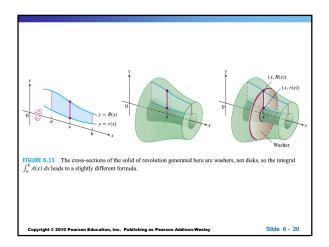


Preview from Notesale. Co. UK Preview page 5 of 20



Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolution, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The dimensions of a typical washer are

Outer radius: R(x)

Inner radius: r(x)

The washer's area is

$$A(x) = \pi [R(x)]^2 - \pi [r(x)]^2 = \pi ([R(x)]^2 - [r(x)]^2).$$

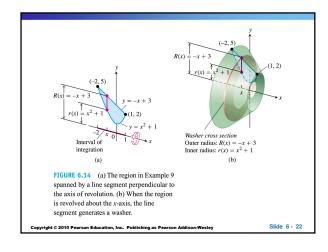
Consequently, the definition of volume in this case gives

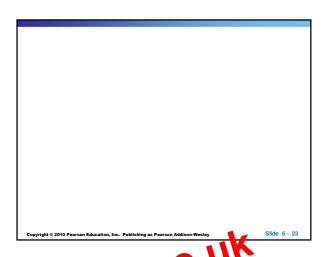
Volume by Washers for Rotation About the x-axis

$$V = \int_a^b A(x) \, dx = \int_a^b \pi([R(x)]^2 - [r(x)]^2) \, dx.$$

Copyright © 2010 Pearson Education, Inc. Publishing as Pea

Slide 6 - 21





Preview page 6 of 20

6.2

Volumes Using Cylindrical Shells

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

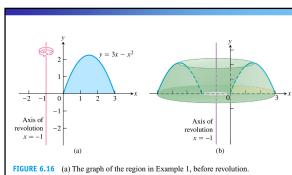
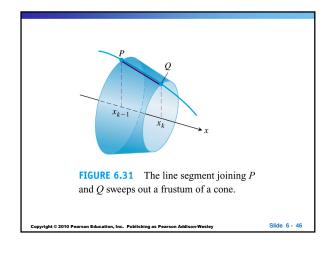
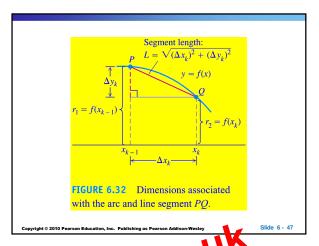


FIGURE 6.16 (a) The graph of the region in Example 1, before revolution. (b) The solid formed when the region in part (a) is revolved about the axis of revolution x = -1.

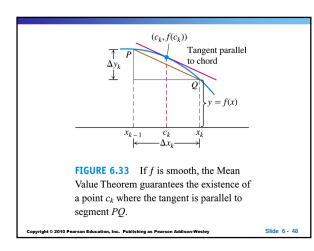
Copyright @ 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 6 - 25





Preview page $(c_k,f(c_k))$



DEFINITION If the function $f(x) \ge 0$ is continuously differentiable on [a,b], the **area of the surface** generated by revolving the graph of y=f(x) about the x-axis is

$$S = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx.$$
 (3)

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 6 - 4