Now, multiplication, take q(x) in V and $a \in \mathbb{R}$.

$$ag(1) = a(0) = 0$$

so yes, it is a subspace.

Spans

Definition: the Span of a (non-empty) set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \dots, \mathbf{v}_n\} \in V$ is the set of all linear combinations of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. So:

 $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} = \{a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n, \text{ for all } a_1, a_2, \dots, a_n \in \mathbb{R}\}.$

Again, the set of ALL linear combinations. In essence, everything you can make out of the vectors v_1 to v_n , using vector addition and scalar multiplication.

Lets take a look at a few properties of spans.

First: the zero vector:

$$\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_n,$$

which is a perfectly reasonable linear combination.

Next: addition. Take two elements

another linear combination.

Next we check multiplication

$$c \mathbf{a} = c (a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n)$$

= $(ca_1)\mathbf{v}_1 + (ca_2)\mathbf{v}_2 + \dots + (ca_n)\mathbf{v}_n,$

yet another linear combination.

So: we can say with certainty that

Theorem: The Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, all $\mathbf{v}_k \in V$, is a Subspace of V.

This is saying something else, too. Namely: