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Remark A similar proof may be given for the continuity of cosine function.

Example 18 Prove that the function defined by f (x) = tan x is a continuous function.

Solution The function f (x) = tan x = 
sin

cos

x

x
. This is defined for all real numbers such

that cos x ≠ 0, i.e., x ≠ (2n +1)
2

π
. We have just proved that both sine and cosine

functions are continuous. Thus tan x being a quotient of two continuous functions is

continuous wherever it is defined.

An interesting fact is the behaviour of continuous functions with respect to

composition of functions. Recall that if f and g are two real functions, then

(f o g) (x) = f (g (x))

is defined whenever the range of g is a subset of domain of f. The following theorem

(stated without proof) captures the continuity of composite functions.

Theorem 2 Suppose f and g are real valued functions such that (f o g) is defined at c.

If g is continuous at c and if f  is continuous at g (c), then (f o g) is continuous at c.

The following examples illustrate this theorem.

Example 19 Show that the function defined by f(x) = sin (x2) is a continuous function.

Solution Observe that the function is defined for every real number. The function

f may be thought of as a composition g o h of the two functions g and h, where

g (x) = sin x and h (x) = x2. Since both g and h are continuous functions, by Theorem 2,

it can be deduced that f  is a continuous function.

Example 20 Show that the function f defined by

f (x) = |1 – x + | x | |,

where x is any real number, is a continuous function.

Solution Define g by g (x) = 1 – x + | x | and  h by h (x) = | x | for all real x. Then

(h o g) (x) = h (g (x))

= h (1– x + | x |)

= | 1– x + | x | | = f (x)

In Example 7, we have seen that h is a continuous function. Hence g being a sum

of a polynomial function and the modulus function is continuous. But then f  being a

composite of two continuous functions is continuous.
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or
dy

dx
 = y log a

Thus ( )
xd

a
dx

 = ax log a

Alternatively ( )xd
a

dx
 =

log log( ) ( log )x a x ad d
e e x a

dx dx
=

= ex log a . log a = ax log a.

Example 32 Differentiate xsin x, x > 0 w.r.t. x.

Solution Let y = xsin x. Taking logarithm on both sides, we have

log y = sin x log x

Therefore
1

.
dy

y dx
 = sin (log ) log (sin )

d d
x x x x

dx dx
+

or
1 dy

y dx  =
1

(sin ) log cosx x x
x

+

or
dy

dx
 =

sin
cos log

x
y x x

x

 
+  

=
sin sin

cos log
x x

x x x
x

 
+  

= sin 1 sin
sin cos log

x x
x x x x x

− ⋅ + ⋅

Example 33 Find 
dy

dx
, if yx + xy + xx = ab.

Solution Given that yx + xy + xx = ab.

Putting u = yx, v = xy and w = xx, we get u + v + w = ab

Therefore 0
du dv dw

dx dx dx
+ + = ... (1)

Now, u = yx. Taking logarithm on both sides, we have

log u = x log y

Differentiating both sides w.r.t. x, we have

Preview from Notesale.co.uk

Page 30 of 47



CONTINUITY AND DIFFERENTIABILITY 177

1 du

u dx
⋅  = (log ) log ( )

d d
x y y x

dx dx
+

=
1

log 1
dy

x y
y dx

⋅ + ⋅

So
du

dx
 = log log

xx dy x dy
u y y y

y dx y dx

   
+ = +   

   
   ... (2)

Also v = xy

Taking logarithm on both sides, we have

log v = y log x

Differentiating both sides w.r.t. x, we have

1 dv

v dx
⋅  = (log ) log

d dy
y x x

dx dx
+

=
1

log
dy

y x
x dx

⋅ + ⋅

So
dv

dx
 = log

y dy
v x

x dx

 
+  

= log
y y dy

x x
x dx

 
+  

... (3)

Again w = xx

Taking logarithm on both sides, we have

log w = x log x.

Differentiating both sides w.r.t. x, we have

1 dw

w dx
⋅  = (log ) log ( )

d d
x x x x

dx dx
+ ⋅

=
1

log 1x x
x

⋅ + ⋅

i.e.
dw

dx
 = w (1 + log x)

= xx (1 + log x) ... (4)
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From (1), (2), (3), (4), we have

log log
x yx dy y dy

y y x x
y dx x dx

   
+ + +     

 + xx (1 + log x) = 0

or (x . yx –1 + xy . log x) 
dy

dx
 = – xx (1 + log x) – y . xy–1 – yx log y

Therefore
dy

dx
 =

1

1

[ log . (1 log )]

. log

x y x

x y

y y y x x x

x y x x

−

−

− + + +

+

EXERCISE 5.5

Differentiate the functions given in Exercises 1 to 11 w.r.t. x.

1. cos x . cos 2x . cos 3x 2.
( 1) ( 2)

( 3) ( 4) ( 5)

x x

x x x

− −

− − −

3. (log x)cos x 4. xx – 2sin x

5. (x + 3) 2 . (x + 4)3 . (x + 5)4 6.

1
11

x

xx x
x

 + 
  

+ + 
 

7. (log x)x + xlog x 8. (sin x)x + sin–1 x

9. xsin x + (sin x)cos x 10.

2
cos

2

1

1

x x x
x

x

+
+

−

11. (x cos x)x + 

1

( sin ) xx x

Find 
dy

dx
of the functions given in Exercises 12 to 15.

12. xy + yx = 1 13. yx = xy

14. (cos x)y = (cos y)x 15. xy = e(x – y)

16. Find the derivative of the function given by f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8)
and hence find f ′(1).

17. Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

(i) by using product rule

(ii) by expanding the product to obtain a single polynomial.

(iii) by logarithmic differentiation.

Do they all give the same answer?
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CONTINUITY AND DIFFERENTIABILITY 181

Therefore
dy

dx
 =

2

3
2

3 sin cos
tan

3 cos sin

dy

a yd
dx xa

d

θ θθ = = − θ = −
− θ θ

θ

ANote  Had we proceeded in implicit way, it would have been quite tedious.

EXERCISE 5.6

If  x and y are connected parametrically by the equations given in Exercises 1 to 10,

without eliminating the parameter, Find 
dy

dx
.

1. x = 2at2, y = at4 2. x = a cos θ, y = b cos θ

3. x = sin t , y = cos 2t 4. x = 4t, y = 
4

t

5. x = cos θ – cos 2θ, y = sin θ – sin 2θ

6. x = a (θ – sin θ), y = a (1 + cos θ) 7. x = 

3
sin

cos 2

t

t
, 

3
cos

cos2

t
y

t
=

8. cos log tan
2

t
x a t

 
= + 

 
 y = a sin t 9. x = a sec θ, y = b tan θ

10. x = a (cos θ + θ sin θ),  y = a (sin θ – θ cos θ)

11. If 
1 1sin cos

, , show that
t t dy y

x a y a
dx x

− −

= = = −

5.7  Second Order Derivative

Let y = f (x). Then

dy

dx
 = f ′(x) ... (1)

If f ′(x) is differentiable, we may differentiate (1) again w.r.t. x. Then, the left hand

side becomes 
d dy

dx dx

 
 
 

 which is called the second order derivative of y w.r.t. x and

is denoted by 
2

2

d y

dx
. The second order derivative of f (x) is denoted by f ″(x). It is also
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CONTINUITY AND DIFFERENTIABILITY 189

we need to find all x such that 
12

1
1 4

x

x

+

≤
+

, i.e., all x such that 2x + 1 ≤ 1 + 4x. We

may rewrite this as 2 ≤ 
1

2
x  + 2x which is true for all x. Hence the function

is defined at every real number. By putting 2x = tan θ, this function may be
rewritten as

f(x) =

1
1 2

sin
1 4

x

x

+
−  
 

+ 

=
( )

1

2

2 2
sin

1 2

x

x

−  ⋅
 
 + 

=
1

2

2 tan
sin

1 tan

− θ 
 + θ 

= sin –1 [sin 2θ]

= 2θ = 2 tan –1 (2x)

Thus f ′(x) =
( )

2

1
2 (2 )

1 2

x

x

d

dx
⋅ ⋅

+

=
2

(2 ) log 2
1 4

x

x
⋅

+

=

1
2 log 2

1 4

x

x

+

+

Example 46 Find  f ′(x) if f(x) = (sin x)sin x for all 0 < x < π.

Solution The function y = (sin x)sin x is defined for all positive real numbers. Taking
logarithms, we have

log y = log (sin x)sin x = sin x log (sin x)

Then
1 dy

y dx
 =

d

dx
 (sin x log (sin x))

= cos x log (sin x) + sin x . 
1

(sin )
sin

d
x

x dx
⋅

= cos x log (sin x) + cos x

= (1 + log (sin x)) cos x
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CONTINUITY AND DIFFERENTIABILITY 193

® Chain rule is rule to differentiate composites of functions. If f = v o u, t = u (x)

and if both 
dt

dx
 and 

dv

dt
 exist then

df dv dt

dx dt dx
= ⋅

® Following are some of the standard derivatives (in appropriate domains):

( )1

2

1
sin

1

d
x

dx x

− =
−

( )1

2

1
cos

1

d
x

dx x

− = −
−

( )1

2

1
tan

1

d
x

dx x

− =
+

( )1

2

1
cot

1

d
x

dx x

− −
=

+

( )1

2

1
sec

1

d
x

dx x x

− =
−

( )1

2

1
cosec

1

d
x

dx x x

− −
=

−

( )x xd
e e

dx
= ( )

1
log

d
x

dx x
=

® Logarithmic differentiation is a powerful technique to differentiate functions

of the form f (x) = [u (x)]v (x). Here both f(x) and u (x) need to be positive for

this technique to make sense.

® Rolle’s Theorem: If f : [a, b] → R is continuous on [a, b] and differentiable

on (a, b) such that f (a) = f (b), then there exists some c in (a, b) such that

f ′(c) = 0.

® Mean Value Theorem : If f  : [a, b] → R is continuous on [a, b] and

differentiable on (a, b). Then there exists some c in (a, b) such that

( ) ( )
( )

f b f a
f c

b a

−
′ =

−

—vvvvv—
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