Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Further Pure 3
Description: All-In-One Page Notes Revision notes made for the Further Pure 3 Edexcel A-Level module (content will overlap with most pure modules). I've personally condensed the entire module into a clear and detailed overview all on only one page! It contains all the necessary content for that A*. Happy revising :)

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


FP3 Revision Notes
οƒ˜

Hyperbolic Functions
Key Words: π‘ π‘–π‘›β„Ž, π‘π‘œπ‘ β„Ž, Osborn’s rule
οƒ˜

π‘ π‘–π‘›β„Ž π‘₯ =

𝑒 π‘₯ βˆ’π‘’ βˆ’π‘₯
2

, π‘π‘œπ‘ β„Ž π‘₯ =

o
o

π‘₯2

οƒ˜

Hyperbola:

π‘Ž2

+

𝑦2
𝑏2
π‘₯2
π‘Ž

𝑦2
𝑏2

οƒ˜

οƒ˜

Asymptotes at 𝑦 = Β±

π‘Ž

π‘₯

Eccentricity, e, describes the ratio of the shortest distance of a general point P
from the Focus to the Directrix 𝑒 =

οƒ˜

𝑏

𝐹𝑃
𝐹𝐷

οƒ˜

o
If 0 < 𝑒 < 1 = ellipse
o
If 𝑒 = 1 = parabola
o
If 𝑒 > 1 = hyperbola
Each curve has its own definition of e (because of the following above)
o
Ellipse: 𝑏2 = π‘Ž2 (1 βˆ’ 𝑒 2 )
o
Hyperbola: 𝑏2 = π‘Ž2 (𝑒 2 βˆ’ 1)

οƒ˜

οƒ˜

∫

𝑦𝑏

2

𝑑π‘₯

𝑑𝑏

2

2

2

√1 + ( 𝑑π‘₯ ) 𝑑𝑦 or ∫ √( 𝑑π‘₯) + ( 𝑑𝑦) 𝑑𝑑
𝑑𝑦

𝑑𝑑

π‘¦π‘Ž

𝑑𝑑

π‘‘π‘Ž

Surface Area between 𝐴(π‘₯ π‘Ž , 𝑦 π‘Ž ) and 𝐡(π‘₯ 𝑏 , 𝑦 𝑏 )
π‘₯𝑏

o

x-Axis: 2πœ‹ ∫
π‘₯π‘Ž
𝑦𝑏

y-Axis: 2πœ‹ ∫

𝑑𝑏

𝑑𝑦 2

𝑑π‘₯ 2

𝑑𝑦 2

𝑑𝑑

π‘¦βˆš1 + ( ) 𝑑π‘₯ or 2πœ‹ ∫

𝑑𝑑

π‘¦βˆš( ) + ( ) 𝑑𝑑

𝑑π‘₯

π‘‘π‘Ž
𝑑π‘₯ 2

π‘₯𝑏

π‘₯ √1 + ( ) 𝑑𝑦 or 2πœ‹ ∫
𝑑𝑦

π‘¦π‘Ž

π‘₯π‘Ž

𝑑𝑦 2

𝑑𝑏

π‘₯√1 + ( ) 𝑑π‘₯ or 2πœ‹ ∫
𝑑π‘₯

𝑑π‘₯ 2

𝑑𝑦 2

𝑑𝑑

𝑑𝑑

π‘₯ √( ) + ( ) 𝑑𝑑

∴ π‘ŸΓ— 𝑑= π‘ŽΓ— 𝑑

π‘¦βˆ’π‘Ž2
𝑑2

=

π‘§βˆ’π‘Ž3
𝑑3

Vector equation of a Plane
o
π‘Ÿ = π‘Ÿ 𝑝 + πœ‡π‘‘1 + 𝛾𝑑2
o
If n is a vector normal to the plane then (π‘Ÿ βˆ’ π‘Ÿ 𝑝 ) βˆ™ 𝑛 = 0
o
Cartesian equation: 𝑛1 π‘₯ + 𝑛2 𝑦 + 𝑛3 𝑧 = 𝑝
Intersections (no intersection if parallel or skew)
o
Intersecting lines have a common point
o
Intersecting planes have a commons line
o
An intersecting plane with a line has a common point
Angles (if >90 subtract from 180)

∴ π‘Ÿβˆ™ 𝑛= 𝑝

π‘Žβˆ™π‘

Angle between 2 lines: π‘π‘œπ‘ πœƒ = ||π‘Ž||𝑏| |
Angle between 2 planes: π‘π‘œπ‘ πœƒ = ||𝑛||π‘š|| (n and m are normal directions vectors to planes)
Angle between a line and a plane: π‘ π‘–π‘›πœƒ = ||𝑛||𝑑||

π‘›βˆ™π‘š

π‘›βˆ™π‘‘

Distances

1
βƒ—βƒ—βƒ—βƒ—βƒ—
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‡π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’ 𝐴𝐡𝐢 = |𝐴𝐡 Γ— βƒ—βƒ—βƒ—βƒ—βƒ— |
𝐴𝐢
2

Shortest distance from point (𝛼, 𝛽, 𝛾) to a plane (π‘Žπ‘₯ + 𝑏𝑦 + 𝑐𝑧 = 𝑑):
Shortest distance between skew lines: |

|π‘Žπ›Ό+𝑏𝛽+π‘π›Ύβˆ’π‘‘|
βˆšπ‘Ž2 +𝑏2 +𝑐 2

(π‘Žβˆ’π‘Ž1 )βˆ™(𝑑×𝑑1 )
|
|𝑑×𝑑1 |

Further Matrix Algebra
Key Words: Transpose identity and zero matrix, non-singular, inverse, matrix of minors, E-values and vectors, orthogonal, diagonal
οƒ˜
𝐴 𝑇 = Transpose of matrix A (obtained by switching rows and columns)
o
If 𝐴 = 𝐴 𝑇 then A is symmetric
οƒ˜
If A and B have dimensions (π‘š Γ— 𝑝 π‘Žπ‘›π‘‘ 𝑝 Γ— 𝑛) then (𝐴𝐡) 𝑇 = 𝐡 𝑇 𝐴 𝑇
οƒ˜
If A is non-singular then π΄π΄βˆ’1 = π΄βˆ’1 𝐴 = 𝐼
οƒ˜
To find the inverse of a matric A
o
Find 𝑑𝑒𝑑(𝐴)
o
Form M: the matric of the minors of A
o
Form C: by changing signs of elements of M according to the rule of alternating signs
o

π‘‘π‘Ž

Vectors
Key Words: vector, cross, applications, determinant, alternating signs, triple scalar, planes, line, parallel, normal, angles, distances,
βƒ—βƒ—βƒ—βƒ—βƒ— = βƒ—βƒ—βƒ—βƒ—βƒ— βˆ’ βƒ—βƒ—βƒ—βƒ—βƒ—
οƒ˜
𝐴𝐡
𝑂𝐡
𝑂𝐴
οƒ˜
Scalar Product (dot product): π‘Ž βˆ™ 𝑏 = |π‘Ž||𝑏| π‘π‘œπ‘  πœƒ
οƒ˜
Vector Product (cross product)
o
Use: to find a vector normal to a plane
o
π‘Ž Γ— 𝑏 = |π‘Ž||𝑏| 𝑠𝑖𝑛 πœƒ Μ‚ (angle between a and b, unit vector, perpendicular to a and b)
𝑛
𝑖
𝑗
π‘˜
π‘Ž2 π‘Ž3
π‘Ž1 π‘Ž3
π‘Ž1 π‘Ž2
o
π‘Ž Γ— 𝑏 = | π‘Ž1 π‘Ž2 π‘Ž3 | = 𝑖 | 𝑏
𝑏3 | βˆ’ 𝑗 | 𝑏1 𝑏3 | + π‘˜ | 𝑏1 𝑏2 |
2
𝑏1 𝑏2 𝑏3
o
The vector product of any 2 parallel vectors is zero
o
The vector product is anti-commutative as π‘Ž Γ— 𝑏 = βˆ’π‘ Γ— π‘Ž
οƒ˜
Applications of the Vector Product
βƒ—βƒ—βƒ—βƒ—βƒ—
o
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ƒπ‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘”π‘Ÿπ‘Žπ‘š 𝐴𝐡𝐢𝐷 = |𝐴𝐡 Γ— βƒ—βƒ—βƒ—βƒ—βƒ— |
𝐴𝐢
o

𝑑1

=

o

√1 + ( 𝑑𝑦) 𝑑π‘₯ or ∫

π‘₯π‘Ž

οƒ˜

π‘₯βˆ’π‘Ž1

o

o
√π‘₯ 2 βˆ’ 1 π‘₯ = π‘π‘œπ‘ β„Ž 𝑒
Arc Length between 𝐴(π‘₯ π‘Ž , 𝑦 π‘Ž ) and 𝐡(π‘₯ 𝑏 , 𝑦 𝑏 )
o

|π‘Ž βˆ™ (𝑏 Γ— 𝑐)|

o

√1 + π‘₯ 2 π‘₯ = π‘ π‘–π‘›β„Ž 𝑒

π‘₯𝑏

Cartesian equation: πœ‡ =

π‘Ž3
𝑏3 |
𝑐3

o

οƒ˜

√1 βˆ’ π‘₯ 2 π‘₯ = 𝑠𝑖𝑛 𝑒
1 + π‘₯ 2 π‘₯ = π‘‘π‘Žπ‘› 𝑒

o

6

π‘Ž2
𝑏2
𝑐2

o

Integration
Key Words: learn results, integration by parts x1 trick, reduction formulae, arc length, surface area of revolution
οƒ˜
For an integral involving…use…
o
o

1

Vector equation of a Line
o
π‘Ÿ = π‘Ž + πœ‡(𝑏 βˆ’ π‘Ž)
o
Alternative form: (π‘Ÿ βˆ’ π‘Ž) Γ— 𝑑 = 0
o

= 1, π‘₯ = π‘Žπ‘π‘œπ‘ β„Ž 𝑑 and 𝑦 = π‘π‘ π‘–π‘›β„Ž 𝑑, π‘₯ = π‘Žπ‘ π‘’π‘ πœƒ and 𝑦 =

π‘π‘‘π‘Žπ‘› πœƒ
o

οƒ˜

= 1, π‘₯ = π‘Žπ‘π‘œπ‘  𝑑 and 𝑦 = 𝑏𝑠𝑖𝑛 𝑑

βˆ’
2

π‘‰π‘œπ‘™π‘šπ‘’ π‘œπ‘“ π‘‡π‘’π‘‘π‘Ÿπ‘Žβ„Žπ‘’π‘‘π‘Ÿπ‘œπ‘› =

2

Osborn’s rule (all trig identities go to hyperbolic except…)
o
𝑠𝑖𝑛2 𝐴 β†’ βˆ’ π‘ π‘–π‘›β„Ž2 𝐴
Further Coordinate Systems
Key Words: USE FORAMULA BOOKELT!! Ellipse, major/ minor axis, hyperbola, eccentricity, parabola, focus, Directrix, locus
Ellipse:

π‘Ž1
𝑖
𝑗
π‘˜
π‘Ž βˆ™ (𝑏 Γ— 𝑐) = (π‘Ž1 𝑖 + π‘Ž2 𝑗 + π‘Ž3 π‘˜) βˆ™ | 𝑏1 𝑏2 𝑏3 | = | 𝑏1
𝑐1
𝑐1 𝑐2 𝑐3
π‘‰π‘œπ‘™π‘šπ‘’ π‘œπ‘“ π‘ƒπ‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘’π‘π‘–π‘π‘’π‘‘ = |π‘Ž βˆ™ (𝑏 Γ— 𝑐)|

o

𝑒 π‘₯ +𝑒 βˆ’π‘₯

οƒ˜

οƒ˜

Triple Scalar Product

οƒ˜
οƒ˜
οƒ˜
οƒ˜
οƒ˜

οƒ˜
οƒ˜

π΄βˆ’1 =

1
𝑑𝑒𝑑(𝐴)

𝐢𝑇

If A and B are non-singular then (𝐴𝐡)βˆ’1 = 𝐡 βˆ’1 π΄βˆ’1
A transformation UT before A represents a transformation of T then a transformation of U on A
Characteristic equation of A is 𝑑𝑒𝑑(𝐴 βˆ’ πœ†πΌ)=0 – solve this to find Eigenvalues of A (remember normalising)
For a Matrix 𝐴, a valid eigenvector π‘₯ satisfies 𝐴π‘₯ = π‘˜π‘₯ (where k is a scalar constant)
If M is square and 𝑀𝑀 𝑇 = 𝐼 then M is orthogonal
o
If orthogonal then π‘€βˆ’1 = 𝑀 𝑇
o
If orthogonal then with normalised column vectors (π‘₯1 , π‘₯2 , π‘₯3 ) then: π‘₯1
...
π‘₯2 = π‘₯1
Title: Further Pure 3
Description: All-In-One Page Notes Revision notes made for the Further Pure 3 Edexcel A-Level module (content will overlap with most pure modules). I've personally condensed the entire module into a clear and detailed overview all on only one page! It contains all the necessary content for that A*. Happy revising :)