
The digit 1 within brackets indicates that the display starts at the first
element of n. This command is an implicit use of the function print and the
above example is similar to print(n) (in some situations, the function print

must be used explicitly, such as within a function or a loop).
The name of an object must start with a letter (A–Z and a–z) and can

include letters, digits (0–9), dots (.), and underscores ( ). R discriminates
between uppercase letters and lowercase ones in the names of the objects, so
that x and X can name two distinct objects (even under Windows).

2.2 Creating, listing and deleting the objects in memory

An object can be created with the “assign” operator which is written as an
arrow with a minus sign and a bracket; this symbol can be oriented left-to-right
or the reverse:

> n <- 15

> n

[1] 15

> 5 -> n

> n

[1] 5

> x <- 1

> X <- 10

> x

[1] 1

> X

[1] 10

If the object already exists, its previous value is erased (the modification
affects only the objects in the active memory, not the data on the disk). The
value assigned this way may be the result of an operation and/or a function:

> n <- 10 + 2

> n

[1] 12

> n <- 3 + rnorm(1)

> n

[1] 2.208807

The function rnorm(1) generates a normal random variate with mean zero
and variance unity (p. 17). Note that you can simply type an expression
without assigning its value to an object, the result is thus displayed on the
screen but is not stored in memory:

> (10 + 2) * 5

[1] 60

5

Preview from Notesale.co.uk

Page 9 of 76



The assignment will be omitted in the examples if not necessary for un-
derstanding.

The function ls lists simply the objects in memory: only the names of the
objects are displayed.

> name <- "Carmen"; n1 <- 10; n2 <- 100; m <- 0.5

> ls()

[1] "m" "n1" "n2" "name"

Note the use of the semi-colon to separate distinct commands on the same
line. If we want to list only the objects which contain a given character in
their name, the option pattern (which can be abbreviated with pat) can be
used:

> ls(pat = "m")

[1] "m" "name"

To restrict the list of objects whose names start with this character:

> ls(pat = "^m")

[1] "m"

The function ls.str displays some details on the objects in memory:

> ls.str()

m : num 0.5

n1 : num 10

n2 : num 100

name : chr "Carmen"

The option pattern can be used in the same way as with ls. Another
useful option of ls.str is max.level which specifies the level of detail for the
display of composite objects. By default, ls.str displays the details of all
objects in memory, included the columns of data frames, matrices and lists,
which can result in a very long display. We can avoid to display all these
details with the option max.level = -1:

> M <- data.frame(n1, n2, m)

> ls.str(pat = "M")

M : ‘data.frame’: 1 obs. of 3 variables:

$ n1: num 10

$ n2: num 100

$ m : num 0.5

> ls.str(pat="M", max.level=-1)

M : ‘data.frame’: 1 obs. of 3 variables:

To delete objects in memory, we use the function rm: rm(x) deletes the
object x, rm(x,y) deletes both the objects x et y, rm(list=ls()) deletes all
the objects in memory; the same options mentioned for the function ls() can
then be used to delete selectively some objects: rm(list=ls(pat="^m")).

6

Preview from Notesale.co.uk

Page 10 of 76



row.names, col.names, as.is = FALSE, na.strings = "NA",

colClasses = NA, nrows = -1,

skip = 0, check.names = TRUE, fill = !blank.lines.skip,

strip.white = FALSE, blank.lines.skip = TRUE,

comment.char = "#")

file the name of the file (within "" or a variable of mode character),
possibly with its path (the symbol \ is not allowed and must be
replaced by /, even under Windows), or a remote access to a file of
type URL (http://...)

header a logical (FALSE or TRUE) indicating if the file contains the names of
the variables on its first line

sep the field separator used in the file, for instance sep="\t" if it is a
tabulation

quote the characters used to cite the variables of mode character

dec the character used for the decimal point

row.names a vector with the names of the lines which can be either a vector of
mode character, or the number (or the name) of a variable of the
file (by default: 1, 2, 3, . . . )

col.names a vector with the names of the variables (by default: V1, V2, V3,
. . . )

as.is controls the conversion of character variables as factors (if FALSE)
or keeps them as characters (TRUE); as.is can be a logical, numeric
or character vector specifying the variables to be kept as character

na.strings the value given to missing data (converted as NA)

colClasses a vector of mode character giving the classes to attribute to the
columns

nrows the maximum number of lines to read (negative values are ignored)

skip the number of lines to be skipped before reading the data

check.names if TRUE, checks that the variable names are valid for R

fill if TRUE and all lines do not have the same number of variables,
“blanks” are added

strip.white (conditional to sep) if TRUE, deletes extra spaces before and after
the character variables

blank.lines.skip if TRUE, ignores “blank” lines

comment.char a character defining comments in the data file, the rest of the
line after this character is ignored (to disable this argument, use
comment.char = "")

The variants of read.table are useful since they have different default
values:

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",

fill = TRUE, ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",

fill = TRUE, ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",

fill = TRUE, ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",

fill = TRUE, ...)

12

Preview from Notesale.co.uk

Page 16 of 76



The function read.fwf can be used to read in a file some data in fixed
width format :

read.fwf(file, widths, header = FALSE, sep = "\t",

as.is = FALSE, skip = 0, row.names, col.names,

n = -1, buffersize = 2000, ...)

The options are the same than for read.table() ex-
cept widths which specifies the width of the fields
(buffersize is the maximum number of lines read si-
multaneously). For example, if a file named data.txt has
the data indicated on the right, one can read the data
with the following command:

A1.501.2

A1.551.3

B1.601.4

B1.651.5

C1.701.6

C1.751.7

> mydata <- read.fwf("data.txt", widths=c(1, 4, 3))

> mydata

V1 V2 V3

1 A 1.50 1.2

2 A 1.55 1.3

3 B 1.60 1.4

4 B 1.65 1.5

5 C 1.70 1.6

6 C 1.75 1.7

3.3 Saving data

The function write.tablewrites in a file an object, typically a data frame but
this could well be another kind of object (vector, matrix, . . . ). The arguments
and options are:

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",

eol = "\n", na = "NA", dec = ".", row.names = TRUE,

col.names = TRUE, qmethod = c("escape", "double"))

x the name of the object to be written

file the name of the file (by default the object is displayed on the screen)

append if TRUE adds the data without erasing those possibly existing in the file

quote a logical or a numeric vector: if TRUE the variables of mode character and
the factors are written within "", otherwise the numeric vector indicates
the numbers of the variables to write within "" (in both cases the names
of the variables are written within "" but not if quote = FALSE)

sep the field separator used in the file

eol the character to be used at the end of each line ("\n" is a carriage-return)

na the character to be used for missing data

dec the character used for the decimal point

row.names a logical indicating whether the names of the lines are written in the file

col.names id. for the names of the columns

qmethod specifies, if quote=TRUE, how double quotes " included in variables of mode
character are treated: if "escape" (or "e", the default) each " is replaced
by \", if "d" each " is replaced by ""

14

Preview from Notesale.co.uk

Page 18 of 76



The option byrow indicates whether the values given by data must fill
successively the columns (the default) or the rows (if TRUE). The option
dimnames allows to give names to the rows and columns.

> matrix(data=5, nr=2, nc=2)

[,1] [,2]

[1,] 5 5

[2,] 5 5

> matrix(1:6, 2, 3)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> matrix(1:6, 2, 3, byrow=TRUE)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Another way to create a matrix is to give the appropriate values to the
dim attribute (which is initially NULL):

> x <- 1:15

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

> dim(x)

NULL

> dim(x) <- c(5, 3)

> x

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

Data frame. We have seen that a data frame is created implicitly by the
function read.table; it is also possible to create a data frame with the
function data.frame. The vectors so included in the data frame must
be of the same length, or if one of the them is shorter, it is “recycled” a
whole number of times:

> x <- 1:4; n <- 10; M <- c(10, 35); y <- 2:4

> data.frame(x, n)

x n

1 1 10

2 2 10

20

Preview from Notesale.co.uk

Page 24 of 76



tions which characterize the series. The options, with the default values,
are:

ts(data = NA, start = 1, end = numeric(0), frequency = 1,

deltat = 1, ts.eps = getOption("ts.eps"), class, names)

data a vector or a matrix
start the time of the first observation, either a number, or a

vector of two integers (see the examples below)
end the time of the last observation specified in the same way

than start

frequency the number of observations per time unit
deltat the fraction of the sampling period between successive

observations (ex. 1/12 for monthly data); only one of
frequency or deltat must be given

ts.eps tolerance for the comparison of series. The frequencies
are considered equal if their difference is less than ts.eps

class class to give to the object; the default is "ts" for a single
series, and c("mts", "ts") for a multivariate series

names a vector of mode character with the names of the individ-
ual series in the case of a multivariate series; by default
the names of the columns of data, or Series 1, Series
2, . . .

A few examples of time-series created with ts:

> ts(1:10, start = 1959)

Time Series:

Start = 1959

End = 1968

Frequency = 1

[1] 1 2 3 4 5 6 7 8 9 10

> ts(1:47, frequency = 12, start = c(1959, 2))

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1959 1 2 3 4 5 6 7 8 9 10 11

1960 12 13 14 15 16 17 18 19 20 21 22 23

1961 24 25 26 27 28 29 30 31 32 33 34 35

1962 36 37 38 39 40 41 42 43 44 45 46 47

> ts(1:10, frequency = 4, start = c(1959, 2))

Qtr1 Qtr2 Qtr3 Qtr4

1959 1 2 3

1960 4 5 6 7

1961 8 9 10

> ts(matrix(rpois(36, 5), 12, 3), start=c(1961, 1), frequency=12)

Series 1 Series 2 Series 3

22

Preview from Notesale.co.uk

Page 26 of 76



4.4 Graphical parameters

In addition to low-level plotting commands, the presentation of graphics can
be improved with graphical parameters. They can be used either as options
of graphic functions (but it does not work for all), or with the function par to
change permanently the graphical parameters, i.e. the subsequent plots will
be drawn with respect to the parameters specified by the user. For instance,
the following command:

> par(bg="yellow")

will result in all subsequent plots drawn with a yellow background. There
are 73 graphical parameters, some of them have very similar functions. The
exhaustive list of these parameters can be read with ?par; I will limit the
following table to the most usual ones.

adj controls text justification with respect to the left border of the text so that
0 is left-justified, 0.5 is centred, 1 is right-justified, values > 1 move the text
further to the left, and negative values further to the right; if two values are
given (e.g., c(0, 0)) the second one controls vertical justification with respect
to the text baseline

bg specifies the colour of the background (e.g., bg="red", bg="blue"; the list of
the 657 available colours is displayed with colors())

bty controls the type of box drawn around the plot, allowed values are: "o",
"l", "7", "c", "u" ou "]" (the box looks like the corresponding character); if
bty="n" the box is not drawn

cex a value controlling the size of texts and symbols with respect to the default; the
following parameters have the same control for numbers on the axes, cex.axis,
the axis labels, cex.lab, the title, cex.main, and the sub-title, cex.sub

col controls the colour of symbols; as for cex there are: col.axis, col.lab,
col.main, col.sub

font an integer which controls the style of text (1: normal, 2: italics, 3: bold, 4:
bold italics); as for cex there are: font.axis, font.lab, font.main, font.sub

las an integer which controls the orientation of the axis labels (0: parallel to the
axes, 1: horizontal, 2: perpendicular to the axes, 3: vertical)

lty controls the type of lines, can be an integer (1: solid, 2: dashed, 3: dotted,
4: dotdash, 5: longdash, 6: twodash), or a string of up to eight characters
(between "0" and "9") which specifies alternatively the length, in points or
pixels, of the drawn elements and the blanks, for example lty="44" will have
the same effet than lty=2

lwd a numeric which controls the width of lines

mar a vector of 4 numeric values which control the space between the axes and the
border of the graph of the form c(bottom, left, top, right), the default
values are c(5.1, 4.1, 4.1, 2.1)

mfcol a vector of the form c(nr,nc) which partitions the graphic window as a ma-
trix of nr lines and nc columns, the plots are then drawn in columns (see
section 4.1.2)

mfrow id. but the plots are then drawn in line (see section 4.1.2)

pch controls the type of symbol, either an integer between 1 and 25, or any single
character within "" (Fig. 2)

ps an integer which controls the size in points of texts and symbols

43

Preview from Notesale.co.uk

Page 47 of 76



* ? X a

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 "*" "?" "." "X" "a"

Figure 2: The plotting symbols in R (pch=1:25). The colours were obtained
with the options col="blue", bg="yellow", the second option has an effect
only for the symbols 21–25. Any character can be used (pch="*", "?", ".",
. . . ).

pty a character which specifies the type of the plotting region, "s": square, "m":
maximal

tck a value which specifies the length of tick-marks on the axes as a fraction of
the smallest of the width or height of the plot; if tck=1 a grid is drawn

tcl id. but as a fraction of the height of a line of text (by default tcl=-0.5)

xaxt if xaxt="n" the x-axis is set but not drawn (useful in conjunction with
axis(side=1, ...))

yaxt if yaxt="n" the y-axis is set but not drawn (useful in conjunction with
axis(side=2, ...))

4.5 A practical example

In order to illustrate R’s graphical functionalities, let us consider a simple
example of a bivariate graph of 10 pairs of random variates. These values
were generated with:

> x <- rnorm(10)

> y <- rnorm(10)

The wanted graph will be obtained with plot(); one will type the command:

> plot(x, y)

and the graph will be plotted on the active graphical device. The result
is shown on Fig. 3. By default, R makes graphs in an “intelligent” way:

44

Preview from Notesale.co.uk

Page 48 of 76



1.5 2.5 3.5

−
1.

5
0.

0
1.

0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
27 39

25

−2 −1 0 1 2
−

2
0

1
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s Normal Q−Q plot

2739

25

1.5 2.5 3.5

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s Scale−Location plot

27 3925

0 20 40 60

0.
00

0.
04

0.
08

Obs. number

C
oo

k’
s 

di
st

an
ce

Cook’s distance plot
27

39
25

Figure 13: Graphical representation of the results from the function aov with
plot().

a+b additive effects of a and of b
X if X is a matrix, this specifies an additive effect of each of

its columns, i.e. X[,1]+X[,2]+...+X[,ncol(X)]; some
of the columns may be selected with numeric indices (e.g.,
X[,2:4])

a:b interactive effect between a and b

a*b additive and interactive effects (identical to a+b+a:b)
poly(a, n) polynomials of a up to degree n

^n includes all interactions up to level n, i.e. (a+b+c)^2 is
identical to a+b+c+a:b+a:c+b:c

b %in% a the effects of b are nested in a (identical to a+a:b, or
a/b)

-b removes the effect of b, for example: (a+b+c)^2-a:b is
identical to a+b+c+a:c+b:c

-1 y~x-1 is a regression through the origin (id. for y~x+0 or
0+y~x)

1 y~1 fits a model with no effects (only the intercept)
offset(...) adds an effect to the model without estimating any pa-

rameter (e.g., offset(3*x))

We see that the arithmetic operators of R have in a formula a different
meaning than they have in expressions. For example, the formula y~x1+x2

defines the model y = β1x1 + β2x2 + α, and not (if the operator + would have
its usual meaning) y = β(x1 + x2) + α. To include arithmetic operations in a
formula, we can use the function I: the formula y~I(x1+x2) defines the model
y = β(x1 + x2) + α. Similarly, to define the model y = β1x + β2x

2 + α, we
will use the formula y ~ poly(x, 2) (and not y ~ x + x^2). However, it is

57

Preview from Notesale.co.uk

Page 61 of 76



Package Description

base base R functions
datasets base R datasets
grDevices graphics devices for base and grid graphics
graphics base graphics
grid grid graphics
methods definition of methods and classes for R objects and program-

ming tools
splines regression spline functions and classes
stats statistical functions
stats4 statistical functions using S4 classes
tcltk functions to interface R with Tcl/Tk graphical user interface

elements
tools tools for package development and administration
utils R utility functions

Many contributed packages add to the list of statistical methods available
in R. They are distributed separately, and must be installed and loaded in
R. A complete list of the contributed packages, with descriptions, is on the
CRAN Web site18. Several of these packages are recommanded since they cover
statistical methods often used in data analysis. The recommended packages
are often distributed with a base installation of R. They are briefly described
in the following table.

Package Description

boot resampling and bootstraping methods
class classification methods
cluster clustering methods
foreign functions for reading data stored in various formats (S3,

Stata, SAS, Minitab, SPSS, Epi Info)
KernSmooth methods for kernel smoothing and density estimation (in-

cluding bivariate kernels)
lattice Lattice (Trellis) graphics
MASS contains many functions, tools and data sets from the li-

braries of “Modern Applied Statistics with S” by Venables
& Ripley

mgcv generalized additive models
nlme linear and non-linear mixed-effects models
nnet neural networks and multinomial log-linear models
rpart recursive partitioning
spatial spatial analyses (“kriging”, spatial covariance, . . . )
survival survival analyses

18http://cran.r-project.org/src/contrib/PACKAGES.html

62

Preview from Notesale.co.uk

Page 66 of 76



> z <- x + y

This addition could be written with a loop, as this is done in most lan-
guages:

> z <- numeric(length(x))

> for (i in 1:length(z)) z[i] <- x[i] + y[i]

In this case, it is necessary to create the vector z beforehand because of
the use of the indexing system. We realize that this explicit loop will work
only if x and y are of the same length: it must be changed if this is not true,
whereas the first expression will work in all situations.

The conditional executions (if ... else) can be avoided with the use
of the logical indexing; coming back to the above example:

> y[x == b] <- 0

> y[x != b] <- 1

In addition to being simpler, vectorized expressions are computationally
more efficient, particularly with large quantities of data.

There are also several functions of the type ‘apply’ which avoids writing
loops. apply acts on the rows and/or columns of a matrix, its syntax is
apply(X, MARGIN, FUN, ...), where X is a matrix, MARGIN indicates whether
to consider the rows (1), the columns (2), or both (c(1, 2)), FUN is a function
(or an operator, but in this case it must be specified within brackets) to apply,
and ... are possible optional arguments for FUN. A simple example follows.

> x <- rnorm(10, -5, 0.1)

> y <- rnorm(10, 5, 2)

> X <- cbind(x, y) # the columns of X keep the names "x" and "y"

> apply(X, 2, mean)

x y

-4.975132 4.932979

> apply(X, 2, sd)

x y

0.0755153 2.1388071

lapply() acts on a list: its syntax is similar to apply and it returns a list.

> forms <- list(y ~ x, y ~ poly(x, 2))

> lapply(forms, lm)

[[1]]

Call:

FUN(formula = X[[1]])

Coefficients:

65

Preview from Notesale.co.uk

Page 69 of 76



The word “enclosing” above is important. In our two example functions,
there are two environments: the global one, and the one of the function foo

or foo2. If there are three or more nested environments, the search for the
objects is made progressively from a given environment to the enclosing one,
and so on, up to the global one.

There are two ways to specify arguments to a function: by their positions
or by their names (also called tagged arguments). For example, let us consider
a function with three arguments:

foo <- function(arg1, arg2, arg3) {...}

foo() can be executed without using the names arg1, . . . , if the corre-
sponding objects are placed in the correct position, for instance: foo(x, y,

z). However, the position has no importance if the names of the arguments
are used, e.g. foo(arg3 = z, arg2 = y, arg1 = x). Another feature of
R’s functions is the possibility to use default values in their definition. For
instance:

foo <- function(arg1, arg2 = 5, arg3 = FALSE) {...}

The commands foo(x), foo(x, 5, FALSE), and foo(x, arg3 = FALSE) will
have exactly the same result. The use of default values in a function definition
is very useful, particularly when used with tagged arguments (i.e. to change
only one default value such as foo(x, arg3 = TRUE).

To conclude this section, let us see another example which is not purely
statistical, but it illustrates the flexibility of R. Consider we wish to study the
behaviour of a non-linear model: Ricker’s model defined by:

Nt+1 = Nt exp

[

r

(

1 −
Nt

K

)]

This model is widely used in population dynamics, particularly of fish. We
want, using a function, to simulate this model with respect to the growth rate
r and the initial number in the population N0 (the carrying capacity K is
often taken equal to 1 and this value will be taken as default); the results will
be displayed as a plot of numbers with respect to time. We will add an option
to allow the user to display only the numbers in the last few time steps (by
default all results will be plotted). The function below can do this numerical
analysis of Ricker’s model.

ricker <- function(nzero, r, K=1, time=100, from=0, to=time)

{

N <- numeric(time+1)

N[1] <- nzero

for (i in 1:time) N[i+1] <- N[i]*exp(r*(1 - N[i]/K))

Time <- 0:time

plot(Time, N, type="l", xlim=c(from, to))

}

69

Preview from Notesale.co.uk

Page 73 of 76


