

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

12

Packages

The packages menu is very important, as it is the easiest way to load and install

packages to the R system. Therefore the entire section following this is devoted

to demonstrating how to use this menu.

Windows

The Windows menu provides options for cascading, and tiling windows. If

there is more than one window open (for example, the console and a help

window) you can use the open Windows list on the bottom of this menu to

access the different open windows.

Help

The Help menu directs you to various sources of help and warrants some

exploration. The first option, called “Console” pops up a dialog box listing a

cheat sheet of “Information” listing various shortcut keystrokes to perform tasks

for scrolling and editing in the main console window.

The next two options provide the FAQ (Frequently Asked Questions) HTML

documents for R and R for the operating system you are using. These should

work whether or not you are connected to the Internet since they are part of the

program installation. The FAQ documents provide answers to technical

questions and are worth browsing through.

The next section on the help menu contains the options “R language (standard)”,

“R language (HTML)”, and “Manuals”. “R language (standard) pops up the

help dialog box in Figure 2-5. This will popup the help screen for the specified

term, provided you enter a correct term (which can be hard if you don’t know

ahead of time what you’re looking for). This can also be accomplished using

the help () command, as we will see in the next chapter.

Figure 2-5

The menu option “R language (HTML)” will produce some HTML based

documents containing information and links to more documentation. This

should be available off-line as part of the R installation. The next option

“Manuals” provides a secondary menu with several pdf files of R documents.

Preview from Notesale.co.uk

Page 12 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

13

The remaining options on the Help menu are “Apropos” and “About”.

“Apropos” pops up a dialog box similar to the help box depicted in Figure 2-5

but that you only need to enter a partial search term to search R documents.

“About” pops up a little dialog box about R and the version you are using.

One of the most difficult tasks in R is finding documentation to help you. R is

actually very extensively documented and only a fraction of this documentation

is available directly using the help menu. However, much of the documentation

is technical rather than tutorial, and geared more toward the programmer and

developer rather than the applied user. More about getting help is discussed in

the next chapter.

The Toolbar

Below the menu bar is the toolbar, depicted in Figure 2-5. This provides quick

access icons to the main features of the menu bar. If you scroll over the icons

with your mouse slowly you will get rollover messages about the feature of each

icon. The stop icon can be useful as a panic button providing the same

functionality as the Misc menu’s “Stop current computation” option.

Figure 2-5

Packages

The basic R installation contains the package base and several other packages

considered essential enough to include in the main software installation. Exact

packages included may vary with different versions of R. Installing and loading

contributed packages adds additional specialized functionality. R is essentially a

modular environment and you install and load the modules (packages) you need.

You only need to install the packages once to you system, as they are saved

locally, ready to be loaded whenever you want to use them. However

The easiest way to install and load packages is to use the Packages menu,

although there are equivalent commands to use as well if you prefer the

command line approach.

Installing Packages

In order to use an R package, it must be installed on your system. That is you

must have a local copy of the package. Most packages are available from the

CRAN site as contributed packages, and can be directly downloaded in R. In

Preview from Notesale.co.uk

Page 13 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

37

Table 4-1: Arithmetic Operators

Operator Functionality

+ Addition

- Subtraction

* Multiplication

/ Division

^ Raised to a power

Logical and Relational Operators

Logical and relational operators are used when you want to selectively execute

code based on certain conditions. Table 4-3 lists the commonly used logical and

relational operators. Using logical and relational operators is a form of flow

control to determine the action the program will take. Essentially flow control

of a program can be thought of as being in three layers – order (sequence of

code written), selection (use of logical and relational operators), and repetition

(or looping). Order is self-explanatory, selection is discussed in this section, and

repetition is covered in the next section.

Table 4-3: Logical and Relational Operators

Operator Functionality

& And

| Or

! Not

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal

to

Preview from Notesale.co.uk

Page 37 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

46

Table 5-1: Some Data Summary Functions

Function name Task performed

sum(x) Sums the elements in x

prod(x) Product of the elements in x

max(x) Maximum element in x

min(x) Minimum element in x

range(x) Range (min to max) of elements in x

length(x) Number of elements in x

mean(x) Mean (average value) of elements in x.

median(x) Median (middle value) of elements in

x

var(x) Variance of elements in x

sd(x) Standard deviation of element in x

cor(x,y) Correlation between x and y

quantile(x,p) The p
th

 quantile of x

cov(x,y) Covariance between x and y

 Let’s apply some of these functions using an example.

> x<-c(0.5,0.2,0.24,0.12,0.3,0.12,0.2,0.13,0.12,0.12,0.32,0.19)

> sum(x)

[1] 2.56

> prod(x)

[1] 2.360122e-09

> max(x)

[1] 0.5

> min(x)

[1] 0.12

> range(x)

[1] 0.12 0.50

> length(x)

[1] 12

> mean(x)

[1] 0.2133333

> median(x)

[1] 0.195

> var(x)

Preview from Notesale.co.uk

Page 46 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

56

As illustrated with the plots in Figures 5-6 and 5-7, even relatively simple plots

in R can require quite a few lines of code and use various parameters. Most of

the graphical examples in this book – and there are many of them - will use the

simplest plotting code possible to illustrate examples, since our focus is on

understanding techniques of data analysis. However, the graphic code in R can

be as complicated as you wish, and only a snapshot of R’s full graphic

capabilities have been presented here. R allows for the user to code virtually

every detail of a graph. This may seem complicated, but it is a useful capability.

With a little practice, you can code R to produce custom, publication quality

graphics to effectively illustrate almost any data analysis result.

Saving Graphics

Notice that when the graphics window is active the main menu is different, as

illustrated in Figure 5-8. On the File menu there are many options for saving a

graphic, including different graphical formats (png, bmp, jpg) and other formats

(metafile, postscript,pdf). You could also use command line functionality to

save, but using the options under the File menu is easier and pops up a save as

dialog box allowing you to choose the directory you are saving the graphic file

to.

Figure 5-8

Another option to save a graphic is to simply right mouse click on the graphic,

which will produce a pop up menu with options to copy or save the graphic in

various formats as well as to directly print the graphic. In a Windows

Preview from Notesale.co.uk

Page 56 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

72

Discrete versus Continuous Random Variables

Random variables can be discrete or continuous. Discrete random variables are

used when the set of possible outcomes (sample space) for an experiment is

countable. Although many discrete random variables define sample spaces with

finite numbers of outcomes, countable does not mean finite. The outcomes can

be countably infinite (the integers are countably infinite because they are

discrete and go on forever). Examples of experimental outcomes that are

modeled with discrete random variables include numbers of people standing in a

line, number of A’s in a nucleotide sequence, and the number of mutations,

which occur during a certain time interval.

A random variable that is not discrete but can assume any value, usually within

a defined interval, is defined as a continuous random variable. Measurable

quantities are generally modeled with continuous random variables. Examples

of experimental outcomes that can be modeled with continuous random

variables are: height, weight, intensity of a signal, and time required for a

radioactive substance to decay.

Because much of the information bioinformatics deals with is discrete data

(sequence information is usually analyzed using discrete random variables) the

emphasis of this book is on this type of data. However continuous random

variables are not ignored and play an important role in some areas of

bioinformatics, especially in Bayesian statistics and in microarray analysis.

Probability Distributions and Densities

Now with an understanding of the concept of a random variable, whether

discrete or continuous, we can talk about probability models. In general terms,

probability models are assumed forms of distributions of data. A probability

model fits the data and describes it. Sometimes the fit is empirical such as the

example above. Often the data is fit to a distribution of known form (to be

discussed in the next two chapters) such as a beta or gamma distribution, other

times in more complex scenarios the data is fixed to a distribution that is a

mixture of known forms.

Every random variable has an associated probability distribution function. This

function is called a probability mass function in the case of a discrete random

variable or probability density function in the case of a continuous random

variable. The distribution function is used to model how the outcome

probabilities are associated with the values of the random variable. In addition

all random variables (discrete and continuous) have a cumulative distribution

function, or CDF. The CDF is a function giving the probability that the random

variable X is less than or equal to x, for every value x, and models the

accumulated probability up to that value.

Preview from Notesale.co.uk

Page 72 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

73

For simple discrete random variables, the associated probability distributions

can be described using a table to “model” the probability as above for the RNA

analysis example, or alternatively a graph can be used. In R a simple histogram

(show in Figure 6-9) can be used to model the probability distribution function

for this example.

> X<-c(0,1,2,3)

> Prob<-c(0.208,0.167,0.25,0.375)

> N<-c (‘A’, ‘C’, ‘G’, ‘U’)

> barplot(Prob,names=N,ylab="Probability", main="RNA Residue Analysis")

A C G U

RNA Residue Analysis

P
ro

b
a

b
il
it
y

0
.0

0
0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0
.3

0
0

.3
5

Figure 6-9: Histogram Illustrating the Probability Mass

Function for RNA Residue Example

To find the cumulative distribution value for this example, simply add up the

probabilities for each value of X for 0,1,2,3 and the value the CDF is the

probability that random variable X assumes that or a lesser value. For example if

X equals 2, the CDF is the probability that X=2 or X=1 or X=0. To calculate

this simply total the values for P(X=2) plus P(X=1) plus P(X=0). For our RNA

residue example, the calculations for the CDF are shown in Table 6-2.

Table 6-2: Probability Distribution and Cumulative

Probability Distribution for RNA Residue Analysis Example

Residue Value of X (=x) P (X=x) F(x)= P(X ≤

x)

A 0 5/24=0.208 0.208

C 1 4/24=0.167 0.375

G 2 9/24=0.375 0.625

U 3 6/24=0.25 1

Preview from Notesale.co.uk

Page 73 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

75

step) and the F (x) is the interval from negative infinity (or wherever x is

defined) to the value of x.

Empirical CDFs and Package stepfun

A simple method for drawing preliminary conclusions from data about an

underlying probability model is the plotting of the empirical CDF. For

calculating the empirical CDF from n data values we assign a probability of 1/n

to each outcome and then plot the CDF to this set of probabilities. A useful R

package when working with empirical data, particularly discrete data, to

determine and plot empirical CDF is a package called stepfun. This package

contains functions that will easily generate an empirical CDF given any data

vector, and also contains functions to create CDF plot easily.

For example, suppose we collect data on how many times we spot the sequence

ATC in 10 randomly chosen 100 base pair DNA stretches and get

(2,4,2,1,3,4,2,1,3,5) as the result and went to obtain an empirical CDF for the

distribution of this data. The data can simply be entered and the plot stepfun

function used to easily generate a CDF plot, as depicted in Figure 6-11. Stepfun

makes plotting CDF’s and related graphs much easier.

> x<-c(2,4,2,1,3,4,2,1,3,5)

> plot.stepfun(x)

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(x)

x

f(
x
)

Figure 6-11: CDF Plot Example Produced Using Stepfun

Parameters

The most general definition of a parameter is “some constant” involved in a

probability distribution, which although vague is actually a good definition.

Random variables define the data in a probability model. Parameters serve to

Preview from Notesale.co.uk

Page 75 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

91

This concludes discussion, for now, of discrete univariate probability

distributions. You should have a feel for these distributions and how to work

with them in R. These distributions will be used in applications in later

chapters.

Univariate Continuous Distributions

Univariate Normal Distribution

The normal distribution is the typical bell curve distribution used to characterize

many types of measurable data such as height, weight, test scores, etc. The

normal is also the distribution that is used to model the distribution of data that

is sampled, as will be discussed later in this book under the topic of inferential

statistics. Sometimes the normal distribution is called the Gaussian distribution,

in honor of Karl Gauss. It is a ritual that all introductory statistics students are

saturated with details about the normal distribution, far more than will be

covered here. The probability density equation for the normal distribution,

presented below, should ring a bell of familiarity to graduates of statistics

courses:

22

2)x(

e
2

1
)x(f

σ

µ

πσ

−
−

=

In the equation above, the Greek letter mu (µ) represents the mean of the

distribution (aka: average value, expected value) and the Greek letter sigma (σ)

represents the standard deviation of the distribution (sigma squared is the

variance). Mu and sigma serve as the parameters for the distribution. For the

normal distribution, the location and scale parameters correspond to the mean

and standard deviation, respectively. However, this is not necessarily true for

other distributions. In fact, it is not true for most distributions.

One of the tricks with the normal distribution is that it is easily standardized to a

standard scale. If X is a continuous random variable with mean mu and standard

deviation sigma it can be standardized by transforming X to Z where Z is a

normally distributed variable with mean 0 and standard deviation 1 (which also

equals the variance since 12=1). This is useful if you have a bunch of different

X’s and want to put them all on the same Z system so you can compare them,

with a scoring system called Z-scores (see your favorite introductory statistics

book for further discussion). The transformation of X to Z is simply:

σ

µ−
=

X
Z

Preview from Notesale.co.uk

Page 91 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

93

Figure 7-9: Changing the scale parameter (standard

deviation) in the normal distribution

The normal also has a cumulative density function, which in R utilizes the

pnorm function with the same parameters as dnorm. The code below computers

some normal CDFs, using a few different scale paramters with the same mean of

0.

> par(mfrow=c(3,1))

> plot(x,pnorm(x,0,1),xlab="x",ylab="f(x)", type='l', main="Normal CDF scale

1")

> plot(x,pnorm(x,0,2),xlab="x", ylab="f(x)", type='l', main="Normal CDF

scale 2")

> plot(x,pnorm(x,0,5),xlab="x", ylab="f(x)", type='l', main="Normal CDF

scale 5")

Preview from Notesale.co.uk

Page 93 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

101

data <- c(4.75, 3.4, 1.8, 2.9, 2.2, 2.4, 5.8, 2.6, 2.4, 5.25)

n <- length(data)

x <-seq(0,8,length=200)

plot(x,dgamma(x,shape=5.6,scale=0.6),type='l',ylab="f(x)")

points(data,rep(0,n))

0 2 4 6 8

x

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

f(
x
)

Figure 7-15: Comparing the data distribution to the gamma fit

As with other distributions the cumulative distribution function for the gamma is

designated starting with a p, in this case pgamma. The CDF for the model used

in this example can simply be graphed in R as:

plot(x,pgamma(x,shape=5.6,scale=0.6),type='l',ylab="P(X<=x)",

+ main="Gamma CDF Fit")

points(data,rep(0,n))

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Gamma CDF Fit

x

P
(X

<
=
x)

Figure 7-16:Gamma CDF

It looks from the CDF plot in Figure 7-16 that there may still be some

probability density at x values higher than 5. We can perform a simple

calculation to check this out.

Preview from Notesale.co.uk

Page 101 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

108

8

Probability and Distributions
Involving Multiple Variables

The previous two chapters have looked at the basic principles of probability and

probability distributions of one random variable. In this chapter we introduce

some more concepts of probability and then extend looking at probability

distributions to include distributions modeling two or more random variables.

Expanded Probability Concepts

Conditional Probability

Conditional probability is a powerful concept that allows us to calculate the

probability of an event given that some prior event, which we have probability

information about, has occurred. Using the concept of conditional probability

allows us to solve problems where “things happen sequentially” with rather

simple probability models, instead of complicated mathematical models that

would be the alternative if it were not for conditional probability.

Understanding conditional probability, as we will see in the next chapter, is an

essential foundation for Bayesian statistics. But understanding the concept is

also of importance on its own.

Let’s illustrate the use of conditional probability with an example from classical

genetics by considering the case of pea color as a trait encoded by one gene that

has two alleles. The dominant allele, which we will denote by Y, codes for

yellow pea color. The recessive allele we will denote by y, which codes for

green pea color.

Preview from Notesale.co.uk

Page 108 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

111

You may look at this and wonder, why? The logic for this alternative definition

of independence comes from the definition of conditional probability:

P(E|F)=
)F(P

)FP(E ∩

This can be algebraically rewritten as

P(E∩F)=P(E|F)P(F)

But since we just defined the independence of E and F as P(E|F)=P(E) this

simplifies to

P(E∩F) =P(E)P(F)

This form of the definition of independence comes in very handy for calculating

joint probabilities of independent events.

It is important to note here that determining that events are independent is not

equivalent to determining that events are disjoint or mutually exclusive, which

was previously defined by two events having no common intersection (P

(E∩F)= ∅). Disjoint and mutually exclusive mean the same thing, but

independence is a very different concept!

Independence can easily be extended to include more than two events. Three

events A, B, and C are independent if P(A∩ B∩ C)=P(A)P(B)P(C). In this case

we can say that A, B, and C are mutually independent and independence of pairs

of these events can be concluded (A is independent of B, B is independent of C,

etc.). However, it is not always the case that the reverse is true, and it is

possible to have three events, A, B, and C where A and B are independent, B

and C are independent but A and C are not independent and therefore A, B, and

C are not mutually independent.

In practice, determining whether events are independent can be tricky. Some

times it’s based on common logic. For example, most people would agree that

the outcomes for each toss of a fair coin are independent, meaning the outcome

of one toss of a coin (heads or tails) has no impact on the next toss of a coin. But

in general, you should not assume independence without good reason to do so.

Independence is often utilized in bioinformatics in analyzing sequence

information. Although this issue is often debatable, assuming independence of

sequence elements is key in many data analysis algorithms commonly used.

Independence makes calculations easy and the assumption of independence can

greatly simplify a complicated algorithm.

For example, suppose nucleotides in a DNA sequence are mutually independent

with equal probabilities (that is, P(A)=P(T)=P(C)=P(G)=1/4). The probability

Preview from Notesale.co.uk

Page 111 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

122

Using combinatorics, we can calculate the number of possible divisions of n

sequences into r groups of size x1, x2…xr with what is called the multinomial

coefficient. This can be written as:

!!...!

!

,..., rx2x1x

n

rx2x1x

n
=

Combining these results produces the joint distribution of observed events (a

formula that directly parallels the binomial case of two possible outcomes

described in the previous chapter) under the multinomial model.

Among its many applications in bioinformatics, the multinomial model is

frequently used in modeling the joint distribution of the number of observed

genotypes. Any number of loci and any number of alleles can be modeled this

way, but the simplest example is the case of looking at a genetic locus which has

two alleles, A and a. If we sample n diploid individual in the population and

record their genotype at that locus, a number of individuals will be of genotype

AA, which we can represent as just as nAA. Likewise, a number of individuals

will have Aa genotype and can be represented by nAa, and the number of

individual of aa genotype can be represented by naa. To formalize this into a

probability model, we can use the random variable X to represent nAA, the

random variable Y to represent nAa, and the random variable Z to represent naa.

We can label these proportions (probabilities) as PAA, PAa, and Paa for each of the

three respective possible genotypes.

The multinomial distribution formula represents the joint distribution of the

three genotypes is given below.

P (X=nAA, Y=nAa, Z=naa)= aaAaAA n
aa

n
Aa

n
AA

aaAaAA

)P()P()P(
!n!n!n

!n

Since you probably wouldn’t want to perform paper and pencil calculations

using this formula, the question now is how would you work with such a model

in R? Clearly models with 3 random variables are not as simple to work with as

univariate models, but R can handle analyzing and performing simulations on

these more complicated distributions quite easily.

As an example, suppose we have 20 individuals and genotype them and find that

nAA=4, nAa=14, and naa=2. Given this information, we can easily estimate our

parameters for the multinomial distribution by simply using the sample

proportions PAA=0.2, PAa=0.7 and Paa=0.1. Since we do not have a lot of data it

is difficult to examine the properties of this model. However, using our

empirical parameters we can extend our data set by doing simulations of more

1 2

1 2 1 2

1 2

(, ,...,) ...
...

rx x x

r r

r

n
p x x x p p p

x x x

= ⋅ ⋅

Preview from Notesale.co.uk

Page 122 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

124

> results2<-results/(results[,1]+results[,2]+results[,3])

> results2

 [1,] 0.20 0.55 0.25

 [2,] 0.20 0.65 0.15

 [3,] 0.10 0.60 0.30

 [4,] 0.15 0.65 0.20

 [5,] 0.20 0.65 0.15

 [6,] 0.30 0.55 0.15

 [7,] 0.15 0.65 0.20

 [8,] 0.20 0.75 0.05

 [9,] 0.05 0.65 0.30

[10,] 0.35 0.35 0.30

Looking at the proportions makes it clearer that the simulated values are indeed

based on the empirical proportion parameters (0,2,0.7,0.1) supplied.

You could write your own functions like the above to sample from multinomial

distributions, but there is a package called combinat that contains some pre-

written functions to sample from multinomial distributions. This package also

contains a number of other functions useful in combinatorial calculations.

Note that if you were interested in doing some statistical tests, you could

simulate values from distributions with alternative parameters, and then perform

tests to determine whether the empirical values differ from this theoretical

distribution. For example, you could test the empirical values against a

theoretical population with parameters PAA=0.25, PAa=0.5, and Paa=0.25. This

will not be done here because it requires techniques of inferential statistics not

yet discussed, but is presented here to illustrate some of the powerful

applications you can perform using simulations of distributions.

The marginal distributions for each of the random variables X, Y and Z can

easily be obtained from the multinomial. Suppose we are interested only in the

marginal probability mass function of the random variable X? We could go

about finding the marginal probability mass function using lots of messy algebra

or instead we consider the following argument.

If we are only interested in the number of outcomes that result in the first type,

X, then we simply lump all the other types (Y and Z) into one category called

“other”. Now we have reduced this to a situation we have two outcomes. This

should ring a bell of familiarity, as it has now become a case of Bernoulli trials.

The number of times genotype X occurs resulting from n independent trials

follows a Binomial probability distribution with parameters n and p1. Note that

the probability of “failure” = prob(“other”) = 1 - p1 = p2 +…+ pr (sum of all the

others). Thus, the one-dimensional marginal distribution for a multinomial

distribution is simply a binomial:

Preview from Notesale.co.uk

Page 124 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

140

The denominator of Bayes’ rule P(B) is the marginal probability of event B, that

is the probability of event B over all possibilities of A where there is joint

probability. In the case where A is not a single event, but a set n of mutually

exclusive and exhaustive events, , such as a set of hyptheses, we can use the law

of total probability to calculate P(B):

P(B)=∑
n

)An(P*)An|B(P

In this situation, Bayes’ rule provides the posterior probability of any particular

of these n hypotheses, say Aj given that the even B has occurred:

()
() ()|

|
(|)* ()

j j

j

n

P B A P A
P A B

P B An P An
=
∑

Because for a given situation, P(B) is a constant, Bayes theorem may be written

as:

P (A|B)∝)A(P*)A|B(P

Where ∝ is the symbol for “proportional to”.

Sometimes Bayes’ rule is written using E and H, where E stands for “evidence”

and H stands for “hypothesis”. Using E and H we can write:

P(H|E)=
)E(P

)H(P)H|E(P

In this form, P(H) represents the prior degree of belief in the hypothesis before

the evidence. P(H|E) is the updated probability of belief in the hypothesis given

the evidence. In other words, Bayes’ rule is updating the degree of belief in the

hypothesis based on the evidence. This is where the usefulness of Bayes rule

and Bayesian statistics in learning comes from, and this idea is a foundation of

the usefulness of Bayesian statistics.

Applying Bayes’ Rule

Let’s apply Bayes’ rule to two examples. In the first case, we will have

complete information about the joint probability of two events. In the second

case, we will have only select probability information to work with.

Table 9-1 shows the joint probability of two events, event A being a membrane

bound protein and event B having a high proportion of hydrophobic (amino

acid) residues. The two columns with data represent the marginal distributions

of A, being a membrane bound protein, and the complement of A (written as ~A

Preview from Notesale.co.uk

Page 140 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

149

computational complexity involved. Multiple parameter models, extensive

amounts of data, can all be worked with using this same model.

The rest of this chapter discusses this algorithm further, taking a closer look at

the prior choices, what a likelihood function is, and how the posterior is

calculated.

Priors

As stated earlier, the use of the prior in the model is the controversial and

distinctive element of Bayesian statistics. The use of a prior introduces

subjective information from the statistician into the model and there are not hard

and fast rules as to the “correct” prior to use as it is more of an educated

guessing game. This is often criticized by non-Bayesians as being too subjective

for their liking. In the coin-tossing example above, the prior was an estimate

lower than the empirical data suggested, so based on that you may argue that the

prior biased the data and the result would have been more accurate if no prior

were used in calculating the posterior. However, what if the prior estimate for

the proportion of heads was 0.5 and the empirical data result for the proportion

of heads in a 10 toss trial is 0.3? In this case, if the coin is fair, the prior is more

accurate than the data and the posterior would be more close to the true value

than it would be if it were for the data alone and the posterior accuracy would

increase with the use of the prior, a counter argument to the criticisms of the

non-Bayesians. Another counterargument is that there is always subjectivity in

any model – data can be collected through a variety of experiments with

different biases. Everything is subjective.

Priors however are not just about introducing subjective knowledge into the

model; they are about introducing previous knowledge into the model. The

Bayesian algorithm is all about updating previous knowledge with new

evidence. Previous knowledge may be entirely subjective – based on a feel or a

guess about what the outcome of a novel experiment may be, often in regard to

the potential outcome of an experiment that has never been done. Prior

knowledge however may also be knowledge and based on data from a previous

similar empirical experiment. Meta analysis models can be done in Bayesian

combining data from new experiments with data from old experiments.

The choice of a particular prior for a model is a science in and of itself. We will

only deal with the simplest models of standard form, merely touching on the

vast world of Bayesian models. Advanced model choices for priors are left to

the experienced statistician and studying prior choices could be the topic of

several good dissertation projects. However, in the Bayesian model the use of a

prior is key. Some prior model must be chosen when using a Bayesian method.

Sometimes, as in the example above the choice of prior is simple because it

follows a convenient model pattern, as is the case with the beta prior for the

binomial model. Such priors are called conjugate priors. Other times the basis

of a prior is made for mathematical reasons (beyond our discussion) in a

Preview from Notesale.co.uk

Page 149 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

156

What would happen in this example if instead of 10 data points we obtained 100

data points, with 50 times the coin landing on its head? For the posterior we can

use a beta distribution with parameters alpha (new)=k+alpha(old), beta(new)=n-

k+beta(old). With n=100 and x=50 we get alpha (new)=52 and beta (new)=55.

Let’s compare the results with n=10 with the resulting posterior distribution

obtained with n=100 and the same success rate in the coin toss:

> p <- seq(0, 1, by = 0.001)

> plot(p, dbeta(p, 2, 5), ylim = range(0:10), ylab = "f(p)",

+ type = "l", main = "Effect of n on Posterior")

> lines(p, dbeta(p, 7, 10))

> lines(p, dbeta(p, 52, 55))

> legend(0, 4, "Prior")

> legend(0.2, 6, "Post.1")

> legend(0.5, 9, "Post.2")

Figure 9-8 shows the result of this analysis. Note that the second posterior is

centered on the data value of p=0.5 and is also much more “precise” on this

value with less spread. This reflects the general rule that the more the data the

more the data affect the posterior given the same prior.

Figure 9-8

Preview from Notesale.co.uk

Page 156 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

159

Often in our analysis we are concerned only with some parameters (so-called

main parameters) and not others (so-called nuisance parameters). Nuisance

parameters can be eliminated easily in Bayesian models by calculating marginal

and conditional probability distribution for the main parameters Rather than

introduce techniques here for dealing with multiparameter situations we shall

only note that they exist and we will work with them in coming chapters when

we learn computationally intense algorithms that do most of the work for us in

evaluating such models to understand the parameter of interest. In particular we

will introduce a chapter covering some special algorithms that may be used to

evaluate multiparameter Bayesian models. We also cover Markov chain Monte

Carlo methods, which are of growing use and popular in bioinformatics

applications. Working with multiparameter models simply builds on the

concepts used with single parameter models and an understanding of these basic

concepts is essential for proceeding further in working with these models

Applications of Bayesian Statistics in Bioinformatics

Although coverage in this book is minimal and introductory, the hopes is that

this will entice the reader to study more advanced statistical methods and fully

appreciate the power of Bayesian methods in bioinformatics. Also related are

artificial intelligence related subjects, logic, and of course, biology related areas.

Some areas where Bayesian techniques are being researched for applications

include:

• Prediction of protein structure and function

• RNA structure prediction

• Mechanisms of mammalian regulation

• Prokaryotic regulatory networks

• Large scale data analysis methods

• Algorithms for detecting subtle signals in DNA

The potential applications of Bayesian data analysis methods are without limit,

and there is little doubt that such techniques will become increasingly common

and have an increasing number of applications in the future. The appendix lists

some reference papers from the literature where Bayesian methods are used.

R is a software tool that is adaptable, programmable, and powerful and very

useful for working with complicated data models and for doing necessary

calculations for estimation and hypothesis testing, both, frequentist and

Bayesian.

Preview from Notesale.co.uk

Page 159 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

163

randomly walks for n cycles. In the upper left corner, n=10, the samples are

sequentially joined. Each successive sample is conditionally dependent on

another in what is a Markov process, described later in this chapter. As the

iterations continue the process produces a more refined approximation to the

desired posterior distribution. The sampler used in this figure is called the Gibbs

sampler, one of the algorithms discussed in Chapter 11 and the algorithm used

by the software program WinBugs, which can be used as an accessory program

with R and is discussed in Chapter 12.

Figure 10-1: Posterior MCMC Simulation of a Bivariate

Normal Distribution

By 1000 cycles the simulation in Figure 10-1 clearly resembles Figure 8-7,

which depicts a directly simulated bivariate normal distribution plotted in the

same way. Although the bivariate normal is not a very complicated distribution,

hopefully this illustration has convinced you that MCMC techniques are capable

of producing a posterior distribution from which analysis of posterior data and

parameters can be performed.

Utilizing MCMC techniques require an understanding of Bayesian theory

(covered in Chapter 9), Stochastic and Markov Processes described in this

chapter, the algorithms covered in Chapter 11, and can be implemented using R

and the auxiliary software tools introduced in Chapter 12. The coverage in this

book is far from comprehensive, and serves as only a minimalist introduction to

Preview from Notesale.co.uk

Page 163 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

176

probabilities and how to mathematically (using R) manipulate the matrix to

compute transition probabilities for k>1 subsequent states and understanding the

idea of convergence to a stationary state.

Let’s investigate these concepts with more mathematical detail using a second,

slightly more complex model involving a DNA sequence.

Modeling A DNA Sequence with a Markov Chain

Specifying the Model

The first step in working with a Markov Chain model is to determine what the

model is. Consider again Figure 10-3, which could be part of any DNA

sequence of interest. Each place in the sequence can be thought of as a state

space, which has four possible states {A, T, C, G}. Each position in the

sequence can be represented with a random variable X0, X1,…Xn that takes a

value of one of the states in the state space for a particular place in the sequence.

If we follow Figure 10-3 and go in the 5’ to 3’ direction then X0=A, X1=T and

so forth.

The model we are interested in is that nucleotides depend on the prior nucleotide

and only the prior nucleotide. In other words, the nucleotide sequence is not a

series of independent nucleotides, but that each nucleotide is dependent on the

nucleotide immediately upstream. In other words for the sequence:

5’ ATTGCC 3’

we can express the probability of this sequence using the Markov Property as

follows:

P(X5=C|X4=C,X3=G,X2=T,X1=T,X0=A)=P(X5=C|X4=C)

Setting up the Transition Probability Matrix

To set up the matrix of transition probabilities, we need some idea of the initial

probability distribution. Perhaps we sequence a few 100 base pair stretches

from the DNA sample in question and determine the following for the

probability of nucleotides adjacent to each other. We can use this as our one-

step transition matrix to start the chain with

01.08.01.0

4.02.02.02.0

3.04.02.01.0

3.02.02.03.0

G

C

T

A

Preview from Notesale.co.uk

Page 176 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

178

> DNA8<-DNA4%*%DNA4

> DNA8

 [,1] [,2] [,3] [,4]

[1,] 0.1556210 0.3497508 0.2450089 0.2496193

[2,] 0.1556207 0.3497695 0.2450017 0.2496081

[3,] 0.1556171 0.3497173 0.2450332 0.2496324

[4,] 0.1556375 0.3498298 0.2449286 0.2496041

> DNA16<-DNA8%*%DNA8

> DNA16

 [,1] [,2] [,3] [,4]

[1,] 0.1556240 0.3497689 0.2449923 0.2496148

[2,] 0.1556240 0.3497689 0.2449923 0.2496148

[3,] 0.1556240 0.3497689 0.2449923 0.2496148

[4,] 0.1556240 0.3497689 0.2449923 0.2496148

DNA16 (P
16

) appears to have converged and represents a stationary distribution.

Just to be sure we run a few more powers….

> DNA32<-DNA16%*%DNA16

> DNA64<-DNA32%*%DNA32

> DNA64

 [,1] [,2] [,3] [,4]

[1,] 0.1556240 0.3497689 0.2449923 0.2496148

[2,] 0.1556240 0.3497689 0.2449923 0.2496148

[3,] 0.1556240 0.3497689 0.2449923 0.2496148

[4,] 0.1556240 0.3497689 0.2449923 0.2496148

We can use the converged transition matrix to conclude that our stationary

distribution of nucleotides, which we represent with the letter pi, is:

[]25.025.035.015.0=π

We can interpret this as, given our initial distribution the posterior distribution

of nucleotides is 15% A, 35%T, 25%C and 25%G, regardless of position. We

can also use this distribution to calculate expected values of the numerical

distribution of nucleotides. In a sample of 1000 nucleotides from this sample,

we would expect 150 A, 350 T and 250 to be C or G.

Applications

Although the above is mostly a toy example, models based on these principles

are used in sequence analysis in non-MCMC applications. Statistical

comparisons of sequence elements can be made where the nucleotide

composition of different types of sequence elements is distinguishable. For

example, one could obtain initial distributions of nucleotides in gene coding and

non-coding regions and use Markov chains to determine the stationary

distributions for both. You could then perform statistical analysis to determine

if there is a significant difference in nucleotide composition in coding or non-

coding regions. Likewise, Markov models are frequently used to determine if a

region is a CpG island using a more complicated Markov model called a Hidden

Markov Model (HMM).

Preview from Notesale.co.uk

Page 178 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

183

We have seen that the existence of a stationary state is NOT guaranteed, but is

conditional on various properties of the Markov Chain. To have a unique

stationary state a chain must be ergodic, possessing the characteristics of

aperiodicity and irreducibility described earlier.

The convergence of Markov chains is a mathematical topic in and of itself, the

details of which are beyond our discussion. However, not all chains converge

with equal speed or fluidity and we do want do make sure our chain has

converged before determining a stationary distribution. The package CODA

will be introduced in chapter 12 and contains functionality to perform some

convergence diagnostics.

 Often our stationary distribution is a multivariable, high-dimensional

distribution. This is difficult to analyze graphically or to interpret, so ordinarily

we will be interested in analyzing individual variables and parameters

separately. In order to do this we will look at marginal and conditional

probability distributions for the parameters of interest. Recall the discussion and

graphical illustrations in Chapter 8, which looked at these distributions for the

multivariate normal, multinomial, and Dirichlet distributions. We will come

back to this type of analysis.

Continuous State Space

So far we have considered discrete state spaces only – those where the states are

distinct such as {A, T, C, G}. However, often we will be dealing with

continuous state space models where the state space can take on a continuum of

values. In the case of continuous state space the transition matrix is replaced

with a transition density often referred to as the transition kernel. This cannot be

put into matrix form but is instead a joint continuous probability density.

Transition probabilities are calculated with integrals, not sums. Except for the

mathematical differences of dealing with continuous versus discrete values for

the state space, the discrete and continuous state spaces are conceptually the

same and there is no need to discuss continuous state space models in detail. We

will work with continuous state space models in some of the examples used in

Chapters 11 and 12

Non-MCMC Applications of Markov

Chains in Bioinformatics

In this book, our primary interest is in working with probability models and

using Markov Chains for modeling so that we may utilize MCMC methods to

simulate posterior distributions in order to harvest results of interest. This is the

Preview from Notesale.co.uk

Page 183 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

187

and range B, then f has an inverse function f-1 with domain B and range A and

is defined by

y)x(fx)y(f 1 =⇔=−

for any y in B, as depicted in Figure 11-1.

y=f(x)

B

x

A

Figure 11-1

Of course, for a probability distribution function we know that the range of

values in B is between 0 and 1 (obeying the probability theory that all

probability values are between 0 and 1). Therefore to simulate values, we can

randomly generate values between 0 and 1, which is called the uniform

distribution (which is the probability distribution having equal probability of all

values between 0 and 1). In R the function runif can be used to draw a random

uniform sample and then to transform the sample by the inverse CDF method to

obtain a simulation of the desired distribution.

Let’s do an example of the inverse CDF method to simulate an exponential

distribution with parameter lambda =2. Recall that for the exponential, the

CDF is

F(x)=1-e
-λx

Letting F(x)=u

u=1-e
-λx

Solving for x

1-u= e
-λx

log(1-u)=-λx

x=-)u1log(
1

−
λ

Preview from Notesale.co.uk

Page 187 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

195

and Y. Values of rho between 0 and 1 indicate the degree of a linear

relationship between the variables.

If the correlation coefficient is considered, the joint probability distribution of

two normally distributed random variables can be written as:

(X,Y)~

1

1
,

0

0
N

ρ

ρ

This means X and Y are distributed normally with means 0 and 0 (the first

parameter matrix) and variances of σ2 and correlation of ρ between XY.

For reasons that we will not detail (see a textbook on multivariate statistics, such

as Johnson&Wichern, listed in the appendix for details), the conditional

distributions of X and Y for the bivariate normal are (here we assume σ2 = 1 for

simplicity)

P(X|Y=y)~N(ρy, 1-ρ
2
)

P(Y|X=x) ~N(ρx, 1-ρ
2
)

We can write a function in R that uses the Gibbs sampler to simulate a biviariate

normal distribution by iteratively sampling from these conditionals.

> gibbsBVN_function(x,y, n, rho){

+

+ #create a matrix to store values

+ m<-matrix(ncol=2,nrow=n)

+

+ #store initial values in matrix

+ m[1,]<-c(x,y)

+

+ #sampling iteration loop

+ for (i in 2:n){

+ #rnorm takes sd not variance

+ #update x conditional on y

+ x<-rnorm(1,rho*y,sqrt(1-rho^2))

+ #update y conditional on x from above

+ y<-rnorm(1,rho*x,sqrt(1-rho^2))

+

+ #store values in matrix

+ m[i,]<-c(x,y)

+ }

+ m

+ }

This works because it is a Markov chain. Refer back to figure 11-5. If X
(0)

=x0

then the distribution of X
(n)

 is N(ρ
2n

x0, 1-ρ
4n

). But as n goes to infinity this

converges to N(0,1), a regular standard normal distribution. Therefore after

enough runs, no matter where we start X and Y the marginal distributions of X

Preview from Notesale.co.uk

Page 195 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

202

Therefore, overall the proportion of accepted move values will create a density

of interest by accepting values most often when they are values of the most

dense areas and by rejecting values mostly when they are in area of low density.

The distributions we are interested in are more complex and ratios more

complex as well, but the general idea conveyed with the hill climber story is the

basis for how both the Metropolis and Metropolis-Hastings algorithms work.

We discuss these in more depth below. It is also of interest to note that many

related algorithms exist as well and developing more specific versions of these

algorithms is an active area of statistical research.

Metropolis Algorithm

The Metropolis algorithm is the simplified version of the full Metropolis-

Hastings algorithm that works when the proposal distribution is symmetric

around the old value θ. , as in Figure 11-12. Note that the proposal distribution

is actually a conditional distribution for the new value given the old value of the

parameter. In a symmetric distribution the ratio going up or down the hill

doesn’t matter which side of the hill you are on, whereas in a non-symmetric

distribution the R values will be different for different sides of the hill. The

uniform and normal distributions are common symmetric distributions (good for

sampling distributions).

Figure 11-12

Because of the proposal distribution symmetry, with the Metropolis algorithm,

the acceptance ratio R depends only on the value of the ratio of target

distribution values. Note that in the hill-climbing example, this is what we did.

To make the general algorithm given earlier specific for the Metropolis

algorithm

1. Generate a new value from the proposal distribution; call it thetaStar (θ*)

Preview from Notesale.co.uk

Page 202 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

211

Table 12-1

Genotype

Frequencies

Genotype Phenotype (Blood

Type)

p
2
 AA

2pr AO

A

q
2
 BB

2qr BO

B

2pq AB AB

r
2
 OO O

The easiest data to collect on blood types for a population under study is the

phenotype data. It is simple to phenotype blood and collect data on numbers of

individuals with each blood type. However, it is not technically or

mathematically easy to determine frequencies of the individual alleles.

Although for this example, it is algebraically possible, if there were more alleles

involved it would soon become impossible algebraically to solve the equations

necessary. Therefore a Bayesian MCMC method works better to solve this type

of problem.

Recall the Bayesian paradigm:

P(Model|data) ∝ P(Model) P(data|Model)

Posterior ∝ Prior * Likelihood

Our model of interest here is the posterior distribution of alleles (p, q, r) given

the data of counts of blood type phenotypes. Recall that the discussion in

Chapter 8 of using the multinomial distribution to model the distribution of

phenotype data, based on phenotype counts. For this example the multinomial is

the likelihood, or data, model, and can be can be written as follows:

P (A, B, AB, O) = nO
O

nAB
AB

nB
B

nA
A

OABBA

)p()p()p()p(
!n!n!n!n

!n

Where the n’s are the numbers of each phenotype and the p’s are the proportions

of each phenotype. Using Hardy-Weinberg equilibrium we can convert the

proportions of phenotypes to allele proportions in terms of p,q, and r. Since the

constant term is left out in Bayesian calculations we can re-write the likelihood

model as:

Preview from Notesale.co.uk

Page 211 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

212

P (A, B, AB, O) α nO2nABnB 2nA2)r()pq2()2qr q()2pr p(++

Our prior distribution of interest is the distribution of individual alleles A, B, O

that are modeled respectively with p, q, and r. Recall (Chapter 8) that the

Dirichlet model is used to model multivariable proportion data. For this

example we have no specific knowledge of the proportions so we will use a

noninformative Dirichlet prior assuming all proportions are equal (the

equivalent of a beta (1,1) distribution for all priors). We can write our Dirichlet

prior with parameter alpha=1 and ignoring the constant term as:

P(p, q, r) α (p)α-1(q) α-1 (r) α-1 =1

Gibbs Sampling to Determine Posterior

The posterior for our model is: the product of the prior and the likelihood:

P(p,q,r|data) α (p)α-1(q) α-1 (r) α-

1 nO2nABnB 2nA2)r()pq2()2qr q()2pr p(++

However, it is not easy to solve this analytically for the posterior parameters p,

q, r which are the proportions of alleles in the population given the phenotype

count data. We note that the posterior is of the form of a high-order polynomial

in p,q,r which is actually a complicated mixture of several Dirichlet

distributions.

Our method of solving this problem is to use the Gibb’s sampler and an MCMC

simulation iterating through the full conditionals as follows:

 p i= p (p | data, q i-1 , r i-1)
 q i= p (q | data, p i , r i-1)

r i= p (r | data, p i ,q i)

Each step of the iteration has the Markov property of being dependent only on

the prior step. The chain iterates like this updating each individual parameter for

that step by sampling from the full conditional distribution. The number of i’s is

the number of cycles the chain runs. If the chain is ergodic the chain will reach

a steady state distribution that is our posterior distribution of interest, the

posterior distribution of the alleles given the phenotype count data.

Preview from Notesale.co.uk

Page 212 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

214

Check the Model

After you enter the model, the first thing you want to do is check the model and

make sure it is syntactically correct. To do this load the BRugs package and

type the following:

> modelCheck("bt.txt")

model is syntactically correct

Load the Data

Once the model is syntactically correct, you want to load the data. Note that the

data are given as a list. In this example, the data used are just made up and do

not reflect empirical results.

> modelData("btData.txt")

data loaded

Compile the Model

The next step once the data are loaded is to compile the model.

> modelCompile(numChains=2)

model compiled

Initialize Values

With a successfully compiled model, you are now ready to initialize values of

parameters in preparation for running the sampler. To initialize parameter

values make a small file in the R working directory “btInits.txt” containing the

following:

#inits

list(a=1,b=1,o=1)

Do the initializing in R with function modelInits

> modelInits("btInits.txt")

Run the Sampler

Now that we have a model, which has data loaded, is correctly compiled, and

has prior parameters initialized, we are ready to run some samplers. The

function samplesSet tells which parameters should be monitored and the

modelUpdate function runs the sampler the specified number of times:

> samplesSet(c("p","q","r"))

monitor set for variable 'p'

monitor set for variable 'q'

monitor set for variable 'r'

>

>

Preview from Notesale.co.uk

Page 214 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

215

> modelUpdate(1000)

1000 updates took 0 s

Analyzing Results

Once you produce sampled data, you have many options for analyzing the

results. Remember that our result of interest is the Dirichlet posterior joint

distribution of p, q, and r – the allele proportions for the blood type alleles given

the data.

 One of the simplest things to do is look at the time series plots for the chain for

each of the parameters. To produce such a plot, simply use function

samplesHistory() with the parameters of interest. For the code illustrated above,

a time series plot of parameter r is illustrated in Figure 12-1.

Figure 12-1: Time Series of Parameter r

A time series trace gives quick visuals check for two things – how well the chain

mixes and whether the chain has converged. In Figure 12-1 the chains are well

mixing (even up and down moves without a pattern of being hung up in one area

or having correlated moves) and appear to have quickly converged. Note that a

time series trace is NOT a formal statistical analysis, but a visual check, and

although quite good at diagnosing good and bad runs and convergence, should

not be used as the sole diagnostic criteria.

Another way to look at the parameters is to view a density plot of the marginal

distribution of the parameter of interest.

samplesDensity("r", mfrow=c(1,1))

Preview from Notesale.co.uk

Page 215 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

216

Figure 12-2: Marginal Density of Parameter r

Another way to analyze the results is to look at the summary statistics for each

parameter. These results can also be used in statistical inference testing

comparing parameters from different models, etc. In later chapters when we

cover inferential statistics and introduce some different testing methods.

Function samplesStats will give this information for all parameters of interest:

> samplesStats("*")

 mean sd MC_error val2.5pc median val97.5pc start sample

p 0.23410 0.007205 0.0002394 0.22100 0.23420 0.24860 502 998

q 0.08527 0.004643 0.0001428 0.07661 0.08516 0.09471 502 998

r 0.68070 0.007752 0.0002584 0.66640 0.68050 0.69570 502 998

CODA

The most important diagnostic to do with MCMC output however is to make

sure the chains have really converged. All of the results discussed so far are

invalid if the sampler has not produced a chain that has converged to a stable

posterior state. CODA, the R package that is used in collaboration with BRugs

will utilize various convergence diagnostics techniques. Interested users should

install and explore the functionality of this package.

Preview from Notesale.co.uk

Page 216 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

219

in great depth in most elementary statistics courses and books. But let’s review

some of them here.

A sample mean is simply the average of the data. To get the sample mean add

all the values of data up and divide by the sample size (n). R will calculate a

sample mean using mean(x) where x is the data vector. The sample mean is the

most common measure of central tendency or location. If you take repeated data

samples from the same underlying population and calculate sample means, the

distribution of the sample means will follow the central limit theorem,

commonly known as the law of averages. That is, the distribution will

approximate a normal distribution in the limiting case (n goes to infinity).

The law of averages holds for any underlying population distribution, even

though the data themselves may be far from normally distributed. Let’s use R to

draw samples from an exponential distribution with scale parameter 4, or rate

parameter ¼ = 0.25 (rate=lambda in R) (see Chapter 7) and calculate means of

each sample. To illustrate this effect we will vary the sample sizes.

> #First a graph of the distribution from which to sample from

> e<-seq(.1,30,by=.1)

> plot(e,dexp(e))

Figure 13-2: Exponential with lambda=4.

Next we will take 50 random samples of sample size n=5, n=20, n=50 and

n=200 from the exponential model, calculate the mean of each of these and do a

histogram of the 50 calculated means for each sample size. Note that because

generated data are all i.i.d. (independent and identically distributed), we can

simply draw a total of n*50 samples, and arrange them in a matrix with 50 rows,

all in one command.

Preview from Notesale.co.uk

Page 219 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

222

Sampling Distributions

Sampling distributions are a special class of probability distributions where the

shape of the curve changes based on the sample size, n. The criteria “degrees of

freedom” which is based in part on sample size, is part of the defining parameter

for plotting a sampling distribution. Sampling distributions are distributions of

statistics rather than distributions of individual data values. Every statistic has

it’s own sampling distribution – mean, mode, median, etc. Here we consider the

sampling distribution for the mean (the t-distribution) and the sampling

distributions of statistics that are based on variance (the Chi Square, and the F

distributions). These common distributions serve as the basis for many

statistical inference tasks.

Student’s t Distribution

This distribution describes the sampling distribution of the sample mean when

the true population variance is unknown, as is usually the case with sampling.

This distribution is the basis for t-testing, comparing means drawn from

different samples, and we use it in hypothesis testing. Meanwhile let’s look at

the mathematical properties of this distribution and how to use this distribution

in R.

Recall from Chapter 7 the discussion of the normal distribution and that a

random variable (X) following the normal distribution may be transformed to a

Z-score with the following relationship where the distribution of Z becomes the

standard normal distribution with mean of 0 and standard deviation of 1.

σ

µ−
=

X
Z

We have already illustrated above that when we are sampling the standard

deviation (true σ) is not known but an estimated standard deviation from the

data is used. This estimated standard deviation is a random variable based on

sample size. A t-distribution is a modification of the standard normal

distribution to account for the variability of the standard deviation. A

standardized t-score takes the following form:

s

X
t

µ−
=

If the data values x1,…,xn follow a normal distribution, then we call the

distribution of the corresponding t scores a t-distribution with n-1 degrees of

freedom. It is modeled using a t density curve. The t distribution also applies to

the sampling distribution of sample means as follows:

Preview from Notesale.co.uk

Page 222 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

225

The resulting plots are shown in Figure 13-5. In each case the solid line is the

normal distribution and the dashed line is the t-distribution. Notice how when

the degrees of freedom are increased the t-distribution becomes closer and closer

to the normal. Indeed when sample size is roughly 30 or so (a specific number

is subject to debate) we often use the normal distribution instead of the t-

distribution because of this close approximation. With relatively small degrees

of freedom the t-distribution has what are referred to as “heavy tails” or “thicker

tails”. It is important to review as well that as a probability distribution the area

under the curve for any t-distribution is always 1.

Figure 13-5

The Chi-Square Distribution

The Chi-Square distribution was briefly introduced in Chapter 7 as part of the

gamma family of probability distributions. The Chi-Square distribution

indirectly models the sample variance. The ratio of the sample variance to the

true population variance is modeled as a Chi-Square according to the following:

)(~
)(

1n
2

2

2s1n
−χ

σ

−

Preview from Notesale.co.uk

Page 225 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

242

Table 14-1

Protein

Name

Primary sequence (length) Alpha helical

regions

(amino acids

in alpha

helical form)

Beta sheet

regions

Deoxy

Human

Hemoglobin

(Chain

1A3N:A)

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT

KTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPN

ALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEF

TPAVHASLDKFLASVSTVLTSKYR (141)

4-17, 21-35, 53-

71, 76-79. 81-89,

96-112, 119-136

(68.07%)

none

Rab5C

(mouse)

ICQFKLVLLGESAVGKSSLVLRFVKGQFHEYQESTIGAA

FLTQTVCLDDTTVKFEIWDTAGQERYHSLAPMYYRGAQA

AIVVYDITNTDTFARAKNWVKELQRQASPNIVIALAGNK

ADLASKRAVEFQEAQAYADDNSLLFMETSAKTAMNVNEI

FMAIAKKL (164)

16-25, 69-73, 88-

104, 128-137,

153-162

(31.71%)

2-9, 38-47, 50-

59, 78-84, 110-

116, 141-144

(28.66%)

Ubiquitin
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPD

QQRLIFAGKQLEDGRTLSDYN

IQKESTLHLVLRLRGG (76)

23-34(15.79%) 2-7, 12-16, 41-

45, 48-49, 66-

71(30.26%)

Prealbunin

(Human

Transthyretin,

Chain

1BMZ:A)

GPTGTGESKCPLMVKVLDAVRGSPAINVAVHVFRKAADD

TWEPFASGKTSESGELHGLTTEEEFVEGIYKVEIDTKSY

WKALGISPFHEHAEVVFTANDSGPRRYTIAALLSPYSYS

TTAVVTNPKE (127)

75-81 (5.51%) 12-18, 23-24,

29-35, 41-43,

45-48, 54-55,

67-73, 91-

97,104-112,

115-123

(44.88%)

Table 14-2

Method URL Description

Chou-

Fasman

http://fasta.bioch.virginia.edu-/o_fasta/chofas.htm Statistical method which is based on

individual amino acid “propensities”

to form structure

GORIV http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html

Statistical method which takes into

consideration local interactions

(“windows”) in addition to aa

propensities

PHD http://www.embl- Neural network based; combines

Preview from Notesale.co.uk

Page 242 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

246

Based on the graph, it looks like our value is pretty extreme and may be

probable cause to doubt that the sample mean comes from the distribution of the

null hypothesized mean, but let’s be sure before making a decision.

We can use 1 - pt function in R to determine the probability of being to the

right of the test statistic:

> 1-pt(testStatistic,df=n-1)

[1

[1] 0.004413

This tells us that only 0.44%of the probability mass function is to the right of

our test statistic. Given a cutoff alpha value of 5% (2.5% on each tail of the

distribution) our test statistic is more extreme than 2.5% so we reach the

decision that we reject the null hypothesis and conclude that the true mean of

our data differs significantly from 0.5 and follows a different distribution than

the distribution under the null hypothesis (in other words, our sample test

statistic did not come from the null distribution).

Alternatively to determine if our value is too extreme we could have computed

the values of the t-distribution for the critical points of both tails of the

distribution using the qt function:

> alpha<-0.05

> qt(alpha/2,df=n-1)

[1] -2.200985

> qt(1-alpha/2,df=n-1)

[1] 2.200985

This would have told us that any values below –2.200985 or above 2.200985 are

more extreme given the alpha level of 0.05 and we could reject any test statistic

more extreme than these values.

We call the probability of being as extreme or more extreme than the observed

test statistic (2 times above for a two-tailed alternative) the p-value or

“observed significance level”. If the p-value is less than the alpha-level the

experimenter set, then we reject the null hypothesis for a given test. The smaller

the p-value, the more significant the test result. Our p-value of 2 times 0.004413

= 0.008826 is significant, but a value of 0.000088 for example would be more

extreme and even more significant. The next section discusses significance and

statistical decision making in more detail.

Making Statistical Decisions

When you perform a hypothesis test you are subject to some gray areas.

Remember nothing in statistics is ever absolute and in any type of statistical

analysis there is always the randomness factor. Hypothesis testing is a process

of making statistical decisions, and in hypothesis testing there is always some

margin of error where it is possible that the test result is not correct.

Preview from Notesale.co.uk

Page 246 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

248

introductory statistics books. But there are a few key things to be mentioned
with regard to power and using R to compute power.

First, an important thing to know about power is that as the sample size
increases, the power of a test increases. The second thing to know is that
decreasing the alpha level (significance level) decreases the power of a test,
given the same sample size. That is a test with an alpha level of 0.01 has less
power than a test with an alpha level of 0.05. The bottom line is that both the
alpha level and the sample size play a role in how powerful a test is and how
well a test will correctly reject a null hypothesis. Do not confuse power with
significance levels!

For some tests, R provides some relief in computing power. Two functions,
power.t.test and power.prop.test, built into the ctest package automate
power computations that have flexible parameters, allowing the user to enter the
criteria they wish in order to have R compute other criteria.

For example, power.t.test is specific for computing power related values
for the t-test (and has optional parameters for different versions of the t-test,
one-sided versus two sided, etc). For example, suppose we want to know the
power of a test given a sample of size n=20 at a significance level of alpha=0.05.
We can specify these parameters, and also a value for delta, which is the
difference between populations that we would like to be able to detect. For
example, suppose we want to detect a difference of 0.5 units between our null
and our alternative hypothesis, for this we use delta=0.5. (It doesn’t matter what
the measurement units are, but a default standard deviation of 1 is assumed
(which can be changed if necessary using the “sd” option). For the type of test
we need to specify “one.sample”. Later on we will discuss other types of t tests,
such as two sample and paired for which power can also be calculated with this
command.

> power.t.test(n=20,delta=0.5,sig.level=0.05, type=”one.sample”)

 One-sample t test power calculation

 n = 20

 delta = 0.5

 sd = 1

 sig.level = 0.05

 power = 0.5645

 alternative = two.sided

Note the power for the test above is only 0.5645, which is not very high.

Perhaps if we look for a less subtle difference, say delta=1, we should get a

higher power test, let’s see:

> power.t.test(n=20,delta=1,sig.level=0.05, type="one.sample")

 One-sample t test power calculation

 n = 20

 delta = 1

Preview from Notesale.co.uk

Page 248 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

253

The test result with a p-value of 0.03583 rejects the null hypothesis at a critical

value (alpha level) of 0.05, but would accept the null hypothesis at a lower

critical value such as 0.01. Therefore for this test the interpretation is dependent

on the critical value set by the experimenter. For convenience t.test also

computes a 95% confidence interval for the mean expression level (see the

description in Chapter 13). As is expected the hypothesized value of 2000 lies

outside the 95% confidence interval, since we rejected that value at a

significance level of 5%. There is an exact correspondence between two-sided

hypothesis tests and (1-α)100%confidence intervals.

Two sample t-test

The two-sample t-test is used to directly compare the mean of two groups (X

and Y). It is required that measurements in the two groups are statistically

independent. The null hypothesis states that the means of two groups are equal,

or equivalently, the difference of the means is zero:

Ho: µ(X)=µ(Y), or µ(X) – µ(Y) = 0

The test statistic for the two-sample t-test used by default in R (for Welch’s test)

is:

2 2

X Y

X Y
t

s s

m n

−
=

+

where s2
X is the sample variance of the X group, s

2
Y is the sample variance of

the Y group, and m and n are the sizes of groups X and Y.

A good two sample t-test for our gene expression data is that there is no

difference overall between the treatments and controls for any of the genes (test

that the whole experiment didn’t work or there are no differentially expressed

genes). This is very simple in R by just entering the two vectors whose means

are being compared as parameters to function t.test:

> treatments<-c(geHTdata$t1, geHTdata$t2, geHTdata$t3, geHTdata$t4)

> t.test(controls,treatments)

 Welch Two Sample t-test

data: controls and treatments

t = -3.6163, df = 70.732, p-value = 0.0005564

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -653.6098 -188.9902

sample estimates:

mean of x mean of y

 1852.375 2273.675

Preview from Notesale.co.uk

Page 253 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

254

The p-value for this test very strongly rejects the null hypothesis of no

difference between the mean of the treatment group and control group,

indicating there are some genes which exhibit significantly different gene

expression levels, although the test does not provide specifics as to which genes

these are.

Paired t-test

We have so far considered t-test testing one mean against a hypothesized mean

(one-sample t-test) and comparing two statistically independent group means

(two sample t-test). The final variant of the t-test is called the paired t-test. This

test is used with paired data to determine if the difference in the data pairs is

significantly different. The test statistic here is:

nds

d
t

/
=

Where d is the average difference between the pairs, n is the number of pairs,

and sd is the sample variance of the paired differences. We notice that the paired

t-test is really the one-sample t-test applied to the differences of measurements

within the pairs. The example of paired data we will use here is the difference

between treatment and control on measures of the same gene. For example

control 1minus treatment 1 for gene 4 for the same experiment can be

considered a difference of paired data. Suppose gene 4 and gene 9 are really the

same gene, so we can pool the data for these two genes:

> g4g9ctrl

[1] 1545 1652 1449 1399 1530 1660 1501 1478

> g4g9trt

[1] 1910 2028 1901 2002 2329 2332 2298 2287

Each of the 8 data values in the two data vectors with corresponding vector

indices created above is a data pair. We can test for a significant difference in

treatment-control for this gene using a paired t-test. Note that in parameters we

indicate “paired=TRUE” to perform the test.

> t.test(g4g9ctrl,g4g9trt,paired=TRUE)

 Paired t-test

data: g4g9ctrl and g4g9trt

t = -9.0459, df = 7, p-value = 4.127e-05

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -768.3529 -449.8971

sample estimates:

mean of the differences

 -609.125

Preview from Notesale.co.uk

Page 254 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

256

Comparing Variances

Sometimes we will be interested in testing whether two groups have equal

variances, as this is often an assumption when performing the t-test and other

statistical tests. If the different groups have significantly different variation

(spread of the data) it can impact the validity of the test result. Let’s do a

simple test to determine if the variances for the gene expression data for the

gene 4/gene 9 data (same gene) are the same under treatment or control

conditions. To do so is very simple in R using the var.test and the desired

data vectors as parameters:

 > var.test(g4g9ctrl,g4g9trt)

 F test to compare two variances

data: g4g9ctrl and g4g9trt

F = 0.2271, num df = 7, denom df = 7, p-value = 0.06907

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

 0.045468 1.134387

sample estimates:

ratio of variances

 0.2271085

This test uses an F-test comparing the ratio of the variances of the two groups to

a critical value on the F-distribution (discussed in Chapter 13 as the sampling

distribution for the ratio of variances). This distribution will be used

extensively in ANOVA discussed in the next chapter. The p-value result above

indicates it is OK to assume at an alpha=0.05 ratio that there is no significant

difference in variances between the two groups (and hence, t-tests can be

assumed reliable since they assume equal variances). Note this holds only if you

assume equal variances for the pooled variance version. This is not assumed in

the Welch version (see above)

Indeed if we look at the variances of the two data groups and calculate the ratio

of the variances, we get the same result as above:

> var(g4g9ctrl)

[1] 8455.929

> var(g4g9trt)

[1] 37232.98

> 8455.929/37232.98

[1] 0.2271086

Select Nonparametric Tests

Nonparametric tests make no or very minimal assumptions about the probability

density from which the data are derived. They are used when the sample size is

small, when the data are not normally distributed (always test data with a Q-Q

plot described in chapter 7, if the normal assumption is in question) and cannot

Preview from Notesale.co.uk

Page 256 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

260

When testing a contingency table we assume under the null hypothesis that the

two factors are independent. Therefore under the null hypothesis the expected

probability of an observation falling into category oij (i=roe, j=column) is just

the product of the marginal probabilities for that row and column. For example,

the probability of being categorized into the first row and first column is:

p11=
N

1C

N

1R
*

Note that the values can also be expressed in terms of marginal probabilities (see

Chapter 8 for a discussion of marginal probability) for each row or column.

R1/N for example, is the marginal probability of being in row 1.

The alternative hypothesis in contingency analysis is to disprove the null

hypothesis by showing that there is a relationship between the factors being

analyzed and that they are not independent of each other. To do this we will use

the Chi-Square test and Fisher’s exact test, both of which are available as

predefined R functions available as part of package ctest.

Let’s define a contingency table dataset to use. Suppose we are doing a genetic

study and studying the effect on which of two alleles for a gene a person has and

the presence of a disease. We perform a genetic test to determine which allele

the test subjects have and a disease test to determine whether the person has a

disease. The data for a 2 x 2 contingency analysis should be entered in the

format below, which works for both tests.

> contingencyTestData<-

+ matrix(c(45,67,122,38),

+ nr=2,

+ dimnames=list("Gene"=c("Allele 1","Allele 2"),

+ "Disease"=c("Yes","No")))

> contingencyTestData

 Disease

Gene Yes No

 Allele 1 45 122

 Allele 2 67 38

The tests we want to perform with this contingency table are whether or not the

two factors, disease and gene allele, are independent or whether there is a

significant relationship between the factors. The null hypothesis is that there is

no relation and the factors are independent.

Preview from Notesale.co.uk

Page 260 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

263

15

ANOVA and Regression

A lot of this book has been concerned with probability models, which are used

to model the probability of a range of data. Now we talk about another type of

models, linear modeling. Linear models can be used to predict variables and to

evaluate patterns between variables. The most common types of linear models

are linear regression and ANOVA models, which will be introduced here. Using

R makes working with linear models very easy, as R has extensive built-in

functionality to handle such models. Let’s first look at ANOVA, then linear

regression, and then the end of the chapter discusses general linear models.

ANOVA

The previous chapter discussed techniques for comparing means of two groups

of data using the two-sample t-test (illustrated comparing control and treatment

means for gene expression data). This test, however, is limited because in many

cases we wish to compare more than two group means. ANOVA, or analysis of

variance (somewhat misnamed, but we shall soon see why) is the statistical

method used to determine differences in means when there are more than two

groups under study.

Let’s return to the dataset illustrated in Table 14-3, made into a data frame in R

(available as protStruct). Note that the non-numerical data are factor data types.

Factors are non-numerical variables. Different values of the factor are called

levels. For example, Method has 3 levels: CF AVG, GOR, and PHD,

representing the three different methods used to evaluate protein secondary

structure (see discussion in Chapter 14). ANOVA always uses some type of

factor variable. The function as.factor can be used to convert data to data

type factor.

Preview from Notesale.co.uk

Page 263 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

264

 > protStruct

 Protein Method Correct

1 Ubiquitin CF AVG 0.467

2 Ubiquitin GOR 0.645

3 Ubiquitin PHD 0.868

4 DeoxyHb CF AVG 0.472

5 DeoxyHb GOR 0.844

6 DeoxyHb PHD 0.879

7 Rab5c CF AVG 0.405

8 Rab5c GOR 0.604

9 Rab5c PHD 0.787

10 Prealbumin CF AVG 0.449

11 Prealbumin GOR 0.772

12 Prealbumin PHD 0.780

> # NOTE – Protein and Method are FACTOR data types

> is.factor(Protein)

[1] TRUE

Suppose we want to test whether the percentages correct differ by method

(ignoring the protein factor for now). Essentially what we want to test is

whether the mean percent correct is different based on method. Because we

have three groups, a two-sample t test is inadequate for this analysis.

Let’s extract this data from the data frame (not a necessary step, just to simplify

things here)

> compareMethod

 Method Correct

1 CF AVG 0.467

2 GOR 0.645

3 PHD 0.868

4 CF AVG 0.472

5 GOR 0.844

6 PHD 0.879

7 CF AVG 0.405

8 GOR 0.604

9 PHD 0.787

10 CF AVG 0.449

11 GOR 0.772

12 PHD 0.780

The trick with ANOVA (and why it is called analysis of variance) is to look at

the response of interest (percent correct in this case) and analyze the variability

in that response. The way ANOVA does this is to break up the variability into

two categories – variability within groups, and variability between groups.

If we look at the data and regroup it as depicted in Table 15-1 we notice that we

can computer an average (sum of the data divided by the number of data values)

for each of the groups as well as a “grand” average, which is the average of all

the data.

Preview from Notesale.co.uk

Page 264 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

265

Table 15-1

Method Correct Group Averages

CF AVG 0.467 0.448

CF AVG 0.472

CF AVG 0.405

CF AVG 0.449

GOR 0.645 0.716

GOR 0.844

GOR 0.604

GOR 0.772

PHD 0.868 0.828

PHD 0.879

PHD 0.787
PHD 0.780

Grand Average 0.664

In order to statistically determine if a significant difference exists between the

methods, we need to determine how much variability in the result is due to

random variation and how much variability is due to the different method.

Different factor levels are sometimes referred to as “treatments”. In this case the

treatment is the secondary structure determination method.

ANOVA partitions the observed variability into two components. One

component is random variation, also known as pure error or within factor level

variation. This “within” variation is calculated by observing the variability of

the replicates within each level of the experimental factor. For example, for the

CF AVG method, the within variation is calculated by using the variation of

each individual measure minus the group average. Changing the factor levels

causes the other component of variability. This is called “between” factor

variation. This type of variability is measured using group averages as

compared to the grand average. The total variation is the sum of the within

variation and the between variation, and is measured using each data value as

compared to the grand average.

Note, we have not yet discussed how to calculate within, between and total

variation. Although it seems easiest to subtract average values from data points

to perform these calculations, this alone does not work. The sum of distances of

data from any average of the data is always zero. Therefore, we use the sum of

the squared distances as the metric of variability of data values from average

values.

Figure 15-1 shows the details of these calculations for the protein structure data.

Of key interest are the three columns noted. The sum of squares total is the sum

of the squared distances from each data point to the grand average. The sum of

Preview from Notesale.co.uk

Page 265 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

295

> data(iris)

> # first print the data

> print(iris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

….

….

49 5.3 3.7 1.5 0.2 setosa

50 5.0 3.3 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

52 6.4 3.2 4.5 1.5 versicolor

..

…

100 5.7 2.8 4.1 1.3 versicolor

101 6.3 3.3 6.0 2.5 virginica

102 5.8 2.7 5.1 1.9 virginica

..

…..

149 6.2 3.4 5.4 2.3 virginica

150 5.9 3.0 5.1 1.8 virginica

> # Create subset of Species versicolor

> iris.versicolor <- iris[iris$Species=="versicolor",1:4]

> # Plot 4 histograms

> par(mfrow=c(2,2))

> for (i in 1:4) { hist(iris.versicolor[,i],xlab=NULL,

 + main=names(iris.versicolor)[i]) }

Sepal.Length

F
re

q
u
e
n
c
y

4.5 5.5 6.5

0
1
0

Sepal.Width

F
re

q
u
e
n
c
y

2.0 2.6 3.2

0
5

1
5

Petal.Length

F
re

q
u
e
n
c
y

3.0 4.0 5.0

0
1
0

2
0

Petal.Width

F
re

q
u
e
n
c
y

1.0 1.4 1.8

0
6

1
2

Figure 16.5: Histograms of Iris Versicolor Variables

With the exception of petal width, the variables fairly closely follow a normal

distribution as we can see in Figure 16.5. Let’s next examine pairwise

correlations and scatterplots. R provides a convenient command, “pairs” that

produces all scatterplots of all pairs of variables in a data set arranged as a

Preview from Notesale.co.uk

Page 295 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

296

matrix (see Figure 16.6). We also create labels for plotting that indicate the iris

species. There is of course redundancy in this figure. For example the first row

second column entry is the scatterplot of Sepal Width on the x-axis versus Sepal

Length on the y-axis, while the second row first column entry is the scatterplot

of the same pair with the axes interchanged.

> n <- nrow(iris)

> # Create labels

> ir.labels <- rep("v",n)

> ir.labels[iris$Species=="versicolor"]<- "c"

> ir.labels[iris$Species=="setosa"]<- "s"

> pairs(iris[,1:4],pch=ir.labels)

Sepal.Length

2.0 3.0 4.0

s
s

ss
s

s

s
s

s

s

s

ss

s

s s
s

s

s

s
s

s

s

s
s

s s
ss

ss

s
s
s

ss

s

s

s

ss

s s

s s
s

s

s

s
s

c

c

c

c

c

c

c

c

c

c
c

cc c

c

c

c
c

c

c
c

c
c

c
c
c

c c

c
c

cc
c
c

c

c

c
c

ccc

c
c

c

c cc

c

c

c

v

v

v

v
v

v

v

v

v

v

vv
v

v v

vv

vv

v

v

v

v

v
v

v

v v
v

v
v

v

vv
v

v

vv
v

v
v
v

v

vvv
v

v
v

v

s
s
ss
s
s

s
s

s

s

s

ss

s

ss
s
s

s

s
s

s

s

s
s

ss
ss

ss

s
s
s

ss

s

s

s

ss

ss

ss
s
s

s

s
s

c

c

c

c

c

c

c

c

c

c
c

cc
c

c

c

c
c

c

c
c

c
c

c
c
c

cc

c
c
cc
c

c

c

c

c
c

ccc

c
c

c

ccc

c

c

c

v

v

v

v
v

v

v

v

v

v

vv
v

vv

vv

vv

v

v

v

v

v
v

v

vv
v

v
v

v

vv
v

v

vv
v

v
v

v

v

vvv
v
v
v

v

0.5 1.5 2.5

4
.5

5
.5

6
.5

7
.5

s
s
ss
s

s

s
s

s

s

s

ss

s

s s
s

s

s

s
s

s

s

s
s
s s
ss

ss

s
s
s

ss

s

s

s

ss

ss

ss
s

s

s

s
s

c

c

c

c

c

c

c

c

c

c
c

cc c

c

c

c
c

c

c
c

c
c

c
c
c
c c

c
c
cc
c

c

c

c

c
c

ccc

c
c

c

ccc

c

c

c

v

v

v

v
v

v

v

v

v

v

vv
v

v v

vv

vv

v

v

v

v

v
v

v

vv
v

v
v

v

vv
v

v

vv
v

v
v

v

v

v vv
v
v

v
v

2
.0

3
.0

4
.0

s

s
ss

s

s

s s

s
s

s

s

ss

s

s

s

s

ss

s

ss

ss

s

sss
ss

s

s s

ss

ss

s

ss

s

s

s

s

s

s

s

s

s cc c

c

cc

c

c

c
c

c

c

c

cc
cc

c

c

c

c

c

c

c cc
c
cc

c
cc

cc
c

c

c

c

c

cc

c

c

c

c
cc c

c

c

v

v
vvv v

v

v

v

v

v

v
v

v

v

v
v

v

v

v

v

v vv

v v

v
v

v
v
v

v

vv
v

v

v

vv vvv

v

vv

v

v

v

v

v
Sepal.Width

s

s
ss

s

s

ss

s
s

s

s

ss

s

s

s

s

ss

s

ss

ss

s

sss
ss

s

ss

ss

ss

s

ss

s

s

s

s

s

s

s

s

s ccc

c

cc

c

c

c
c

c

c

c

cc
cc

c

c

c

c

c

c

cccc
cc

c
cc

c c
c

c

c

c

c

cc

c

c

c

c
ccc

c

c

v

v
vvv v

v

v

v

v

v

v
v

v

v

v
v

v

v

v

v

v vv

vv

v
v

v
v
v

v

vv
v

v

v

vv vvv

v

vv

v

v

v

v

v

s

s
ss

s

s

ss

s
s

s

s

ss

s

s

s

s

ss

s

ss

ss

s

sss
ss

s

ss

ss

ss

s

ss

s

s

s

s

s

s

s

s

s ccc

c

cc

c

c

c
c

c

c

c

cc
cc

c

c

c

c

c

c

cc
c
c

cc
c
cc

c c
c

c

c

c

c

cc

c

c

c

c
ccc

c

c

v

v
vv vv

v

v

v

v

v

v
v

v

v

v
v

v

v

v

v

vvv

vv

v
v

v
v

v

v

vv
v

v

v

vv v vv

v

v v

v

v

v

v

v

ssss s
s

s ss s sss
s s

sss
ss ss

s
ss
ssssss ss ss
s sss ssss
s
s

s ss ss

cc
c

c
cc c

c

c
c

c
cc
c

c

cc
c

c
c

c

c

cc
cc

ccc

ccc c

c
c c c

c
cc
c c

c

c

ccc c

c

c

v

v

v
vv

v

v

v
v

v

vv
v

vv
vv

vv

v

v

v

v

v

v v

vv
v v

v
v

v
v

v
v

vv
v

vv
vv

vv
vvvv

v

ss ss s
s

sss s sss
s s

sss
sss s

s
sss sssss s sss

s sss sss s
s

s
s ss ss

cc
c

c
cc c

c

c
c

c
cc

c

c

cc
c

c
c

c

c

c c
cc

c c
c

ccc c

c
c cc

c
cc

c c
c

c

c ccc

c

c

v

v

v
vv

v

v

v
v

v

vv v
v v vv

vv

v

v

v

v

v

vv

v v
v v
v

v

v
v

v
v

vv
v
vv
vv

vv
vv v v
v

Petal.Length
1

2
3

4
5

6
7

sssss
s

sssssss
ss

sss
sss s

s
ss

s sssss ssssssss
ssss

s
s

sssss

cc
c

c
cc c

c

c
c

c
cc

c

c

cc
c

c
c

c

c

cc
cc
c c
c

ccc
c

c
cccc

cc
c c
c

c

cccc

c

c

v

v

v
v v

v

v

v
v

v

vv
v

v vv
v

vv

v

v

v

v

v

vv

vv
vv

v
v

v
v

v
v
vv

v
v v

vv

v v
vvv
v

v

4.5 5.5 6.5 7.5

0
.5

1
.5

2
.5

ssss s
ss ss s ssss s

sss ss s
s

s

s

ss
s
ssss
s

s sss sss ssss

s
ss ss ss

cc c
c

c
c

c

c
cc

c

c

c

cc cc

c

c

c

c

c
c

c ccc

c
c

ccc
c

cc c c
cccc

c
c

c
ccc c

c
c

v

v
v

v

v v

v vv

v

vv
vv

v v

v

vv

v

v
v v

v

v

vvv

v

v

v v
v

vv

vv

vv

v
vv

v

v
v
v

vv
v

v

ss ss s
ssss s ssss s

sss sss
s

s

s

ss
s
ssss

s

ssss sss sss s

s
ss ss ss

cccc
c
c

c

c
cc

c

c

c

cc cc

c

c

c

c

c
c

cc
cc

c
c

ccc
c

c c cc
c ccc

c
c

c
c cccc
c

v

v
v

v

vv

v vv

v

vv
vv

v v

v

vv

v

v
vv

v

v

vv v

v

v

v v
v

vv

v v

vv

v
vv

v

v
v

v

v v
v

v

1 2 3 4 5 6 7

sssss
ssssssssss

ssssss
s

s

s

ss
s
ssss
s

ssssssss
sss

s
ssssss

ccc
c

c
c

c

c
cc

c

c

c

cc cc

c

c

c

c

c
c

cccc

c
c

ccc
c

cccc
cccc
c

c
c

ccccc
c

v

v
v

v

v v

v vv

v

vv
vv

vv

v

vv

v

v
v v
v

v

vvv

v

v

vv
v

v v

vv

vv

v
vv

v

v
v

v

vv
v

v

Petal.Width

Figure 16.6: Scatterplot Matrix of Iris Versicolor Data

> # Pairwise Correlations

> cor(iris.versicolor)

 Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 0.5259107 0.7540490 0.5464611

Sepal.Width 0.5259107 1.0000000 0.5605221 0.6639987

Petal.Length 0.7540490 0.5605221 1.0000000 0.7866681

Preview from Notesale.co.uk

Page 296 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

303

0.7 0.8 0.9 1.0 1.1 1.2

7
0

8
0

9
0

1
0
0

1
1

0

gluc.intol

i.
re

s
p
o

n
s

3

3

3

33

3

3

3

33

3

3

3

3

3

3

3

3

3

3 3
3

3

3
3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3 3

3

3
3

3
3

33

3

3

3

3

2
3

3

2

2

3

2
2

33

3
3

2

3

3

3

3

3

2
33

3

3

3

2

3

2

2

2

2

2

2

2

2
2

2

2

2

2

2 2

2
2

2

2

2

2 22 2

2

2

2

2

0.7 0.8 0.9 1.0 1.1 1.2

7
0

8
0

9
0

1
0
0

1
1

0

gluc.intol

i.
re

s
p
o

n
s

3

3

3

33

3

3

3

33

3

3

3

3

3

3

3

3

3

3 3
3

3

3
3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3 3

3

3
3

3
3

33

3

3

3

3

2
3

3

2

2

3

2
2

33

3
3

2

3

3

3

3

3

2
33

3

3

3

2

3

2

2

2

2

2

2

2

2
2

2

2

2

2

2 2

2
2

2

2

2

2 22 2

2

2

2

2

Figure 16.11: Glucose Intolerance and Insulin Response of

Healthy (3) and Subclinically Diabetic (2) Individuals

Geometrically speaking a classification rule for this example is a partition of the

2-dimensional sample space where each side of the partition is assigned to one

of the two groups. In the ideal case the observations are totally separated in

sample space, in which case we can easily draw a line, or a curve of separation

that classifies the data perfectly. In the majority of real-word scenarios there

will be overlap of the groups, as illustrated by this example. Because of the

overlap there is some risk of misclassifying a future sample into group “2” when

it should be classified into group “3” and vice versa. The probabilities of correct

classification and misclassification of an object X into groups A and B can be

written as

P(X is correctly classified and X in A) = P(X in A|A)pA

P(X is misclassified as A and X in B) = P(X in A|B)pB

P(X is correctly classified and X in B) = P(X in B|B)pB

P(X is misclassified as B and X in A) = P(X in B|A)pA

In the above, pA and pB represent the prior probability of group A and group B

respectively. Thus, the classification/misclassification probability is the

conditional probability of the classification multiplied by the prior probability.

Now we are ready to derive an optimal classification rule by minimizing the

expected cost of misclassification (ECM).

Preview from Notesale.co.uk

Page 303 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

307

The optimal classification results in two canonical variates (LD1 and LD2)

given by the coefficients above. About 88% of the separation results from the

first LD transform. Let’s examine class membership and misclassification error.

> # Store the list of output

> gluc.pred <- predict(gluc.lda)

> # class membership prediction

> gluc.pred$class

 [1] 3 2 3 3 3

 [30] 3

 [59] 3 3 3 2 2 3 2 2 3 3 2 3 2 3 3 3 3 3 2 3 3 3 3 2 2 3 2 2 2

 [88] 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 3 1 1 1 1

[117] 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 3 2 2 2 1 1 1 1 1 1 1 1

Levels: 1 2 3

> tab <- table(glucose$diagn,gluc.pred$class)

> tab/rowSums(tab)

 1 2 3

 1 0.8182 0.15152 0.03030

 2 0.0000 0.86111 0.13889

 3 0.0000 0.03947 0.96053

This classification has much lower misclassification error than the previous one

where we only used two response variables. In particular three out of 76 healthy

individuals are misclassified as chemically diabetic, with a misclassification

probability of 3/76 = 0.039. We see in Figure 16.12 plot (b) that the separation

into the three groups shows clearly when the data are represented in the two

canonical variates, whereas the groups appear interspersed, particularly groups 2

and 3, when represented in the first two variables glucose intolerance, and

insulin response, as shown in plot (a).

0.7 0.8 0.9 1.0 1.1 1.2

1
0

0
1

5
0

2
0
0

2
5

0
3
0

0
3
5

0

(a)

gluc.intol

i.
re

s
p

o
n
s

3
33 333

3
3

33 33
3

33 3
3

3
3 3 33 3 33

3

33
3

3

3

3

3
3 3

3 3

3

3
333 3

3
3 3 3

3
333 333

3
333

2 3
3

2
2

3
22 33

33 2
3

33
33

233 3
3 3

23
2

2 22
2 2222 2 2

2
22 2

22

2
2

2
2 22 2

2

2

2
2

11

1

1

1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1

1 1
1

1

1

1

1

1

1

1

1

1

-6 -4 -2 0 2

-4
-2

0
2

(b)

LD1

L
D

2

3

33

33

3
3

3

3

3

3

3

33

3

3
3

3

3

3
3

3

333

3

3
33

3

3

333
3

3

3
3

3 3
3

3

33

3

3
3
3
3

3

3

3

33 3

3

33

2
3
3

2 2

3

2

23

3

3

3

2

33 3

3 3
2

33 3

3

3

2

3

2

2

2

2

2

22

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2

2
22

2
2

2

1 1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

Preview from Notesale.co.uk

Page 307 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

308

Figure 16.12: Comparison of Group Separation in (a) the

first two variables and (b) the first two canonical variates

Cross-Validation

A note of caution is in order. Any of the linear methods for multivariate

statistics are optimal when the data more or less follow a multivariate normal

distribution. More importantly, since the calculations depend on the sample

variance-covariance matrix, they can be highly sensitive to outliers. This outlier

sensitivity can have a major impact on the misclassification error: Outliers can

have a pull-effect on the separation curve that tends to reduce their probability

of being misclassified. It is a well-known fact that, if the data from which the

classification rule is derived (the “training” set) is also used to evaluate the rule,

then the misclassification error are too low, or biased towards zero.

In order to adequately evaluate the classification procedure we need to have a

separate data set, the so-called test set, for which we evaluate how well the

classification rule works. This is called cross-validation. The test set can be a

separated part of the dataset originally used which was not incorporated when

making the model or a different dataset. R provides methods for cross

validation which the interested reader should explore.

Classification Trees

Classification trees, or recursive binary partition schemes originated as tools for

decision making in the social sciences and were introduced to main-stream

statistics by Breiman et al. (1984). Classification trees essentially provide a

sequence of rectangular blocks of the data space, where one of the groups is

assigned to each block. The method is recursive, which means that the

partitioning at a given step depends on the partitioning of previous steps, hence

the method lends itself to a tree-like representation. Classification trees are

similar to the widely used “keys” in botany for plant identification.

Constructing a Tree

The R library “tree” provides convenient commands that produce and validate

classification trees. Let’s use this methodology on the cancer microarray gene

expression data, available at http://www-stat.stanford.edu/ElemStatLearn ,the

website for the textbook by Hastie et al. (2001). This data has been fully

preprocessed. A total of 64 tissue samples of a total of 14 different cancers have

been obtained and their genetic responses were analyzed with DNA microarray

technology.

Preview from Notesale.co.uk

Page 308 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

310

|X5680 < -0.070039

X4831 < -0.055

X2838 < 0.105039

X3234 < -0.08

X2838 < 0.13002 X5680 < 0.12498

X5680 < 0.514981

COLON

BREASTOVARIAN

NSCLC BREASTMELANOMA

RENAL RENAL

Figure 16.13 Classification Tree for Gene Expression Data

Hastie et al. (2001) delves much further into creating clasification trees. We can

assess the predictive power of a tree using cross-validation as described

previously. The relevant command here is cv.tree. Interested users should

familiarize themselves with this functionality.

Classification trees have their natural counterpart in regression analysis where

the variable to be predicted is continuous. Here the method is called regression

trees. The commercially available computer software CART (Classification and

Regression trees) is a full-fledged stand-alone package for tree-based analyses.

The R package rpart provides functionality for both, classification and

regression trees.

Clustering Methods

Clustering of data is usually a first step in organizing a multivariate dataset.

Clustering is common in everyday life. Let’s say you purchased a new bookshelf

that holds 100 of your books. How do you arrange your books on the new

shelf? You obviously want to place the books that are similar next to each other,

and those that are dissimilar far from each other. In such a way you create

groups, or clusters of books, where books within a cluster are similar. Now,

how do you define similar? You may form groups based on qualifiers (nominal

variables) like fiction, essays, or others, or educational books versus leisure

reading. Or you may use quantitative characteristics such as book size,

thickness, etc. In the end you are likely to have used several characteristics for

determining the clusters, and you will have switched several books back and

forth between different clusters (i.e. places on the shelf). The final outcome will

depend on what “measures of similarity” or “dissimilarity” you have used.

Preview from Notesale.co.uk

Page 310 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

312

G2 0.2 0.8

G3 0.3 0.4

G4 0.9 0.2

G5 -0.5 0.5

G6 0.3 -0.5

The data are plotted in Figure 16.14.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

control

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

tr
e
a
te

m
e
n
t 1

2
3

4

5

6

Figure 16.14 Toy Example of Gene Expression

The R package mva provides basic functionality for obtaining dissimilarity

measures and for traditional clustering methods. For continuous data

dissimilarity is measured using traditional distance metrics, the most obvious

one being the Euclidean (geometric) distance. For genes x and y this is:

Euclidean Distance:

() () () ()
22 2 2

1 1 2 2

1

, ... ()
p

p p i i

i

d x y x y x y x y
=

= − + − + + − = −∑x y

In our case, we only have two variables, so p=2, and for genes 4 and 6 the

distance is

() ()
2 2

(4, 6) 0.9 0.3 0.2 (0.5) 0.36 0.49 0.922d G G = − + − − = + =

The R command dist creates a lower triangular matrix of pairwise distances..

Preview from Notesale.co.uk

Page 312 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

314

• First, decide on the number k of clusters to be calculated, and then separate

the data arbitrarily into k initial clusters. Calculated the centroid (=mean

value or center) coordinates for every cluster selected

• Second, check through the data, assigning each data item to the cluster

whose centroid is nearest (based on a distance metric). If a data item needs

reassignment, create new clusters and recalculate the centroid coordinates

for the clusters losing and gaining items.

• Third, repeat the second step until no more reassignment takes place.

There exist slight variations to this algorithm. In some versions the new

centroid coordinates are calculated only after all data points have been checked

and possibly reassigned. The R command kmeans is part of the package mva.

> clus <- kmeans(genes, 2, 20)

> # Note: the second number (20) denotes the number of iterations

> clus

$cluster

[1] 2 1 2 2 1 2

$centers

 [,1] [,2]

1 0.65 -0.15

2 0.15 0.50

$withinss

[1] 0.29 0.85

$size

[1] 2 4

> plot(genes, pch = clus$cluster,xlab='control',ylab='treatment')

> # Plot Cluster Centers

> points(clus$centers,pch=8)

 Cluster 2

 Cluster 1

Preview from Notesale.co.uk

Page 314 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

317

1

2

1

2

1

2

1

2

1

2

1

2

Linkage Cluster Distance

Average

Single d23

Complete d14

13 14 15 23 24 25

6

d d d d d d+ + + + +

3

5

4

3

5

4

3

5

4

3

5

4

3

5

4

3

5

4

Figure 16.16: Linkage Methods for Hierarchical Clustering

We examine the different linkage methods for the sleep data. We use the R

command agnes (“agglomerative nesting”) of the cluster library. We note

that agnes is virtually identical to the command hclust of the mva package but

is more convenient to use when standardization of the data is necessary. The

choice of measurement units strongly affects the resulting clustering. The

variable with the largest variance will have the largest impact on the clustering.

If all variables are considered equally important, the data need to be

standardized first. The plot command provides two graphs, (1) banner plot, (2)

dendrogram. We find the dendrogram more useful. It is obtained using the

which=2 option. Without the which option R plots both graphs in sequence with

a interactive stop in between. We display dendrograms of the clustering that

results from the three linkage methods average, complete, and single. Ordinarily

the rownames of the data are used as labels in the dendrogram. In order to avoid

cluttering we create simple numberings for labels.

> # Agglomerative Hierarchical Clustering using number labels

> n <- nrow(sleep1)

> row.names(sleep1) <- 1:n

> cl1 <- agnes(sleep1[,-1],method='aver',metric='eucl',stand=T)

> cl2 <- agnes(sleep1[,-1],method='comp',metric='eucl',stand=T)

> cl3 <- agnes(sleep1[,-1],method='sing',metric='eucl',stand=T)

> plot(cl1,which=2,main="Average Linkage")

> plot(cl2,which=2,main="Complete Linkage")

> plot(cl3,which=2,main="Single Linkage")

Preview from Notesale.co.uk

Page 317 of 325

Copyright May 2007, K Seefeld

Permission granted to reproduce for nonprofit, educational use.

325

Preview from Notesale.co.uk

Page 325 of 325

