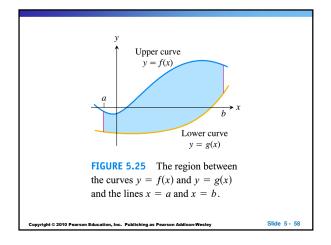

t	v(t)	t	v(t)
0	160	4.5	16
0.5	144	5.0	0
1.0	128	5.5	-16
1.5	112	6.0	-32
2.0	96	6.5	-48
2.5	80	7.0	-64
3.0	64	7.5	-80
3.5	48	8.0	-96
4.0	32		

Preview page 3 of 16

FIGURE 5.6 (a) The average value of f(x) = c on [a, b] is the area of the rectangle divided by b - a. (b) The average value of g(x) on [a, b] is the area beneath its graph divided by b - a.


Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 5 - 12

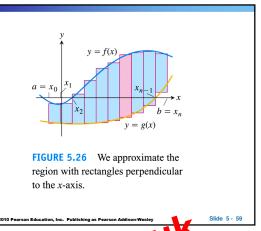
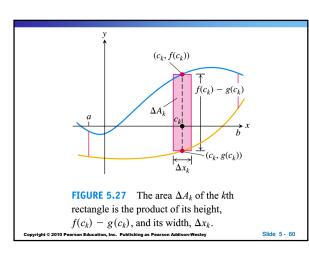


FIGURE 5.7 Approximating the area under $f(x) = \sin x$ between 0 and π to compute the average value of $\sin x$ over $[0, \pi]$, using eight rectangles (Example 4).


Copyright @ 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 5 - 13

Preview page

DEFINITION If f and g are continuous with $f(x) \ge g(x)$ throughout [a, b], then the **area of the region between the curves** y = f(x) **and** y = g(x) **from** a **to** b is the integral of (f - g) from a to b:

$$A = \int_a^b [f(x) - g(x)] dx.$$

Copyright \otimes 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 5 - 61