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RSA Algorithm 

 It was developed by Rivest, Shamir and Adleman. This algorithm 

makes use of an expression with exponentials. Plaintext is encrypted in 

blocks, with each block having a binary value less than some number n. That 

is, the block size must be less than or equal to log2 (n); in practice, the block 

size is k-bits, where 2
k
 < n < 2

k+1
.  Encryption and decryption are of the 

following form, for some plaintext block M and ciphertext block C: 

C = M
e
 mod n 

M = C
d mod

 n = (M
e
 mod n) mod n 

                        = (M
e
)

 d
 mod n 

                        = M
ed 

mod n  

Both the sender and receiver know the value of n. the sender knows 

the value of e and only the receiver knows the value of d. thus, this is a 

public key encryption algorithm with a public key of KU = {e, n} and a 

private key of KR = {d, n}. For this algorithm to be satisfactory for public 

key encryption, the following requirements must be met: 

 It is possible to find values of e, d, n such that M
ed =

 M mod n for all 

M<n. 

 It is relatively easy to calculate M
e
 and C

d
 for all values of M<n. 

 It is infeasible to determine d given e and n. 

Let us focus on the first requirement. We need to find the relationship of the 

form: 

   M
ed =

 M mod n 

A corollary to Euler’s theorem fits the bill: Given two prime numbers p and 

q and two integers, n and m, such that n=pq and 0<m<n, and arbitrary 

integer k, the following relationship holds 
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DIFFIE-HELLMAN KEY EXCHANGE 

The purpose of the algorithm is to enable two users to exchange a key 

securely that can then be used for subsequent encryption of messages. 

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty 

of computing discrete logarithms. First, we define a primitive root of a prime 

number p as one whose power generate all the integers from 1 to (p-1) i.e., if 

‘a’ is a primitive root of a prime number p, then the numbers 

a mod p, a
2
 mod p, … a

p-1
 mod p 

are distinct and consists of integers from 1 to (p-1) in some permutation. For 

any integer ‘b’ and a primitive root ‘a’ of a prime number ‘p’, we can find a 

unique exponent ‘i’ such that  

b ≡ a
i
 mod p where 0 ≤ i ≤ (p-1) 

The exponent ‘i’ is referred to as discrete logarithm. With this background, 

we can define Diffie Hellman key exchange as follows: 

There are publicly known numbers: a prime number ‘q’ and an integer α that 

is primitive root of q. suppose users A and B wish to exchange a key. User A 

selects a random integer XA < q and computes YA = α 
XA

 mod q. Similarly, 

user B independently selects a random integer XB < q and computes YB = α 

XB
 mod q. Each side keeps the X value private and makes the Y value 

available publicly to the other side. User A computes the key as  

K = (YB)
XA

 mod q and 

User B computes the key as  

K = (YA)
XB

 mod q  

These two calculations produce identical results. 
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