

- Concentration is represented by square brackets around the molecule.
- As the reaction proceeds, concentration decreases, leading to \rightarrow
- Fewer collisions per second between reactant particles.
- The rate slowing down.
- Rate of reaction is determined by measuring the concentration of a substance at time intervals →
- Rate is equal to the slope of the curve.
- Tangent is drawn gradient is calculated.
- Initial rate → the change in concentration of a reactant, of product, per unit time at the start of the reaction when t=0.

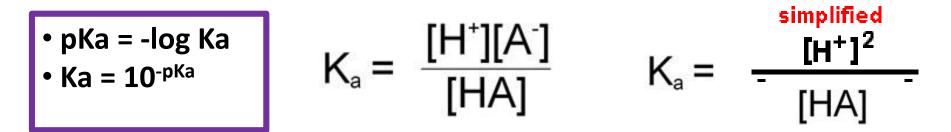
Half-Lives

- ۲
- Exponential decay ->
 Many natural processes are a constant fullalf-life value halves every half-time.
 Preview Page
 Radioactive decay -> ٠
- ۲
- Constant half-life of a radioactive element is the time taken for half the element ۰ to decay.
- Used to measure element stability and in radio-carbon dating. ٠

Equilibrium Constant

- A dynamic equilibrium is established 32 closed system when \rightarrow
- The rate of the forward reaction is the same as the reverse reaction.
- The concentrations of the reactants and products remain the same.
- Equilibrium law → the relative proportions of reactants and products present at equilibrium.
- Kc → the equilibrium constant for concentrations.

$$aA + bB \rightleftharpoons cC + dD$$


 $K_c = [C]$

[A] = concentration of A in moldm⁻³ a = number of moles of A

- Homogeneous equilibrum → all species making up the reactants and products are in the same physical states.
- Heterogeneous equilibrium → species are in different states.

Strong & Weak Acids

- The strength of an acid (HA) is the extent of dissociation into H⁺ and A⁻ ions. •
- Strong acids dissociate completely in queous solution.
- Examples, H_2SO_4 , HBr, HI, $HCIO_4$.
- Weak acids only partially dissociate. ۰
- **Example:** $CH_3COOH \leftrightarrow H^+ + CH_3COO^-$. •
- Equilibrium lies well to the left.
- Acid dissociation constant (Ka) \rightarrow measures the extent of acid dissociation. •
- Weak acid: $HA \leftrightarrow H^+ + A^-$.
- A large Ka value \rightarrow large extent of dissociation \rightarrow a strong acid. ۰

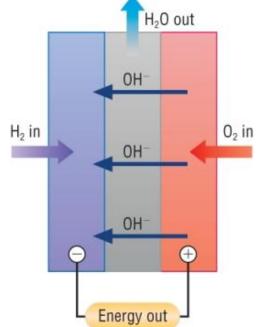
Buffer Solutions

- Buffer solution \rightarrow a mixture that minimises pH changes \mathbf{O} addition of small amounts of acid or base. A buffer solution is a mixture of $\rightarrow 21$ of 57 A weak acid \mathbf{O} $\mathbf{O$

- Its conjugate base, A⁻.
- A buffer can be made from a weak acid and the salt of a weak acid. •
- Example \rightarrow ٠
- In the CH₃COOH/CH₃COONa buffer system \rightarrow ٠
- The weak acid dissociates partially: $CH_3COOH \leftrightarrow H^+ + CH_3COO^-$.
- The salt dissociates completely: $CH_3COONa \rightarrow CH_3COO^- + Na^+$. •
- The high concentration of the conjugate base pushes the equilibrium of the weak acid to the ۲ left.
- Therefore, the concentration of H⁺ ions is very small.
- **Buffer equilibrium:** $HA \leftrightarrow H^+ + A^-$. ٠
- The weak acid (HA) removes added alkali. ٠
- The conjugate base (A⁻) removes added acid. ٠

Born-Haber Cycles

- The cycle begins with the elements in their standard states at zero energy. This is known active datum in a contract of the standard states at zero energy. •
- **Endothermic** $\rightarrow \Delta H$ points upwards. ۰
- **Exothermic** $\rightarrow \Delta H$ points downwards. •
- The ionic solid is on the lowest energy level. •


Redox

- •
- Oxidation \rightarrow loss of electrons Notesale.co.uk Reduction \rightarrow gain of the second secon Reduction → gain of felectrons of 57 Prev page •
- **Oxidising agent** \rightarrow is reduced and accepts electrons. ۲
- **Reducing agent** \rightarrow is oxidised and donates electrons. ٠

- Balancing redox equations \rightarrow •
- Complete half equations. ۲
- Sometimes add H^+ , OH^- or H_2O . •
- In acidic conditions, add H⁺. •
- In alkaline, add OH⁻. •

Storage & Fuel Cells

- Fuel cells → The hydrogen-oxygen fuelcell uses energy from the reaction of a fuel with oxygen to create Noltage. 43
- The reactants flow in and products flow out while the electrolyte remains in the ۲ cell.
- Fuel cells can operate continuously so long as the fuel and oxygen continue to • flow into the cell.
- Electricity is generated when oxygen and hydrogen • make water.
- Hydrogen –Oxygen Fuel Cell Equations \rightarrow
- $H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$
- $\frac{1}{2}O_{2} + 2H_{2}O + 2e^{-} \rightarrow 2OH^{-}$
- **Overall Equation:** $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

Hydrogen for the Future

- •
- Fuel-cell vehicles (FVC's) → Uses hydrogen gas or hydrogen-rich friefs. Hydrogen-rich frank (or a track of the friefs. Hydrogen-rich feels (e.g. methanol) are mixed with water and converted into hydrogen gas at 250-00° eby an onboard "reformer".
- Using methanol instead of hydrogen gas \rightarrow ۲
- Liquid fuel is easier to store than gas. ۲
- Methanol can be generated from biomass. •
- Carbon dioxide is waste product greenhouse gas. ۰
- Advantages of fuel-cell vehicles \rightarrow
- Less pollution and carbon dioxide hydrogen-rich fuels produce only small ۲ amounts of carbon dioxide and air pollutants.
- Greater efficiency petrol engines are less than 20% efficient in converting • chemical energy – hydrogen fuel-cell vehicles are 40-60% efficient.