(i)
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left(\frac{x + y + z - xyz}{1 - xy - yz - zx} \right)$$

(ii) If
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$
, then $xy + yz + zx = 1$

(iii) If
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$
, then $x + y + z = xyz$

(iv) If
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{\pi}{2}$$
, then $x^2 + y^2 + z^2 + 2xyz = 1$

(v) If
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi$$
, then
 $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$

(vi) If
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi$$
, then $xy + yz + zx = 3$

(vii) If
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$$
, then $x^2 + y^2 + z^2 + 2xyz = 1$

(viii) If
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$$
, then $xy + yz + zx = 3$

(ix) If
$$\sin^{-1} x + \sin^{-1} y = 0$$
, then $\cos^{-1} x + \cos^{-1} y = \pi - 0$

(x) If
$$\cos^{-1} x + \cos^{-1} y = \theta$$
, then $\sin^{-1} x + \sin^{-1} y = \pi - \theta$

(xi) If
$$\tan^{-1} x + \tan^{-1} y = \frac{\pi}{2}$$
, then $xy = 1$

(xii) If
$$\cot^{-1} x + \cot^{-1} y = \frac{\pi}{2}$$
, then $xy = 1$

(xiii) If
$$\cos^{-1} \frac{x}{a} + \cos^{-1} \frac{y}{b} = \theta$$
,
then $\frac{x^2}{a^2} - \frac{2xy}{ab} \cos \theta + \frac{y^2}{b^2} = \sin^2 \theta$

where
$$S_k$$
 denotes the sum of the product $T(X_1, X_2, ..., X_n)$ takes $K(X_1, X_1, ..., X_n)$

Trigonometric Equation

An equation involving one or more trigonometrical ratios of unknown angle is called a trigonometric equation.

Solution/Roots of a Trigonometric Equation

A value of the unknown angle which satisfies the given equation, is called a solution or root of the equation.

The trigonometric equation may have infinite number of solutions.

(i) **Principal Solution** – The least value of unknown angle which satisfies the given equation, is called a principal solution of trigonometric equation.