FIGURE 6.11 The region (a) and part of
the solid of revolution (b) in Example 7.
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FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8.
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FIGURE 6.13  The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
J? 4(x) dx leads to a slightly different formula.
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Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The

dimensions of a typical washer are
Outer radius: ~ R(x)
Inner radius: ~ r(x)
The washer’s area is
A(x) = 7RO = #r©F = 7([REP — [F®P).

Consequently, the definition of volume in this case gives

Volume by Washers for Rotation About the x-axis

b b
V= / A(x) dx = / a(R@)F = [P dx.
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A Washer cross section
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FIGURE 6.14 (a) The region in Example 9
spanned by a line segment perpendicular to
the axis of revolution. (b) When the region
is revolved about the x-axis, the line
segment generates a washer.
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6.2

Volumes Using Cylindrical Shells
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FIGURE 6.16 (a) The graph of the region in Example 1, before revolution.
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = —1.
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FIGURE 6.31 The line segment joining P
and Q sweeps out a frustum of a cone.
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FIGURE 6.32 Dimensions associated
with the arc and line segment PQ.
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FIGURE 6.33 If f is smooth, the Mean
Value Theorem guarantees the existence of
a point ¢, where the tangent is parallel to
segment PQ.
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DEFINITION If the function f(x) = 0 is continuously differentiable on
[a, b], the area of the surface generated by revolving the graph of y = f(x)
about the x-axis is
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