<u>Derived lipids</u> – formed from other lipids, in hydrocarbon rings, not chains e.g. cholesterol, Vit D + E, androgens

<u>Phospholipds function</u> – phosphorous containing part attracts water (hydrophilic), fatty acid repels water (hydrophobic), dual nature leads to formation of sandwich bilayer – tails in, polar heads out, make up cell membranes – phospholipid bilayers – selective permeability, cell membrane fluidity – effected by fatty acids it consists of

<u>Fatty Acid Synth</u> – occurs in cytosol in massive enzyme complex – multiple reactions occur here – uses 2C intermediate Acetyl CoA – Acetyl CoA transported from mitochondria to cytosol in citrate form. Acetyl CoA + oxaloacetate \rightarrow condensation to citrate

Intermediates covalently linked to acyl carrier protein

4 step repeating cycle – condensation, reduction, dehydration, reduction

7 enzyme complex – Acyl carrier protein (ACP)

1st step – Acetyl CoA \rightarrow carboxylated + CO2 (catalysed by Acetyl CoA carboxylase) \rightarrow malonyl CoA Malonyl CoA (attached to ACP) condenses with Acetyl CoA

Acetyl CoA formed still attached to ACP, Acetyl CoA reduced by NADPH to form Beta - 3-

hydroxybutyrl – ACP, reduced again to form Butyrl – ACP – 4C fatty acid, undergo 6 more elongation cycles with 2C at a time till 16C long fatty acid \rightarrow Palmitoyl-CoA, can be further elongated/reduced to introduce C=C

<u>Fatty Acid Synthase</u> – FAS – polypeptide chain with multiple domains – need distinct enzyme activities for fatty acid biosynthesis

ACP – CoA is used as activator for beta oxidation, fatty acid synth activator is used as acyl carrier protein (ACP) – part of FAS complex

Condensing Enzyme – also part of FAS – CE has cysteine SH that participats in thioester link ve with carboxylate group of the fatty acid

During fatty acid synth growing fatty acid chain alternates between

Fatty acid synthase – peptide with multiple enzyme domain 5

<u>Triglyceride synth</u> – glycerol backbone, glycerol a via eo by addition of phosphate or formed from reduction of dihydroxacetone, Fatty accil 4 CoA attached to glycerol a kbone via Fatty Acyl Transferase

<u>Fat + energy</u> - primary Extracid sources – die mo ill sation from cellular stores in adipocytes + muscle cellular

Triglyce ides – major energy storage in cells Enzymes cleave fatty acids of glycerol backbone – lipolysis – fatty acids can then be oxidised

<u>Adipose tissue</u> – fatty acids are released from triglycerides – these are stored in adipose tissue (fat) by HSL action (hormone sensitive lipase) HSL activated by adrenaline, nonadrenaline, cortisol, glucagon, inactivated by insulin.

Excersise - increases lipolysis by increasing adrenaline, non adrenaline, cortisol

Muscle – lipoprotein carrys triglycerides to muscle cells, lipoprotein lipase (on endothelium) hydrolyses fatty acid of triglycerides, fatty acids diffuse into cell

<u>Oxidation Reactions</u> – fatty acids must be activated in cytoplasm before being oxidised in mitochondria, activation catalysed by fatty acyl – CoA ligase

Carntine shuttle – transports fatty acyl – CoA into mitochondria, Fatty Acid + ATP + CoA \rightarrow Acyl CoA + PPi + AMP

Fatty CoA substrate - for Beta oxidation machinery in mitochondria,

<u>Alternative oxidation pathways</u> – natural lipids - even no of C, some have odd Beta oxidation yielding acetyl CoA + propionyl CoA.

Converted to succinyl CoA (uses ATP), succinyl – CoA can enter Krebs for furher oxidation <u>Lipid Oxidation</u> – oxidation of fatty acids yields more energy per C than carbohydrate oxidation – 1 mole of deic acid \rightarrow 146 moles of ATP centre farthest from the oxidised end of the sugar, D –hydroxyl group right, L -hydroxyl group left, our carbs are all D

Chirality rules – monosaccharides contain 1 or more asymmetric C-atoms, get D and L forms where D+L designate absolute configuration

D form – OH group is attached to right of asymmetric carbon

L form – OH group is attached to left of asymmetric carbon

If more than one chiral C –absolute config of chiral (furthest from carbonyl group determines whether D or L

D sugars – D-ribose, D-glucose, D-fructose, D-glyceraldehyde

<u>Ring formation</u> – sugars exist in solution as mix of open chain + closed chain/cyclic structures Open ring form – C atom that contains C=O bond = carbonyl C

Closed ring – anomeric C is the C attached to the O of the ring and an OH group

Simple sugars – one of the hydroxyl groups generally reacts with carbonyl group \rightarrow intramolecular hemiacetal or hemitetal bond

<u>Alpha + Beta glucose</u> – when alpha glucose molecules are joined chemically to form a polymer – starch formed. When beta glucose molecules are joined – cellulose formed

Dissacharide Formation – Alpha D glucose + B D glucose \rightarrow Maltose (alpha 1-4 linkage) + water Condensation reaction, joined by glycosidic bond

<u>Reducing and Non reducing sugars</u> - reducing – sugars that are oxidised by mild oxidising agents as they reduce the oxidising agent

Non reducing sugars – sugar not oxidised by mild oxidisers

..., reagent ... reagent preview from Notesale.Co.uk from 16 of 16 All common monosaccharide's are reducing sugars, disaccharide sucrose – non reducing, oxidising agents used to test for sugar – Benedict's solution, Fehling's solution, Tollens reagent