They're orthogonal, and so linearly independent, so they span R%. We just use the inner
product:
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The helpful thing here is that we can actually expand this into projections, projections
on to subspaces (U) and orthogonal complements (U~). The result is

X = X1 + Xo, x; €U xy€ U™

with x; - xo = 0, and so on.

Theorem: If x € R” and V' C R" has orthogonal basis {vy, va, v, ..., v, } then
Projy (x) = Proj,, (x) 4+ Proj,, (x) + - - - 4+ Proj,, (x).

Proving that this is true is surprisingly easy. Recall the section about projections. The
value z is a projection of x onto y if (x — z) is orthogonal to y (this means that z has ALL
of the x component in the y direction, all that’s left is at right angles). V‘)\*ﬁthe same
principle. This time we need to confirm that CO

(Proj, (x) + Proj,, (x) + - ‘:égal)e )‘c)

is orthogonal to all elements i 1n \m ulta \%/ prove we’ve found the projec-
tion onto V). %

?1{%@\, g%nned by@za@% If we get orthogonality for all of them, we get
orth

for V.

(Projv1 (x) + Proj,, (x)+---+ Proj,, (x) — x) SV

= Proj,,(x) - vi —x - v;

V; X
= V] -V, —X-V;
V; - V;

V; - X
= V;* "V, —X*V;
V; - V;

=x-v;—x-v; =0
and done.
Example Questions:
Section 4.5: 2.b), 5.b), 6.b) (Expansion Theorem: the one right above, about using

projections to figure out the coefficients).
Section 4.6: 1.df),2, 9.bdf) 14, 16



