
...


(b) a2, b2, c2 –AP

(c) a, b, c –HP

(b) right angled
(d) none of these
...


(b)

(d) N/T

(a)  /4
90
...


(b) 9

(d) N/T

a cot A + b cot B + c cot C = ?

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

Content marketed & distributed by FaaDoOEngineers
...


103
...


If ∆ABC is a right triangle, the value of
 A-BC
 can be equal to
 2ac sin
2


(b) 8R2

1
(c)
2R

1 1
(d) 
r R

98
...
In a triangle ABC with sides a, b, c, r1 > r2 > r3
(which are the ex-radii ), then
(a) a > b > c

(b) a < b < c

(c) a> b and b< c

(d) a< b and b > c
...
If

r r2

r1 r3

then

(d) N/T

If altitudes of a triangle are in AP then sides
are in

(a) A  90

(b) B  90

(c) C  90

(b) G
...


(c) H
...


(d) 2π/3
...
r1 =2 r2 = 3 r3 then

cos( A  C)
If cos 2B 
then tan A,tan B,tan C
cos( A  C)
are in
(a) A
...


(b) π/3

(c) π/2

(d) N/T
...


(a) π/6

(b) 4∆2 / abc

(d) N/T

107
...


(b) HP
(d) AGP

108
...
If b + c = 3a, then the value of cot
(a) 1
(c)

B
C
cot is
2
2

(b) 2

3

(d)

2
...
If cos A + cos B + 2 cos c = 2 then sides are in
(a) AP

(b) GP

(c) HP

(d) N/T

101
...
In  ABC two larger sides are 10 & 9
...
P then 3rd side is
(a) 3 3

(d) N/T

(a) /6

(b) /4

(c) /3

(d) N/T

111
...
In a triangle ABC (Sin A + Sin B + Sin C) (Sin A
+ Sin B - Sin C) = 3 Sin A SinB then angle C

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

Content marketed & distributed by FaaDoOEngineers
...
If two towers of hts b1 and b2 subtend 60 and
30 at mid-point of line joining their feet, then
b1 : b2 =

119
...
A man from the top of a 100 m high tower
sees a car moving towards the tower at an
angle of depression of 30
...
The
distance (in metres) travelled by the car
during this time is
(a) 100

3

100 3
(c)
3

(b)

200 3
3

(d) 200

3

114
...

The breadth of the river is :
(a) 20 m

(b) 30 m

(c) 40 m

(d) 60 m
...
In  ABC, sides a,b,c are in A
...
, a being
smallest, then cosA is
(a)

3c  4b
2c

4c  3b
(c)
2c

(b)

3c  4b
2b

(d) N/T

116
...
Then the measure of the angle C
(a) 30°
(c) 30° or 150°
117
...
Number of solutions of pair of 2 sin2 θ cos2θ = 0 , 2 cos2 θ – 3sinθ = 0 in [ 0, 2π ] is
(a) 1

(b) 0

(c) 2

(d) 4

121
...
If sin2 x – 2 sinx – 1=0 has exactly 6 roots in [
0 , n π ] then minimum of n is
(a) 2

(b) 4

(c) 6

(d) 3

123
...
If sin A – sin B = a & cos A + cos B = b then
(a) a2 + b 2
(c) a2 + b 2 



4 (b) a2 + b 2  4
3

(d) a2 + b 2  2

125
...
For ∆ ABC
sin 2 A + sin
2 cos A cos B cos C is

(a) 0

(b) 3

(a) 0

(d) 5

(c) -2

B + sin

2

C -

(b) 2

(c) 1

2

(d) -1

118
...
Number of points inside or on x2 + y2 =4
satisfying tan4 x + cot 4 x + 1 = 3 sin2 y is
(a) 0

(b) 2

(c) 4

(d) ∞

128
...
com
(a) b sin A  a, A 
(b) b sin A  a, A 
(c) b sin A  a, A 



2

, b  a or b sin a  a, A 



2


...
From the top of a h meter high cliff, angles of
depression of the top and the bottom of a
tower are observed to be 30o and 60o
respectively
...
If the sides of a triangle ABC are in A
...
, and a
is the smallest side, then cos A equal to:

133
...
At a point 15 metres away from the base of a
15 metres high house, the angle of elevation
of the to is
(a) 45 

(b) 30 

(c) 60 

3sin2 A

(a) 15m



(b) 2
(d) 8

134
...
A tree is broken by wind and its upper part
touches the ground at point 10 metres from
the foot of the tree and makes an angle of 45°
with the ground
...
If in ΔABC the line joining the circumcentre
and the incentre is parallel to BC then

(b) 20m



(c) 10 1  2 m

(a) r = R sin A

(b) R = r sin A


3
m
(d) 101 

2 



(c) r = R cos A

(d) R = r cos A

Nishant Gupta, D-122, Prashant vihar, Rohini, Delhi-85
Contact: 9953168795, 9268789880

Content marketed & distributed by FaaDoOEngineers
Title: Trignometry
Description: All type of things int his notes about trignomeetry including questions