You need to dissolve CaCl2 in water to make a mixture that is 30.5% calcium chloride by mass. If the total mass of the mixture is 234.9 g, what masses of CaCl2 and water should be used?

Mass of water

Explanation

View Previous
View Next
Exit

The concentration of the CaCl2 in this solution is 30.5% by mass, which means that there are 30.5 grams of CaCl₂ for every 100 grams of solution. Write this as a conversion factor.

$$\frac{30.5 \text{ g CaCl}_2}{100 \text{ g solution}}$$

Now use the conversion factor to cancel out units of "g solution".

Notesale.co.uk

To calculate the mass of water needed αp and this solution, simply subtract the mass of the CaCl $_2$ from the total mass of the solution.

$$= 234.9 g - 71.6 g$$

$$= 163.3$$
 g

Finally apply these totals to the molarity formula, being sure to include a conversion factor for volume.

$$M = \frac{n}{V} = \frac{0.340 \text{ mol}}{746 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}}} = 0.455 \text{ M}$$

15.

To aid in the prevention of tooth decay, it is recommended that drinking water contain 1.20 ppm fluoride (F-).

How many grams of F⁻ must be added to a cylindrical water reservoir having a diameter of 4.15 × 102 m and a depth of 85.16

(b) How many grams of sodium fluoride, NaF, contain this much fluoride?

(a) Using the definition of parts per million (ppm), the ratio of F mass to the rater mass must satisfy the equation $\frac{1.20 \text{ part } F}{H_2 O \text{ mass}} \times 10^6 \text{ Ce}$ The mass of water in the reserve

in the reservoir is

$$V = \pi (2.08 \times 10^2 \text{ m})^2 (85.16 \text{ m}) = 11500000 \text{ m}^3$$

Using the density of water (1.00 g/mL), the mass of water in the reservoir is calculated to be

$$(11500000 \text{ m}^3) \left(\frac{L}{10^{-3} \text{ m}^3} \right) \left(\frac{10^3 \text{ mL}}{L} \right) \left(\frac{1.00 \text{ g}}{\text{mL}} \right) = 1.15 \times 10^{13} \text{ g}$$