<u>Microbes Facilitate Transmission</u> – microns cause symptoms that aid transmission. Common cold – sneeze – inhaled virus droplets, TB – cough – inhaled bacteria droplets, Salmonellosis – diarrhoea and vomiting into environment, syphilis – infected sore - contact

Indirect or direct transmission, common source or host to host, vertical or horizontal <u>Direct or indirect transmission – Direct</u> – host to host, good for microbe, remains inside environment for long time, minimal outside time – require high population density, low risk

<u>Indirect</u> – leave human host \rightarrow arthropods (mosquito), verts (cow TB), fromites (door cold), food and water – risky may not be vector there, permits wider spread – more potential hosts

<u>Cases per day</u> – common source – spikes, host to host – fluctuates but fairly level.

<u>Vertical transmission</u> – vertical – parent to child – 1 gen to next (sperm/ova/pollen)

Horizontal – within a pop – 1 person to next (air/water)

<u>Control</u> = prevention/cure – clean water, sewage disposal, vaccinations, antibiotics + health care measures, good nutrition + housing, education.

<u>Incidence</u> – disease incidence increases with social infrastructure collapse, incidence higher in poorer pops

1/3 of global deaths due to infection \rightarrow most preventable but cost, delivery, compliance

Preventing Transmission

- Control of infected human isolate (compliance may not like being shut up alone), cost (very expensive – air locks, equiptment disposal), ethics (is it right to shut someone up)
- Control/change human behaviour sexual practices give them condoms may not use, personal hygiene – cook food, washing hands after/before looking after kids/elderly, food handling – visit factory and change practices
- 3. Control of transmission water clean it, food lots of control of food and the sale, from tes clean regularly door handles/rails, air –filtered in tag; food factory difficult to control
- 4. Control alternative host cull badgers/cattle (ii) CB, vaccinate chickens for salmonella, easy to control domestic popratic s, to wild animals
- easy to control domestic poor at C s, to wild animals
 5. Control vector insecticitie difficult to killall resistance, avoid bites mozzy nets/cream to provector habitat d ain swimps to prevent mozzy egss.

<u>Prevent on</u> vaccination - effective for individual and pop if Herd immunity achieved – enough vaccinated so disease has nowhere to go. Cannot vaccinate all – cost, cannot get to everyone (war), refuse vaccine (poor voluntary uptake), side effects – benefits outweigh risks, vaccinate at risk groups – children (MMR, DTP), travellers (yellow fever, cholera, Typhoid), exposed (menigitus), Medics (BCG, HepB), elderly (influenza)

Prophylaxis – treatment to prevent disease before it is caught – anti malarial chemo if visiting malaria zone

Strategies may fail/be absent \rightarrow infection results \rightarrow treat/cure/prevent further infection <u>Antimicrobial chemo – antiobiotics – bacteria</u> – penicillin 1929, sulpha drugs 1935, streptomycin 1940's, tetracyclines 1950's

<u>Bacteriostatic</u> – inhibit – cell wall synth (peni) Protein synth (strepto) Nucleic Acid synth (sulphonamides) cell membrane function (polymixins)

<u>Antifungal agents</u> – ergosterol – targetable similar to cholesterol use amphiotericin B, fungal enzymes – use micronazae

Humans + fungus both eukaryotic – harder to kill than bacteria as bacteria are in diff kingdom, fungal treatments are toxic – tend to be topical only.

<u>Antivirus</u> – antiviral agents – viruses are intercellular and replication occurs before symptoms appear – harder to kill. Treatment – amantidine – inhibits virus penetrating cell, zidouudine – acts as nucleoside analouges – pretends to be DNA, virus uses, virus does not work (not replicated properly)

<u>Amoeboid</u> – Rhizopoda – pseudopoid movement, mostly aquatic – entamoeba histolytica \rightarrow amoebic dystentry – common in warm climates, associated with poor hygiene/sanitation, cysts excreted in faeces, can become systemic – Liver \rightarrow brain +lungs

<u>Ciliated</u> – Ciliophora – use cilia for locomotion, common in freshwater, not normally pathogenic to humans, break down plant material in cows rumen.

<u>Parasitic</u> – sporozoa – Malaria – 10^8 infected, 10^7 new infections 10^6 deaths per year AFRICA, plasmodium species (1880 discovery) transmitted by anopheles mosquito.

<u>Fungi</u> – range – microscopic single cells → large mushrooms, eukaryotic, no chlorophyll, usually immotile, definite cell walls, ergosterol instead of cholesterol in cell membrane <u>Moulds</u> – Mycellium, hypae, spores (babies) <u>Yeasts</u> – unicellular – replication by budding <u>Classification method of sexual reproduction</u> – zygomycota – rhizopus – bread mould, Ascomycota – saccharomyces cerevisiae – beer/bread/wine, Basidiomycota – agaricus campestris – field mushroom, Deuteromycota – Penicillium

Fungal diseases – mycoses

<u>Cutaneous</u> – persistant infection as spore is under skin – tinea pedis – athletes foot/ringworm <u>Systemic</u> – Cryptococcus neoformans (pigeons fanciers disease) mould on pigeon feet/feathers/nest →into elderly respiration→systemic infection

<u>Oppurtunistic</u> - aspergillus – lung infection \rightarrow systemic. Candida albicans (thrush) reduced immunity/microbial flora

<u>Mycotoxicoses</u> – primary via infected plant material, 2nday via infected food chain, fungal toxin produced – fungi grows on food, produces toxins – hepatoxic – bad for liver

Host parasite relationship – microbes need host, humans have evolved protective mechanisms, microbes evolved avoiding mechanisms.

Host parasite relationship – balanced, constantly changing a big Gal level, constantly evolving at pop level, highly dynamic – stress/weather

Endocrine System – controls body functions by releasing for hones into the blood, chemical produced in 1 location, e felts felt at distance controls homeostasis, intergrates and regulates growth and du colournent, controls in any any and instigates sexual reproduction.

Autocrite – works on cell that produced it, Paracrine – works on nearby cell to producer. <u>Hormone functions</u> – homeostasis (controlled by thyroid, cortisol), changes in environment (cortisol, thyroid aldosterone), growth + development (thyroid, GH, sex steroids, cortisol), Reproduction (estrogen, testosterone, FSH, LH, thyroid)

<u>Hormone Classification</u> – can be – protein based (thyroid stimulating, insulin parathyroid), amino acid based (Thyroid, epinephrine), steroids (cortisol, aldosterone, testosterone – must eat cholesterol to make steroids)

<u>Mechanism of Hormone action</u> – circulate in blood stream - bound to transport protein or free, enter cells to alter biological activity

<u>Hormone Regulation</u> – receptor specifity – lock + key mechanism, perfect match \rightarrow response, only particular receptors respond to hormones e.g. no hair in eyes, receptor concentration – more receptors on cell – more hormone sensed, feedback loops – response to high/low hormone levels, circadian rhythms – hormones only produced at certain times e.g. menstrural cycle

<u>Feedback Mechanism</u> – autocrine – hormone produced by cell, too much produced, cell told to stop production. Target cells – target cell sends biological response, this tells producer cell that no more hormone needed.

Brain + Pituitary Regulation – Hypotholamus sends biological response, this tells producer cell that no more hormone needed

<u>Nervous system</u> – chemical signal at target cell, "wired", rapid, brief duration, anatomical proximity

Full pancreas transplant – limited by immunosuppressive medication, 50% rejected, indicated for Type 1 DM requiring kidney transplant

NIDDM – progressive relentless deterioration of pancreatic beta cell function, insulin resistance + declining insulin secretion, increases requirements for powerful medication to combat hyperglycemia, most patients require insulin eventually

Monitoring glucose – blood glucose levels easily measured,

diabetes – controllable by adjusting therapy according to changes in glucose levels

Problems – excersise alters glucose levels (they vary), food intake varies, illness + stress use glucose, alcohol causes hypoglycaemia

HbA1c – produced from non covalent haemoglobin modification, half life of 60 days in body,

measure - indicator of long term glucose levels (controlled by treatment)

Problems – daily variation not show, hyper and hypoglycaemia missed

Exenatide – GLP-1 analogue (FDA approved 2005), promotes glucose –dependant insulin secretion, indications – therapy of type 2 when 1st line oral therapy fails, 2ndary benefit – weight loss Amylin – stored in beta cells, co secreted with insulin, decreases gastric emptying, suppresses

glucagon secretion/glucose production, promotes saiety, decreases appetite, decreased levels in all diabetics – some type 1 – no response to meals due to low Amylin

Too much Amylin \rightarrow cell death

Insulin – increases glucose uptake in cells, convert glucose to glycogen (glycogenesis), promotes lipogenesis, blood glucose level drops, increase AA uptake + protein synth, slows gluconeogenesis and glycogenolysis, hypoglycaemia inhibits insulin release

Glucagon – acts on hepatocytes, converts glycogen to glucose (glycogenesis), forms glucose from lactic acids + AA's (gluconeogenesis), glucose released from liver to make blood glucose incluase to normal, hyperglycaemia inhibits glucagon release.

Spring Term tesale.co. <u>Cell Cycle</u> – cell birth (mitosis) \rightarrow maturation/differenties) \rightarrow functions \rightarrow death (by apoptosis) \rightarrow

replacement \rightarrow cell birth $M \rightarrow G_1 \rightarrow G_2 \rightarrow M$ <u>Apoptosis</u> – programmed cell pleath – contents destroyed 10 pillage \odot , controlled by cell signals – decision from cell itself Con Dunding cell/cell from har of immune system, occurs when cell – damag to bry Col Npair/infected with rill condergoing stress e.g.starvation/DNA damage from ionising radiation or toxic chemicals., prevents cell sapping nutrients from organism/spread of viral infection

Necrosis -breaking down of cell, organelles spilled 😕

Tumour – uncontrolled growth of abnormal cells \rightarrow abnormal cell keeps dividing \rightarrow abnormal cells eventually to join to form tumour \rightarrow as tumour becomes larger, impedes function of nearby organs \rightarrow unless growth stopped + tumour removed \rightarrow healthy organs destroyed

Causes of uncontrolled growth – stimulation genes becomes hyperactive (dominant) altered gene = oncogene

Inhibitory genes become inactive (recessive) – lost gene = tumor suppressor gene

<u>Tumour development</u> – Hyperplasia – proliferation of cells within organ/tissue – may cause benign tumour

Dysplasia – abnormality in maturation of cells within a tissue – indicative of early neoplastic process pre cancerous

Neoplasia – genetically abnormal cells proliferate in a non physiological manner, may result in formation of malignant tumour

Tumour – abnormal mass of tissue/cells (parenchyma) with supporting conncective tissue framework and blood vessels (stroma)

Cancer – abnormal growth of cells, tend to proliferate uncontrollably sometimes metastasise