Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Introduction to Multivariable Calculus
Description: Introduction to Multivariable Calculus, calculus, exam, mocks, algebra, university

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


More PastPaper:

http://ihome
...
hk/~cs_gxx

MATH 113 Introduction to Linear Algebra L4

Midterm Test

h—teX IVEw—rEPHHWD UXHHpm { VXQHpmF
x—meX
ƒtudent shX

†ersionX eGf
„ot—l m—rksX IHH

Answer all questions
...
1a @IS m—rksA e line—r system

e

x a b with the following ™oe™ient m—trixX
P

Q

I I P I
e a RP Q P H S
Q R R k
is known to ˜e in™onsistent for — p—rti™ul—r b in R3 F hetermine the v—lue of k F
SolutionX ‡e perforum row redu™tion on the ™oe™ient m—trixX
P

Q

P

I I P I −2r1 +r2 I I
R P Q P H S    
   3 R H I
−3r1 +r3
H I
Q R R k

P
 P
 P

I
 P

Q

P

I I
S     R H I
   3
k   Q
H H
−r2 +r3

P
 P
H

I
 P
k

Q

 I

S

sf k Ta ID the ™oe™ient m—trix will h—ve — pivot position in every rowF gonsequentlyD
˜e ™onsistent for every b in R3 F

e

x a b will

ƒin™e it is given th—t for some b in R3 the system will ˜e in™onsistentD so we must h—ve
Qn
...

us
t
...
ust
...
2a @PS m—rksAX „he following is —n —ugmented m—trix of — line—r systemX
P

I
T P
T
R  I
Q

I Q
Q U
 I  Q
R IH

Q

P
S
 I
V

I
PU
UX
IS
S

@—A „r—nsform the m—trix into its redu™ed row e™helon form @‚‚ipAF
@˜A ƒolve the ™orresponding line—r system —nd express the solution in p—r—metri™ ve™tor formF
SolutionX

@—A fy row redu™tion —lgorithmD
P

I
T P
T
R  I
Q

I Q
Q U
 I  Q
R IH

P
S
 I
V

Q

P

I
I
P U −2r1 +r2 T H
U    
   3 T
I S r1 +r3 R H
S −3r1 +r4 H

I
I
H
I

Q
I
H
I

Q

P

I
I
H U −r2 +r4 T H
U     T
   3 R H
PS
H
P

P
I
I
P

I
I
H
H

Q
I
H
H

Q

I
HU
U
PS
P

P
I
I
I

with further row redu™tion to ‚‚ip @˜—™kw—rd ph—seAD
P

I
TH
T
RH
H

I
I
H
H

Q
I
H
H

P
I
I
H

P

Q

I
I
U −2r3 +r1 T H
HU
   3 T
  
P S −r3 +r2 R H
H
H

I
I
H
H

Q
I
H
H

P
 Q Q
I
U −r +r T H
 P U    3 T
  

H
H
I
H

2

P
H

1

S

H
I
RH H
H H

P
I
H
H

H
H
I
H

 I Q
 P U
U
P
H

S

@in ‚‚ipA

X

@˜A „he line—r system will h—ve the s—me solution set —s the following line—r systemX
V
b x1
b
`

x2

C Px3
C x3

b
b
X

ƒet

x3

a  I
a  P
x4 a P
HaH

a sD then the —˜ove system h—s the following the gener—l solutionX
V
b x1
b
`
x2

b x3
b
X
x4

a   I   Ps
a  P   s
as
aP

where

Y

s

P RF

ren™eD the solution of the line—r system in p—r—metri™ ve™tor form isX

 I Q
U
T  P U
2U
aT UC
P

R

I
H

S

Y

where

s

P RF

gx
x/

s

cs
_

S

k/
~

x4

H
P

om
e
...
h

R

3

ih

Tx
T
Rx S

 P Q
T  I U
T
U
P

://

Q

x1

ht
tp

P

P

More PastPaper:

http://ihome
...
hk/~cs_gxx

Qn
...

us
t
...
ust
...
3a @PS m—rksA

@—A …se row oper—tion methodD nd the inverse of the following m—trixF
P

Q

I I H
e a RI H ISX
H I I
@˜A e m—trix tr—nsform—tion
P

X R3 3 R2 is known to s—tisfyX

„

Q

I
„ RIS a
H
pind the st—nd—rd m—trix

P
 I
f

P

Q

!
I
I
„ RHS a
Y
Q
I

!
Y

P

Q

H
—nd „ R I S a
I

 P

!
X

Q

of „ F

‘xoteX „he —˜ove ™onditions ™—n ˜e ™om˜ined —s — m—trix equ—tionF“
SolutionX

@—A ‡e perform row oper—tions on ‘
P

I I H
RI H I
H I I
P

I
   3 H
 1 
r
2 3
H
P
I
−r2 +r1
   3 R H
  
H
−r2

R

Q

I
H
H
I
I
H
H
I
H

e

j

s3

“X

P

H H −r1 +r2 I I H I
I H S     R H  I I  I
   3
H I
H I I H
Q
P
H
I H H r3 +r2 I
 I I  I H S    3 R H
  
1
I  2 1 1
H
2
2
Q
1
1
1
H 2
 2
2
1
1
H 1  2 2 S
2
1
1
1
I  2 2
2
P

ren™e we h—ve

e

−1

a

1
2
R 1
2

 

1
2

1
2

1
 2

H
I
H
I
I
H

Q

P

Q

H r2 +r3 I I H
H S     R H  I I
   3
I
H H P
Q
H I H H
H 1  1 1 S
2
2 2
I  1 1 1
2
2
2

I H H
 I I H S
 I I I

 1 Q
2

1 S
F
2
1
2

1
2

@˜A „he given ™ondition ™—n ˜e rest—ted —sX
P

Q

I
f RIS a
H

P
 I

P

!
Y

Q

!
I
I
f RHS a
Y
Q
I

P

Q

H
f RIS a
I

 P

!
X

Q

…sing the denition of m—trix multipli™—tionD we ™—n rewrite the —˜ove —sX
P

Q

I I H
f ¡ RI H IS a
H I I

P I
 I Q

 P
Q

!
X

 1
2

 1
2
1
2

 1 Q
2
1 S
2
1
2

a

1
 2  3
2
1
1
 2  2 7
2
5
2

R

!

cs
_

1
2

k/
~

1
2
R 1
2

om
e
...
h

 P ¡
Q

P

ih

P I
a
 I Q

!

://

Q−1

ht
tp

f

P

I I H
P I  P R
S
a
 I Q Q ¡ I H I
H I I
!

gx
x/

ren™eX
X

More PastPaper:

http://ihome
...
hk/~cs_gxx

Qn
...

us
t
...
ust
...
4a @PH m—rksA

@—A pind — suit—˜le inverti˜le m—trix

€

su™h th—t

€e

is in ‚‚ipF

P

Q

I P I I
Q I PSX
e a R P
 I I P I
@˜A ixpress the gener—l solution of the following line—r system in terms of
V
`

x1 C P x2 C
x3 C
x4 a
Px 1 C Q x 2 C x 3 C P x 4 a
X
 x 1 C x 2 C P x 3 C x 4 a

X

˜

˜
˜
˜

SolutionX

@—A €erform row oper—tions on ‘

e

P

j

s3

“X

Q

I P I I I H
R P
Q I P H I
 I I P I H H
P
I P I
3r2 +r3
R H  I  I
   3
  
H H H
P
I P I H
−r3 +r1
RH I I H
   3
  
H H H I

P

Q

H −2r1 +r2 I P I I I H H
H S     R H  I  I H  P I H S
   3
I r1 +r3 H Q Q P I H I
P
Q
Q
1
I I H H
I P I I I H H
r3
2
H  P I H S     R H I I H P  I H S
 
 −r 3
2
P  S Q I
H H H I  5 3 1
2
2
2
Q
P
7
1
3
  2   1 −2r2 +r1 I H  I H   2 1   1 Q
2
2
2
2
P  I H S     R H I I H P  I H S
   3
5
1
 5 3 1
H H H I  2 3
2
2
2
2
2

„hereforeX
P

„—ke

€

1
 2

aR P

 

5
2

1
2

 I
3
2

 1 Q
2
H

P

I H
RH I
then € e a
H H

SY

1
2

 I
I
H

Q

H
H S is in ‚‚ipF
I

@˜A „he ™oe™ient m—trix of the system is the s—me —s the m—trix e in @—AF ƒin™e
we h—ve ex a b 6 € ex a € bD —nd the system € ex a € b isX
P

I H
RH I
H H

Q

I
H

P

Q

a sD then the gener—l solution of the system in p—r—metri™ form isX
Cs

s

s

s

PR

X

˜

gx
x/

1
 2

where

cs
_

x4

˜

˜

k/
~

b x3
b
X

 1
2
 

om
e
...
h

x2

a
a
a
a

ih

V
b x1
b
`

://

x3

is inverti˜leD

1
H
 2˜
HSx a R ˜ SX
I
 1˜
2

ht
tp

ƒet

 I

€

T

More PastPaper:

http://ihome
...
hk/~cs_gxx

Qn
...

us
t
...
ust
...
5a @IS m—rksA

@—A iv—lu—te the following determin—ntX









Q
P
H
I

I
 I
P
S



H
H
H
P

Q

S
X
R

P

@˜A ƒolve the following homogeneous systemX
V
b
b
`
b
b
X

Qx 1 C
Px 1  
x1

x2
x2

Px 2
C S x2 C Px3

C
C
C
C

Q x4
S x4
R x4
P x4

a
a
a
a

H
H
H
H

SolutionX

@—A fy ™of—™tor exp—nsionD we h—veX









Q
P
H
I

I
 I
P
S

H
H
H
P




Q

Q

S
 a P ¡ @ IA4+3  P


R
H

P



I Q

 I S 

P R



 I







I Q
S
 C P ¡ @ IA2+1 
g
a @ PA ¡ fQ ¡ @ IA 

P R
P R
a @ PA ¡ fQ ¡ @ R   IHA   P ¡ @R   TAg a UTX

1+1 

@˜A „he ™oe™ient m—trix of the system is ex—™tly the s—me —s the m—trix in @—AF ƒin™e it h—s
nonEzero determin—ntD the system will h—ve unique zero solutionD iFeFX
V
bx
b 1
`
x2

b x3
b
X

H
H
H
H

ht
tp

://

ih

om
e
...
h

k/
~

cs
_

gx
x/

x4

a
a
a
a

V

More PastPaper:

http://ihome
...
hk/~cs_gxx

Qn
...

us
t
Title: Introduction to Multivariable Calculus
Description: Introduction to Multivariable Calculus, calculus, exam, mocks, algebra, university