
C, the Complex Numbers

Recall a basic (and I mean basic) polynomial p(x) = x2 − 1. The roots,
the x such that p(x) = 0, of p(x) are ±1. Recall that for p(1) = 0, p(x) must
contain at least one (x− 1) such that

p(x) = (x− 1) p1(x).

We only have the two roots, so we can factor to

p(x) = x2 − 1 = (x− 1)(x + 1).

Next, let us consider p(x) = x2 + 1. Since x2 ≥ 0 for all x ∈ R, for all x
in the real numbers,

x2 + 1 ≥ 1 for all x ∈ R,

so it has no real roots, none at all. What we need is some value, call it i,
such that i2 = −1, leading to

p(i) = (i)2 + 1 = (−1) + 1 = 0.

This leads to the full factorization p(x) = (x− i)(x + i).

Well, that problem is solved, in a sense, but i is NOT a real number, it is
classified as ‘imaginary’. In fact, it is frequently helpful to view all imaginary
numbers as, in essence, at ‘right angles to reality,’ so in a totally separate
direction than all real numbers. There is no reason we can’t multiply i by
real numbers, or why we can’t add it to real numbers. Combining real and
imaginary numbers creates a ‘complex’ number, which we will frequently call
z. The basic form of is

z = a + bi,

a is the length in the real direction and b is the length in the imaginary direc-
tion. The typical visualization of complex numbers is on a Cartesian plane,
with the horizontal axis representing the real numbers and the vertical axis
the purely imaginary ones. Everything on this plane taken together forms
the complex numbers, written C.
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