• $\{1,2\} \notin \mathbb{Z}^+$. This actually makes sense. The set $\{1,2\}$ is an object in its own right, so could be an element of some set; however, $\{1,2\}$ is not a number, therefore is not an element of **Z**.

 $\cdot \varnothing \subseteq \varnothing$. Any set contains itself.

• $\emptyset \subset \emptyset$. No set can contain itself properly.

Cardinality

The *cardinality* of a set is the number of distinct elements in the set. |S|denotes the cardinality of S.

Q: Compute each cardinality.

- |{1, -13, 4, -13, 1}|
- \blacksquare |{3, {1,2,3,4}, \varnothing }|
- |{ }|

Hint: After eliminating the redundancies just look at the number of top level commas and add 1 (except for the empty of the empty of

•|{1, -13, 4, -<u>1</u>3, <u>1</u>] = **f i** •|{3, {1,2,3,4,6}} $= \{1,2,3,4\}$. Compute the calculate of $\{3, S, \emptyset\}$ $|| \{ \} | = |\emptyset| = 0$ $|\{\{\},\{\{\}\},\{\{\}\}\}\}| = |\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}| = 3$

DEF: The set S is said to be *finite* if its cardinality is a nonnegative integer. Otherwise, S is said to be *infinite*. EG: N, Z, Z^+ , R, Q are each infinite.

Note: We'll see later that not all infinities are the same. In fact, **R** will end up having a bigger infinity-type than N, but surprisingly, N has same infinity-type as \mathbf{Z}, \mathbf{Z}^+ , and \mathbf{Q} .

Power Set

DEF: The *power set* of *S* is the set of all subsets of *S*. Denote the power set by P(S) or by 2^s . The latter weird notation comes from the following.