Photosynthesis

Friday, 15 August 2014 7:57 PM

- a. With reference to the chloroplast structure, explain the light dependent reactions of photosynthesis (no biochemical details are needed but will include the outline of cyclic and non-cyclic light dependent reactions, and the transfer of energy for the subsequent manufacturing of carbohydrates from carbon dioxide)
 - Light energy, in the form of protons, hit and activates the photosynthetic pigments in the photosystems of the thylakoid membrane, it results in the photoactivation of the pigments, releasing a pair of excited electrons.
 a. Chlorophyll a and b
 - i. Absorb mainly red and blue-violet light
 - ii. Chlorophyll a is most abundant → Primary pigment → Directly converts solar energy to chemical energy (excited electrons)
 - iii. Chlorophyll b functions as an accessory pigment → Absorbs light energy as passes it to chlorophyll a
 b. Carotenoid
 - i. Absorb blue-violet
 - ii. Functions mainly as an accessory pigment \rightarrow Absorbs wavelengths of light that chlorophylls cannot
 - 2. The excited electrons are passed to the reaction centre of the *photosystem*, which passes them to the *electron transport chain*. The lost electron pair is replaced via the photolysis of water, which also produces hydrogen ions and oxygen.
 - a. Photosystem I: Reaction centre contains a pair of P700 chlorophyll a molecules \rightarrow Absorb λ 700nm light
 - b. Photosystem II: Reaction centre contains pair of P680 chlorophyll a molecules \rightarrow Absorb $\lambda 680 nm$ light
 - 3. The electrons are then passed from one electron carrier to the next of a lower energy level via chemiosmosis, till the final electron acceptor, NADP, which is reduced to NADPH/H+. The energy produced is used to pump hydrogen ions across the thylakoid membrane from the stroma to the thylakoid space, producing a proton motive force.
 - a. Cyclic Photophosphorylation
 - i. Photosystem II \rightarrow Primary electron acceptor on ETC \rightarrow Photosystem I \rightarrow ETC \rightarrow NADP
 - b. Non-cyclic Photophosphorylation
 - i. Photosystem I \rightarrow ETC \rightarrow Photosystem I
 - 4. ATP synthase utilises this proton motive force to phosphorylate ADP to ATP via chemiosmosis of hydrogen ions from the thylakoid space to the stroma

. .	- · ··	ale.Cuit
Structure	Description	Functions
Chloroplast Envelope	Double membrane surrounding the organelle	Compartmental setime - Separates chloroplast from cytoplasm In the store unace area of lamellae system
Lamellae System	 Membrane system within the chloro hist. Comprises of: Thylaccas Itaxeened sacs contaming in fluid-filled thylakain space Stacked into grana Intergranal Lamellae 	 Site of <i>light reactions</i> Large surface area for attachment of photosynthetic pigments, an etromarriers and ATP synthase → Maximum absorption of soft Allows electron carriers to be located in close proximity and be arranged in order Compartmentalisation of thylakoid space → Formation of proton gradient
Stroma	 Gel-like matrix Contains: Enzymes Nutrients such as organic acids and sugars Starch grains Lipid droplets Circular DNA and ribosomes 	 Site of <i>Calvin cycle</i> Catalysed by enzymes in stroma Surrounds the lamella system → Allows for products of light reaction (ATP) to quickly enter Calvin cycle Large area for temporary storage of sugars and starches DNA codes for chloroplast proteins, synthesised by ribosomes

- b. Outline the three phases of the Calvin cycle:
 - i. CO2 uptake
 - ii. carbon reduction
 - iii. ribulose bisphosphate (RuBP) regeneration and indicate the roles of ATP and NADP in the process.
- 1. CO2 Uptake:

Carbon dioxide combines with ribulose bisphosphate (RuBP) in a carboxylation reaction catalysed by RuBP carboxylase, producing an unstable 6-carbon molecule, which then breaks down to form 2 molecules of glycerate-3-phosphate.

2. Carbon Reduction:

Glycerate-3-phosphate is converted to triose phosphate via a reduction reaction, catalysed by the addition of ATP and NADPH/H+. The triose phosphate molecules are then linked together to form glucose phosphate, which is used to form starch