and mechanical stability

- if absent in plant cells, plasma membrane surrounded and supported by a rigid cell wall made of cellulose
- cholesterol is an amphipathic molecule (like phospholipids) meaning it has both hydrophilic an hydrophobic regions
 - cholesterol's hydroxyl (-OH) group is hydrophilic and aligns towards the phosphate heads of phospholipids
 - the remainder of the molecule (steroid ring and hydrocarbon tail) is hydrophobic and associates with the phospholipid tails
- phospholipid bilayers are fluid, in that the phospholipids are constant in movement relative to one another
- · cholesterol interacts with fatty acid tails to moderate the membrane properties
 - o immobilizes the outer surface of membrane, reducing fluidity
 - makes the membrane less permeable to very small water-soluble molecules that would otherwise freely cross
 - o functions to separate phospholipid tails and so prevent crystallization of the membrane
 - helps secure peripheral proteins by forming high density lipid rafts capable of anchoring the protein

Fluid-Mosaic Model

- cell membranes are represented according to fluid-mosaic model due to fact that they are:
 - fluid: the phospholipid bilayer is a viscous and individual plospholipid's can move position
 - mosaic: the phospholipid bilayer is embed deal with proteins, resulting a mosaic of components

Components of Plasms Mainbrune:

- phospholipids to ma bilayer with photo are heads facing outwards and fatty acids tails facing in varias
- cholesterol: found in animal cell membranes and functions to improve stability and reduce fluidity
- · proteins: may be either integral (transmembrane) or peripheral and serve a variety of roles

Membrane Models

- fluid-mosaic model was not the first scientifically accepted paradigm to describe membrane structure
- the first model that attempted to describe the position of proteins within the bilayer was proposed by Hugh Davson and James Danielli in 1935
- When viewed under a transmission electron microscope, membranes exhibit a characteristic trilaminar appearance
- Danielle and Davson proposed a model whereby two layers of protein flanked a central phospholipid bilayer
 - the model was described as a "lipo-protein sandwich", as the lipid layer was sandwiched between two protein layers
 - the dark segments seen under electron microscope were identified wrongly as representing the two protein layers
- there were a number problems with the lipo-protein sandwich model proposed by Davson and Danielli
 - assumed all membranes were a uniform thickness and would have a constant lipid-protein ratio