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stability, Fourier series, Fourier transforms, linear partial differential equations and
boundary-value problems, and numerical methods for partial differential equations.
For a one semester course, I assume that the students have successfully completed at
least two semesters of calculus. Since you are reading this, undoubtedly you have
already examined the table of contents for the topics that are covered. You will not
find a “suggested syllabus” in this preface; I will not pretend to be so wise as to tell
other teachers what to teach. I feel that there is plenty of material here to pick from
and to form a course to your liking. The textbook strikes a reasonable balance be-
tween the analytical, qualitative, and quantitative approaches to the study of differ-
ential equations. As far as my “underlying philosophy” it is this: An undergraduate
textbook should be written with the student’s understanding kept firmly in mind,
which means to me that the material should be presented in a straightforward, read-
able, and helpful manner, while keeping the level of theory consistent with the notion
of a “first course.

For those who are familiar with the previous editions, I would like to mention a
few of the improvements made in this edition.

• Eight new projects appear at the beginning of the book. Each project includes
a related problem set, and a correlation of the project material with a section
in the text. 

• Many exercise sets have been updated by the addition of new problems—
especially discussion problems—to better test and challenge the students. In
like manner, some exercise sets have been improved by sending some prob-
lems into retirement.

• Additional examples have been added to many sections.
• Several instructors took the time to e-mail me expressing their concerns

about my approach to linear first-order differential equations. In response,
Section 2.3, Linear Equations, has been rewritten with the intent to simplify
the discussion.

• This edition contains a new section on Green’s functions in Chapter 4 for
those who have extra time in their course to consider this elegant application
of variation of parameters in the solution of initial-value and boundary-value
problems. Section 4.8 is optional and its content does not impact any other
section. 

• Section 5.1 now includes a discussion on how to use both trigonometric forms 

in describing simple harmonic motion.
• At the request of users of the previous editions, a new section on the review

of power series has been added to Chapter 6. Moreover, much of this chapter
has been rewritten to improve clarity. In particular, the discussion of the
modified Bessel functions and the spherical Bessel functions in Section 6.4
has been greatly expanded.

• ( ), prepared by Warren S. Wright and Carol
D. Wright (ISBN 9781133491927 accompanies 

and
ISBN 9781133491958 accompanies 

), provides important review material from
algebra and calculus, the solution of every third problem in each exercise
set (with the exception of the Discussion Problems and Computer Lab
Assignments), relevant command syntax for the computer algebra systems

and , lists of important concepts, as well as helpful
hints on how to start certain problems.

! sin(v " f) and ! cos(v # f)

●
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As another example, suppose we have a 10-story building, where each floor has a
mass 10000 kg, and each value is 5000 kg/s2. Then

The eigenvalues of are found easily using or another similar computer
package. These values are "1.956, "1.826, "1.623, "1.365, "1.075, "0.777,
"0.5, "0.267, "0.099, and "0.011, with corresponding frequencies 1.399, 1.351,
1.274, 1.168, 1.037, 0.881, 0.707, 0.517, 0.315, and 0.105 and periods of oscillation
(2p/v) 4.491, 4.651, 4.932, 5.379, 6.059, 7.132, 8.887, 12.153, 19.947, and 59.840.
During a typical earthquake whose period might be in the range of 2 to 3 seconds, this
building does not seem to be in any danger of developing resonance. However, if
the values were 10 times as large (multiply by 10), then, for example, the sixth
period would be 2.253 seconds, while the fifth through seventh are all on the order of
2–3 seconds. Such a building is more likely to suffer damage in a typical earthquake
of period 2–3 seconds.

Related Problems
Consider a three-story building with the same and values as in the first exam-
ple. Write down the corresponding system of differential equations. What are the
matrices , , and ? Find the eigenvalues for . What range of frequencies of
an earthquake would place the building in danger of destruction?
Consider a three-story building with the same and values as in the second
example. Write down the corresponding system of differential equations. What
are the matrices , , and ? Find the eigenvalues for . What range of fre-
quencies of an earthquake would place the building in danger of destruction?
Consider the tallest building on your campus. Assume reasonable values for the
mass of each floor and for the proportionality constants between floors. If you
have trouble coming up with such values, use the ones in the example problems.
Find the matrices , , and , and find the eigenvalues of and the frequen-
cies and periods of oscillation. Is your building safe from a modest-sized period-
2 earthquake? What if you multiplied the matrix by 10 (that is, made the
building stiffer)? What would you have to multiply the matrix by in order to
put your building in the danger zone?
Solve the earthquake problem for the three-story building of Problem 1:

,

where ( ) = cosg , = , = [1 0 0] , = 10,000 lbs is the amplitude
of the earthquake force acting at ground level, and g = 3 is the frequency of the
earthquake (a typical earthquake frequency). See Section 8.3 for the method of
solving nonhomogeneous matrix differential equations. Use initial conditions
for a building at rest.
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Note, too, that in Example 3 each differential equation possesses the constant so-
lution $ 0, %& + + &. A solution of a differential equation that is identically
zero on an interval is said to be a 

The graph of a solution ! of an ODE is called a 
Since ! is a differentiable function, it is continuous on its interval of defini

tion. Thus there may be a difference between the graph of the ! and the
graph of the !. Put another way, the domain of the function ! need not be
the same as the interval of definition (or domain) of the solution !. Example 4
illustrates the difference.

●

1

1

! !

! !

1

1

In Example 4 the
function $ 1! is not the same as the
solution $ 1!

The domain of $ 1! , considered simply as a , is the set of all real
numbers except 0. When we graph $ 1! , we plot points in the -plane cor-
responding to a judicious sampling of numbers taken from its domain. The ratio-
nal function $ 1! is discontinuous at 0, and its graph, in a neighborhood of
the origin, is given in Figure 1.1.1(a). The function $ 1! is not differentiable at

$ 0, since the -axis (whose equation is $ 0) is a vertical asymptote of the
graph.

Now $ 1! is also a solution of the linear first-order differential equation
! # $ 0. (Verify.) But when we say that $ 1! is a of this DE, we

mean that it is a function defined on an interval on which it is differentiable and
satisfies the equation. In other words, $ 1! is a solution of the DE on inter-
val that does not contain 0, such as (%3, %1), , (%&, 0), or (0, &). Because
the solution curves defined by $ 1! for %3 + + %1 and are sim-
ply segments, or pieces, of the solution curves defined by $ 1! for %& + + 0
and 0 + + &, respectively, it makes sense to take the interval to be as large as
possible. Thus we take to be either (%&, 0) or (0, &). The solution curve on (0, &)
is shown in Figure 1.1.1(b).

You should be familiar with the terms
and from your study of calculus. A solution in

which the dependent variable is expressed solely in terms of the independent
variable and constants is said to be an For our purposes, let us
think of an explicit solution as an explicit formula $ !( ) that we can manipulate,
evaluate, and differentiate using the standard rules. We have just seen in the last two
examples that , $ , and $ 1! are, in turn, explicit solutions
of ! $ 1/2, " % 2 ! # $ 0, and ! # $ 0. Moreover, the trivial solu-
tion $ 0 is an explicit solution of all three equations. When we get down to
the business of actually solving some ordinary differential equations, you will
see that methods of solution do not always lead directly to an explicit solution

$ !( ). This is particularly true when we attempt to solve nonlinear first-orde
differential equations. Often we have to be content with a relation or expression

( , ) $ 0 that defines a solution ! implicitly.

$ 1
16 

4

1
2 + + 10

(1
2, 10)

A relation ( , ) $ 0 is said to be an of an ordinary
differential equation (4) on an interval , provided that there exists at least one
function ! that satisfies the relation as well as the differential equation on 
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refers to explicit solutions that are expressible in terms of (or
familiar) finite combinations of integer powers of , roots, exponen-
tial and logarithmic functions, and trigonometric and inverse trigonometric
functions.
( ) If solution of an th-order ODE ( , , !, . . . , ( )) $ 0 on an inter-
val can be obtained from an -parameter family ( , , 1, 2, . . . , ) $ 0 by
appropriate choices of the parameters , $ 1, 2, . . . , , we then say that the
family is the of the DE. In solving linear ODEs, we shall im-
pose relatively simple restrictions on the coefficients of the equation; with these
restrictions one can be assured that not only does a solution exist on an interval
but also that a family of solutions yields all possible solutions. Nonlinear ODEs,
with the exception of some first-order equations, are usually difficult or impos-
sible to solve in terms of elementary functions. Furthermore, if we happen to
obtain a family of solutions for a nonlinear equation, it is not obvious whether
this family contains all solutions. On a practical level, then, the designation
“general solution” is applied only to linear ODEs. Don’t be concerned about
this concept at this point, but store the words “general solution” in the back of
your mind—we will come back to this notion in Section 2.3 and again in
Chapter 4.

In Problems 1–8 state the order of the given ordinary differ-
ential equation. Determine whether the equation is linear or
nonlinear by matching it with (6).

(1 % ) " % 4 !# 5 $ cos 

5 (4) % 3 " # 6 $ 0

(sin ") ( % (cos ") ! $ 2

In Problems 9 and 10 determine whether the given 
first-order differential equation is linear in the indicated
dependent variable by matching it with the first differential
equation given in (7).

( 2 % 1) # $ 0; in ; in 

# ( # % ) $ 0; in ; in 

¨ % "1 %
. 2

3 # .
# $ 0

2

2 $ % 2

2

2 $ B1 # " #2

2

2 # # $ cos( # )

 
3

3 % " #4
# $ 0

In Problems 11–14 verify that the indicated function is an
explicit solution of the given differential equation. Assume
an appropriate interval of definition for each solution

2 ! # $ 0; $ % /2

" % 6 ! # 13 $ 0; $ 3 cos 2

" # $ tan ; $ %(cos )ln(sec # tan )

In Problems 15–18 verify that the indicated function 
$ !( ) is an explicit solution of the given first-orde

differential equation. Proceed as in Example 2, by consider-
ing ! simply as a give its domain. Then by consid-
ering ! as a of the differential equation, give at least
one interval of definition

! $ 25 # 2; $ 5 tan 5

! $ 2 2; $ 1!(4 % 2)

2 ! $ 3 cos ; $ (1 % sin )%1/2

In Problems 19 and 20 verify that the indicated expression is
an implicit solution of the given first-order differential equa-
tion. Find at least one explicit solution $ !( ) in each case.

( % ) ! $ % # 8; $ # 42 # 2

# 20 $ 24; $
6
5

%
6
5
 %20
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• Considered as a ! # 2 2 $ 0,
(0) $ %1, the interval of definition of $ 1!( 2 % 1) could be taken to

be any interval over which ( ) is defined, di ferentiable, contains the
initial point $ 0; the largest interval for which this is true is (%1, 1). See
the red curve in Figure 1.2.4(b).

See Problems 3–6 in Exercises 1.2 for a continuation of Example 2.

●

Graphs of function
and solution of IVP in Example 2

(0, 1)

11

11

 function defined for all  except  = ±1

 solution defined on interval containing  = 0

0

4 16

(0, 0)

1

Two solutions curves
of the same IVP in Example 4

In Example 7 of Section 1.1 we saw that $ 1 cos 4 # 2 sin 4 is a two-parameter
family of solutions of " # 16 $ 0. Find a solution of the initial-value problem

(4)

We first apply (#!2) $ %2 to the given family of solutions: 1 cos 2# #

2 sin 2# $ %2. Since cos 2# $ 1 and sin 2# $ 0, we find that 1 $ %2. We next apply
!(#!2) $ 1 to the one-parameter family ( ) $ %2 cos 4 # 2 sin 4 Differentiating

and then setting $ #!2 and ! $ 1 gives 8 sin 2# # 4 2 cos 2# $ 1, from which we
see that . Hence  is a solution of (4).

Two fundamental questions arise in considering
an initial-value problem:

?
?

For the first-order initial-value problem (2) we ask

{ ! $ ( ) ?
( 0 0)?

{ ( 0 0)?

Note that in Examples 1 and 3 the phrase “ solution” is used rather than “ solu-
tion” of the problem. The indefinite article “a” is used deliberately to suggest the
possibility that other solutions may exist. At this point it has not been demonstrated
that there is a single solution of each problem. The next example illustrates an initial-
value problem with two solutions.

$ %2 cos 4 # 1
4 sin 42 $ 1

4

" # 16 $ 0, "/

2# $ %2, !"/

2# $ 1.

Each of the functions $ 0 and satisfies the differential equation
! $ 1/2 and the initial condition (0) $ 0, so the initial-value problem

has at least two solutions. As illustrated in Figure 1.2.5, the graphs of both functions,
shown in red and blue pass through the same point (0, 0).

Within the safe confine of a formal course in differential equations one can be
fairly confiden that differential equations will have solutions and that solutions of
initial-value problems will be unique. Real life, however, is not so idyllic.
Therefore it is desirable to know in advance of trying to solve an initial-value problem

$ 1/2, (0) $ 0

$ 1
16 

4
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medium, and ! the rate at which the temperature of the body changes, then
Newton’s law of cooling/warming translates into the mathematical statement

, (3)

where is a constant of proportionality. In either case, cooling or warming, if is a
constant, it stands to reason that + 0.

A contagious disease—for example, a flu virus—is
spread throughout a community by people coming into contact with other people. Let
( ) denote the number of people who have contracted the disease and ( ) denote the

number of people who have not yet been exposed. It seems reasonable to assume that
the rate ! at which the disease spreads is proportional to the number of encoun-
ters, or between these two groups of people. If we assume that the num-
ber of interactions is jointly proportional to ( ) and ( )—that is, proportional to the
product —then

, (4)

where is the usual constant of proportionality. Suppose a small community has a
fixed population of people. If one infected person is introduced into this commu-
nity, then it could be argued that ( ) and ( ) are related by # $ # 1. Using
this last equation to eliminate in (4) gives us the model

. (5)

An obvious initial condition accompanying equation (5) is (0) $ 1.

The disintegration of a radioactive substance, governed
by the differential equation (1), is said to be a In chemistry
a few reactions follow this same empirical law: If the molecules of substance 
decompose into smaller molecules, it is a natural assumption that the rate at which
this decomposition takes place is proportional to the amount of the first substance
that has not undergone conversion; that is, if ( ) is the amount of substance 
remaining at any time, then ! $ , where is a negative constant since is
decreasing. An example of a first-order chemical reaction is the conversion of -butyl
chloride, (CH3)3CCl, into -butyl alcohol, (CH3)3COH:

Only the concentration of the -butyl chloride controls the rate of reaction. But in the
reaction

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of
methyl chloride, CH3Cl, thus forming one molecule of methyl alcohol, CH3OH, and
one molecule of sodium chloride, NaCl. In this case the rate at which the reaction
proceeds is proportional to the product of the remaining concentrations of CH3Cl and
NaOH. To describe this second reaction in general, let us suppose molecule of a
substance combines with molecule of a substance to form molecule of a
substance If denotes the amount of chemical formed at time and if $ and %
are, in turn, the amounts of the two chemicals and at $ 0 (the initial amounts),
then the instantaneous amounts of and not converted to chemical are $ %
and % % , respectively. Hence the rate of formation of is given by

, (6)

where is a constant of proportionality. A reaction whose model is equation (6) is
said to be a 

$ (2 % )(3 % )

CH3Cl # NaOH : CH3OH # NaCl

(CH3)3CCl # NaOH : (CH3)3COH # NaCl.

$ ( # 1 % )

$

 1 % or $ ( % )

●
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In Problem 23, suppose $ # ,
where is the distance from the surface of the Earth to
the falling body. What does the differential equation
obtained in Problem 23 become when is very small in
comparison to ? [ : Think binomial series for 

( # )%2 $ %2 (1 # ! )%2.]

2

( , )

tangent line to
curve  at 

curve  of
intersection
of -plane
and surface
of revolution

Rotating fluid in Problem 3

In meteorology the term
refers to falling raindrops or ice particles that

evaporate before they reach the ground. Assume that a
typical raindrop is spherical. Starting at some time,
which we can designate as $ 0, the raindrop of radius

0 falls from rest from a cloud and begins to evaporate.
If it is assumed that a raindrop evaporates in such a
manner that its shape remains spherical, then it also
makes sense to assume that the rate at which the rain-
drop evaporates—that is, the rate at which it loses
mass—is proportional to its surface area. Show that
this latter assumption implies that the rate at which
the radius of the raindrop decreases is a constant.
Find ( ). [ : See Problem 51 in Exercises 1.1.]
If the positive direction is downward, construct a
mathematical model for the velocity of the falling
raindrop at time . 0 Ignore air resistance. [ :
Use the form of Newton’s second law given in
(17).]

The “snowplow problem” is a classic
and appears in many differential equations texts, but it
was probably made famous by Ralph Palmer Agnew:

?

Find the textbook Ralph Palmer
Agnew, McGraw-Hill Book Co., and then discuss the
construction and solution of the mathematical model.

Reread this section and classify each mathematical
model as linear or nonlinear.

In Problems 1 and 2 fill in the blank and then write this result
as a linear first-order differential equation that is free of the
symbol 1 and has the form ! $ ( , ). The symbol 1
represents a constant.

In Problems 3 and 4 fill in the blank and then write this result
as a linear second-order differential equation that is free of
the symbols 1 and 2 and has the form ( , ") $ 0. The
symbols 1, 2, and represent constants.

2

2 ( 1 cosh # 2 sinh ) $

2

2 ( 1 cos # 2 sin ) $

 (5 # 1
%2 ) $

 1
10 $

In Problems 5 and 6 compute ! and " and then combine
these derivatives with as a linear second-order differential
equation that is free of the symbols 1 and 2 and has the form

( , ! ") $ 0. The symbols 1 and 2 represent constants.

$ 1 # 2 $ 1 cos # 2 sin 

In Problems 7–12 match each of the given differential equa-
tions with one or more of these solutions:

$ 0, $ 2, $ 2 , $ 2 2.

! $ 2 ! $ 2
! $ 2 % 4 ! $

" # 9 $ 18 " % ! $ 0

In Problems 13 and 14 determine by inspection at least one
solution of the given differential equation.

" $ ! ! $ ( % 3)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preview from Notesale.co.uk

Page 83 of 489



Phase portrait and
solution curves in Example 4

●

• Since ! ! ( ( )) is either positive or negative in a subregion , ! 1,
2, 3, a solution ( ) is strictly monotonic—that is, ( ) is either increasing
or decreasing in the subregion . Therefore ( ) cannot be oscillatory, nor
can it have a relative extremum (maximum or minimum). See Problem 33
in Exercises 2.1.

• If ( ) is by a critical point 1 (as in subregion 1 where 
( ) 1 for all ), then the graph of ( ) must approach the graph of the

equilibrium solution ( ) ! 1 either as : # or as : &#. If ( ) is
—that is, bounded above and below by two consecutive critical

points (as in subregion 2 where 1 ( ) 2 for all )—then the graph
of ( ) must approach the graphs of the equilibrium solutions ( ) ! 1 and 
( ) ! 2, one as : # and the other as : &#. If ( ) is 

by a critical point (as in subregion 3 where 2 ( ) for all ), then the
graph of ( ) must approach the graph of the equilibrium solution ( ) ! 2
either as : # or as : &#. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in
Example 3.

The three intervals determined on the -axis or phase line by the critical points 0 and
! now correspond in the -plane to three subregions defined by:

1: &# + + 0, 2: 0 + + ! , and 3: ! + + #,

where &# + #. The phase portrait in Figure 2.1.7 tells us that ( ) is decreasing
in 1, increasing in 2, and decreasing in 3. If (0) ! 0 is an initial value, then in

1, 2, and 3 we have, respectively, the following:
( ) For 0 0, ( ) is bounded above. Since ( ) is decreasing, ( )

decreases without bound for increasing , and so ( ) : 0 as : &#.
This means that the negative -axis, the graph of the equilibrium solution

( ) ! 0, is a horizontal asymptote for a solution curve.
( ) For 0 0 ! , ( ) is bounded. Since ( ) is increasing, ( ) : !

as : # and ( ) : 0 as : &#. The graphs of the two equilibrium
solutions, ( ) ! 0 and ( ) ! ! , are horizontal lines that are horizontal
asymptotes for any solution curve starting in this subregion.

( ) For 0 ( ! , ( ) is bounded below. Since ( ) is decreasing, ( ) : !
as : #. The graph of the equilibrium solution ( ) ! ! is a horizontal
asymptote for a solution curve.

In Figure 2.1.7 the phase line is the -axis in the -plane. For clarity the origi-
nal phase line from Figure 2.1.5 is reproduced to the left of the plane in which
the subregions 1, 2, and 3 are shaded. The graphs of the equilibrium solutions

( ) ! ! and ( ) ! 0 (the -axis) are shown in the figure as blue dashed lines;
the solid graphs represent typical graphs of ( ) illustrating the three cases just
discussed.

In a subregion such as 1 in Example 4, where ( ) is decreasing and unbounded
below, we must necessarily have ( ) : &#. Do interpret this last statement to
mean ( ) : &# as : #; we could have ( ) : &# as : , where ( 0 is a
finite number that depends on the initial condition ( 0) ! 0. Thinking in dynamic
terms, ( ) could “blow up” in finite time; thinking graphically, ( ) could have a
vertical asymptote at ! ( 0. A similar remark holds for the subregion 3.

The differential equation ! ! sin in Example 2 is autonomous and has an
infinite number of critical points, since sin ! 0 at ! !, an integer. Moreover,
we now know that because the solution ( ) that passes through is bounded(0, &3

2)
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( ) Occasionally, a first-order differential equation is not linear in one variable
but in linear in the other variable. For example, the differential equation

is not linear in the variable . But its reciprocal

is recognized as linear in the variable . You should verify that the integrating
factor and integration by parts yield the explicit solution

for the second equation. This expression is then an
implicit solution of the first equation
( ) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word used ear-
lier, is one of these terms. In future discussions the words and will
occasionally pop up. The function in (2) is called the or 

a solution of the differential equation for a given input is called the
or 

( ) The term mentioned in conjunction with the error func-
tion also applies to the and the 
introduced in Problems 55 and 56 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.4.

( )

! & 2 & 2 & 2 $

#(&1) ! &

! $ 2 or & ! 2

!
1

$ 2

In Problems 1–24 find the general solution of the given dif-
ferential equation. Give the largest interval over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

* $ 3 2 ! 2 * $ 2 ! 3

2 * $ ! 1 * ! 2 $ 2 $ 5

2 * $ ( $ 2) !

* $ (1 $ ) ! & sin 2

& 4( $ 6) ! 0

! ( & 2 )

cos   $ (sin )  ! 1

(1 $ )  &  !  $ 2  $ 4  ! 3 & 

  $ 2  ! 3  &  ! 2 sin 

3 $ 12  ! 4 $  ! 3

 $ 2  ! 0 ! 5

In Problems 25–36 solve the given initial-value problem.
Give the largest interval over which the solution is defined

* $ ! , (1) ! 2

! 2 & 3 , (0) ! 1
3

! $ 5 , (0) ! 3

( 2 & 1) $ 2 ! ( $ 1)2

 $ (3 $ 1) ! &3

$ 2 ! $ 4 & 2

2
$  sec 2 ! cos 2

( $ 2)2 ! 5 & 8 & 4

( $ 1) $ ( $ 2) ! 2 &

cos2  sin   $ (cos3 )  ! 1 
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! 0.1

2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768

! 0.05

2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

●

point as ( 1, 1) with ( 0, 0) in the above discussion, we obtain an approximation 
2 * ( 2) corresponding to two steps of length from 0, that is, 2 ! 1 $ !

0 $ 2 , and

.

Continuing in this manner, we see that 1, 2, 3, . . . , can be defined recursively by
the general formula

, (3)

where ! 0 $ , ! 0, 1, 2, . . . . This procedure of using successive “tangent
lines” is called 

$1 ! $  ( , )

( 2) ! ( 0 $ 2 ) ! ( 1 $ ) * 2 ! 1 $  ( 1, 1)

Consider the initial-value problem Use Euler’s
method to obtain an approximation of (2.5) using first ! 0.1 and then ! 0.05.

With the identification (3) becomes

.

Then for ! 0.1, 0 ! 2, 0 ! 4, and ! 0 we fin

,

which, as we have already seen, is an estimate to the value of (2.1). However, if we
use the smaller step size ! 0.05, it takes two steps to reach ! 2.1. From

we have 1 * (2.05) and 2 * (2.1). The remainder of the calculations were
carried out by using software. The results are summarized in Tables 2.6.1 and 2.6.2,
where each entry has been rounded to four decimal places. We see in Tables 2.6.1 and
2.6.2 that it takes five steps with ! 0.1 and 10 steps with ! 0.05, respectively, to
get to ! 2.5. Intuitively, we would expect that 10 ! 5.0997 corresponding to

! 0.05 is the better approximation of (2.5) than the value 5 ! 5.0768 corre-
sponding to ! 0.1.

In Example 2 we apply Euler’s method to a differential equation for which we
have already found a solution. We do this to compare the values of the approxima-
tions at each step with the true or actual values of the solution ( ) of the initial-
value problem.

2 ! 4.09 $ 0.05(0.114.09 $ 0.4(2.05)2) ! 4.18416187

1 ! 4 $ 0.05(0.114 $ 0.4(2)2) ! 4.09

1 ! 0 $ (0.11 0 $ 0.4 0
2) ! 4 $ 0.1(0.114 $ 0.4(2)2) ! 4.18

$1 ! $ (0.11 $ 0.4 2)
( , ) ! 0.11 $ 0.4 2,

* ! 0.11 $ 0.4 2, (2) ! 4.

Consider the initial-value problem * ! 0.2 , (1) ! 1. Use Euler’s method to
obtain an approximation of (1.5) using first ! 0.1 and then ! 0.05.

With the identification ( , ) ! 0.2 , (3) becomes

where 0 ! 1 and 0 ! 1. Again with the aid of computer software we obtain the
values in Tables 2.6.3 and 2.6.4 on page 78.

$1 ! $ (0.2 )
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●

In Example 1 the true or actual values were calculated from the known solution
(Verify.) The is defined to b

.

The and are, in turn,

.

It is apparent from Tables 2.6.3 and 2.6.4 that the accuracy of the approximations
improves as the step size decreases. Also, we see that even though the percentage
relative error is growing with each step, it does not appear to be that bad. But you
should not be deceived by one example. If we simply change the coefficient of the
right side of the DE in Example 2 from 0.2 to 2, then at ! 1.5 the percentage
relative errors increase dramatically. See Problem 4 in Exercises 2.6.

Euler’s method is just one of many different ways in which a solu-
tion of a differential equation can be approximated. Although attractive for its sim-
plicity, It was introduced
here simply to give you a first taste of numerical methods. We will go into greater
detail in discussing numerical methods that give significantly greater accuracy, no-
tably the referred to as the in
Chapter 9.

Regardless of whether we can actually fin an explicit
or implicit solution, if a solution of a differential equation exists, it represents a
smooth curve in the Cartesian plane. The basic idea behind numerical method
for first-orde ordinary differential equations is to somehow approximate the
-values of a solution for preselected values of We start at a specifie initial point

( 0, 0) on a solution curve and proceed to calculate in a step-by-step fashion a
sequence of points ( 1, 1), ( 2, 2), . . . , ( , ) whose -coordinates approxi-
mate the -coordinates ( ) of points ( 1, ( 1)), ( 2, ( 2)), . . . , ( , ( )) that lie
on the graph of the usually unknown solution ( ). By taking the -coordinates
close together (that is, for small values of ) and by joining the points ( 1, 1),
( 2, 2), . . . , ( , ) with short line segments, we obtain a polygonal curve whose
qualitative characteristics we hope are close to those of an actual solution curve.
Drawing curves is something that is well suited to a computer. A computer program
written to either implement a numerical method or render a visual representation of
an approximate solution curve fittin the numerical data produced by this method
is referred to as a Many different numerical solvers are commer-
cially available, either embedded in a larger software package, such as a computer

 
"  "

and
 

"  "
% 100

"  & "

! 0.1( 2&1).

! 0.1

Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

! 0.05

Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
1.10 1.0206 1.0212 0.0006 0.06
1.15 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.25 1.0562 1.0579 0.0016 0.16
1.30 1.0694 1.0714 0.0020 0.19
1.35 1.0833 1.0857 0.0024 0.22
1.40 1.0980 1.1008 0.0028 0.25
1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1295 1.1331 0.0037 0.32
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algebra system, or provided as a stand-alone package. Some software packages
simply plot the generated numerical approximations, whereas others generate hard
numerical data as well as the corresponding approximate or

By way of illustration of the connect-the-dots nature of the graphs pro-
duced by a numerical solver, the two colored polygonal graphs in Figure 2.6.3 are
the numerical solution curves for the initial-value problem * ! 0.2 , (0) ! 1 on
the interval [0, 4] obtained from Euler’s method and the RK4 method using the
step size ! 1. The blue smooth curve is the graph of the exact solution
of the IVP. Notice in Figure 2.6.3 that, even with the ridiculously large step size of

! 1, the RK4 method produces the more believable “solution curve.” The numer-
ical solution curve obtained from the RK4 method is indistinguishable from the
actual solution curve on the interval [0, 4] when a more typical step size of ! 0.1
is used.

Knowledge of the various numerical methods is
not necessary in order to use a numerical solver. A solver usually requires that the dif-
ferential equation be expressed in normal form ! ! ( , ). Numerical solvers
that generate only curves usually require that you supply ( , ) and the initial data 0
and 0 and specify the desired numerical method. If the idea is to approximate the nu-
merical value of ( ), then a solver may additionally require that you state a value for

or, equivalently, give the number of steps that you want to take to get from ! 0
to ! For example, if we wanted to approximate (4) for the IVP illustrated in
Figure 2.6.3, then, starting at ! 0 it would take four steps to reach ! 4 with a step
size of ! 1; 40 steps is equivalent to a step size of ! 0.1. Although we will not
delve here into the many problems that one can encounter when attempting to ap-
proximate mathematical quantities, you should at least be aware of the fact that a nu-
merical solver may break down near certain points or give an incomplete or mislead-
ing picture when applied to some first-order differential equations in the normal
form. Figure 2.6.4 illustrates the graph obtained by applying Euler’s method to a cer-
tain first-order initial-value problem ! ! ( , ), (0) ! 1. Equivalent results
were obtained using three different commercial numerical solvers, yet the graph is
hardly a plausible solution curve. (Why?) There are several avenues of recourse
when a numerical solver has difficulties; three of the more obvious are decrease the
step size, use another numerical method, and try a different numerical solver.

! 0.1 2

A not-very helpful
numerical solution curve

x

y

1 2 3 4 5
_1

1

2

3

4

5

6

_2 _1

●

exact 
solution 

(0,1) Euler’s
method

RK4
method

_1 1 2 3 4 5

y

x

4

5

3

2

1

_1

Comparison of the
Runge-Kutta (RK4) and Euler methods

In Problems 1 and 2 use Euler’s method to obtain a four-
decimal approximation of the indicated value. Carry out the
recursion of (3) by hand, first using ! 0.1 and then using

! 0.05.

* ! 2 & 3 $ 1, (1) ! 5; (1.2)

* ! $ 2, (0) ! 0; (0.2)

In Problems 3 and 4 use Euler’s method to obtain a four-
decimal approximation of the indicated value. First use 

! 0.1 and then use ! 0.05. Find an explicit solution for
each initial-value problem and then construct tables similar to
Tables 2.6.3 and 2.6.4.

* ! , (0) ! 1; (1.0)

* ! 2 , (1) ! 1; (1.5)

In Problems 5–10 use a numerical solver and Euler’s
method to obtain a four-decimal approximation of the indi-
cated value. First use ! 0.1 and then use ! 0.05.

* ! & , (0) ! 0; (0.5)

* ! 2 $ 2, (0) ! 1; (0.5)

* ! ( & )2, (0) ! 0.5; (0.5)

* ! & 2, (0) ! 0.5; (0.5)

In Problems 11 and 12 use a numerical solver to obtain a nu-
merical solution curve for the given initial-value problem.
First use Euler’s method and then the RK4 method. Use

* ! 2 & , (1) ! 1; (1.5)

* ! $ 1 , (0) ! 1; (0.5)
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Modeling with First-Order 
Differential Equations

3.1 Linear Models
3.2 Nonlinear Models
3.3 Modeling with Systems of First-Order DEs

Chapter 3 in Review

In Section 1.3 we saw how a first-order di ferential equation could be used as a
mathematical model in the study of population growth, radioactive decay,
continuous compound interest, cooling of bodies, mixtures, chemical reactions,
fluid draining from a tank, velocity of a falling bod , and current in a series circuit.
Using the methods of Chapter 2, we are now able to solve some of the linear DEs in
Section 3.1 and nonlinear DEs in Section 3.2 that commonly appear in applications.
The chapter concludes with the natural next step. In Section 3.3 we examine how
systems of first-order di ferential equations can arise as mathematical models in
coupled physical systems (for example, electrical networks, and a population of
predators such as foxes interacting with a population of prey such as rabbits).
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●

Notice in Example 1 that the actual number 0 of bacteria present at time " 0
played no part in determining the time required for the number in the culture to triple.
The time necessary for an initial population of, say, 100 or 1,000,000 bacteria to
triple is still approximately 2.71 hours.

As shown in Figure 3.1.2, the exponential function increases as increases
for ! 0 and decreases as increases for $ 0. Thus problems describing growth
(whether of populations, bacteria, or even capital) are characterized by a positive
value of , whereas problems involving decay (as in radioactive disintegration) yield
a negative value. Accordingly, we say that is either a ( ! 0) or
a ( $ 0).

In physics the is a measure of the stability of a radioactive
substance. The half-life is simply the time it takes for one-half of the atoms in an
initial amount 0 to disintegrate, or transmute, into the atoms of another element.
The longer the half-life of a substance, the more stable it is. For example, the half-
life of highly radioactive radium, Ra-226, is about 1700 years. In 1700 years one-
half of a given quantity of Ra-226 is transmuted into radon, Rn-222. The most
commonly occurring uranium isotope, U-238, has a half-life of approximately
4,500,000,000 years. In about 4.5 billion years, one-half of a quantity of U-238 is
transmuted into lead, Pb-206.

A breeder reactor converts relatively stable uranium-238 into the isotope plutonium-
239. After 15 years it is determined that 0.043% of the initial amount 0 of plutonium
has disintegrated. Find the half-life of this isotope if the rate of disintegration is pro-
portional to the amount remaining.

Let ( ) denote the amount of plutonium remaining at time As in
Example 1 the solution of the initial-value problem

is ( ) " 0 . If 0.043% of the atoms of 0 have disintegrated, then 99.957% of the
substance remains. To find the decay constant , we use 0.99957 0 " (15)—that is,
0.99957 0 " 0

15 . Solving for then gives ln 0.99957 " #0.00002867.
Hence ( ) " 0

#0.00002867 . Now the half-life is the corresponding value of time at
which . Solving for gives , or . The
last equation yields

.

About 1950, a team of scientists at the University of Chicago
led by the chemist Willard Libby devised a method using a radioactive isotope of car-
bon as a means of determining the approximate ages of carbonaceous fossilized mat-
ter. The theory of is based on the fact that the radioisotope carbon-14
is produced in the atmosphere by the action of cosmic radiation on nitrogen-14. The
ratio of the amount of C-14 to the stable C-12 in the atmosphere appears to be a con-
stant, and as a consequence the proportionate amount of the isotope present in all liv-
ing organisms is the same as that in the atmosphere. When a living organism dies, the
absorption of C-14, by breathing, eating, or photosynthesis, ceases. By comparing
the proportionate amount of C-14, say, in a fossil with the constant amount ratio
found in the atmosphere, it is possible to obtain a reasonable estimation of its age.
The method is based on the knowledge of the half-life of C-14. Libby’s calculated

"
ln 2

0.00002867
" 24,180 yr

1
2 " #0.000028671

2 0 " 0
#0.00002867( ) " 1

2 0

" 1
15

" , (0) " 0

, 0
growth

, 0
decay

Growth ( ! 0) and
decay ( $ 0)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preview from Notesale.co.uk

Page 135 of 489



value of the half-life of C-14 was approximately 5600 years, but today the commonly
accepted value of the half-life is approximately 5730 years. For his work, Libby was
awarded the Nobel Prize for chemistry in 1960. Libby’s method has been used to date
wooden furniture found in Egyptian tombs, the woven flax wrappings of the Dead
Sea Scrolls, a recently discovered copy of the Gnostic Gospel of Judas written on
papyrus, and the cloth of the enigmatic Shroud of Turin. See Figure 3.1.3 and
Problem 12 in Exercises 3.1.

●

*The number of disintegrations per minute per gram of carbon is recorded by using a Geiger counter.
The lower level of detectability is about 0.1 disintegrations per minute per gram.

A fossilized bone is found to contain 0.1% of its original amount of C-14. Determine
the age of the fossil.

The starting point is again ( ) " 0 . To determine the value of
the decay constant we use the fact that 0 " (5730) or 0 " 0

5730 . The
last equation implies 5730 " ln " #ln2 and so we get " #(ln2)!5730 "
#0.00012097. Therefore ( ) " 0

#0.00012097 . With ( ) " 0.001 0 we have
0.001 0 " 0

#0.00012097 and #0.00012097 " ln(0.001) " #ln 1000. Thus

.

The date found in Example 3 is really at the border of accuracy for this method.
The usual carbon-14 technique is limited to about 10 half-lives of the isotope, or
roughly years. One reason for this limitation is that the chemical analysis
needed to obtain an accurate measurement of the remaining C-14 becomes somewhat
formidable around the point Also, this analysis demands the destruction of
a rather large sample of the specimen. If this measurement is accomplished indi-
rectly, based on the actual radioactivity of the specimen, then it is very difficult to
distinguish between the radiation from the specimen and the normal background
radiation.* But recently the use of a particle accelerator has enabled scientists to
separate the C-14 from the stable C-12 directly. When the precise value of the ratio
of C-14 to C-12 is computed, the accuracy can be extended to 70,000 to 100,000
years. Other isotopic techniques, such as using potassium-40 and argon-40, can give
dates of several million years. Nonisotopic methods based on the use of amino acids
are also sometimes possible. 

In equation (3) of Section 1.3 we saw
that the mathematical formulation of Newton’s empirical law of cooling/warming of
an object is given by the linear first-order di ferential equation

, (2)

where is a constant of proportionality, ( ) is the temperature of the object for ! 0,
and is the ambient temperature—that is, the temperature of the medium around the
object. In Example 4 we assume that is constant.

" ( # )

0.001 0.

60,000

"
ln 1000

0.00012097
" 57,100 years

1
2

1
2

1
2

When a cake is removed from an oven, its temperature is measured at 300° F. Three
minutes later its temperature is 200° F. How long will it take for the cake to cool off
to a room temperature of 70° F?

A page of the Gnostic
Gospel of Judas
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In (2) we make the identification " 70. We must then solve the
initial-value problem

(3)

and determine the value of so that (3) " 200.
Equation (3) is both linear and separable. If we separate variables,

,

yields ln # # 70# " % 1, and so " 70 % 2 . When " 0, " 300, so
300 " 70 % 2 gives 2 " 230; therefore " 70 % 230 . Finally, the measurement

(3) " 200 leads to , or ln . Thus

(4)

We note that (4) furnishes no finite solution to ( ) " 70, since .
Yet we intuitively expect the cake to reach room temperature after a reasonably long
period of time. How long is “long”? Of course, we should not be disturbed by the fact
that the model (3) does not quite live up to our physical intuition. Parts (a) and (b) of
Figure 3.1.4 clearly show that the cake will be approximately at room temperature in
about one-half hour.

The ambient temperature in (2) need not be a constant but could be a function
( ) of time See Problem 18 in Exercises 3.1

The mixing of two fluids sometimes gives rise to a linear first-orde
differential equation. When we discussed the mixing of two brine solutions in
Section 1.3, we assumed that the rate &( ) at which the amount of salt in the mixing
tank changes was a net rate:

. (5)

In Example 5 we solve equation (8) of Section 1.3.

" (input rate of salt) # (output rate of salt) " #

lim : ' ( ) " 70

( ) " 70 % 230 #0.19018

13
23 " #0.19018" 1

3
3 " 13

23

# 70
"  

" ( # 70), (0) " 300

15 30

300

150 70

!
!
!
!
!

!

Temperature of cooling
cake in Example 4

Recall that the large tank considered in Section 1.3 held 300 gallons of a brine
solution. Salt was entering and leaving the tank; a brine solution was being pumped
into the tank at the rate of 3 gal/min; it mixed with the solution there, and then the
mixture was pumped out at the rate of 3 gal/min. The concentration of the salt
in the inflo , or solution entering, was 2 lb/gal, so salt was entering the tank at the
rate " (2 lb/gal) ! (3 gal/min) " 6 lb/min and leaving the tank at the rate "
( !300 lb/gal) ! (3 gal/min) " !100 lb/min. From this data and (5) we get equa-
tion (8) of Section 1.3. Let us pose the question: If 50 pounds of salt were dissolved
initially in the 300 gallons, how much salt is in the tank after a long time?

To find the amount of salt ( ) in the tank at time , we solve the initial-
value problem

.

Note here that the side condition is the initial amount of salt (0) " 50 in the tank
and the initial amount of liquid in the tank. Now since the integrating factor of the
linear differential equation is /100, we can write the equation as

. [ /100 ] " 6 /100

%
1

100
" 6, (0) " 50
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pound of salt per gallon is pumped into the tank at a
rate of 6 gal/min. The well-mixed solution is then
pumped out at a slower rate of 4 gal/min. Find the num-
ber of pounds of salt in the tank after 30 minutes.

In Example 5 the size of the tank containing the salt
mixture was not given. Suppose, as in the discussion
following Example 5, that the rate at which brine is
pumped into the tank is 3 gal/min but that the well-
stirred solution is pumped out at a rate of 2 gal/min. It
stands to reason that since brine is accumulating in the
tank at the rate of 1 gal/min, any finite tank must even-
tually overflo . Now suppose that the tank has an open
top and has a total capacity of 400 gallons.

When will the tank overflow
What will be the number of pounds of salt in the
tank at the instant it overflows
Assume that although the tank is overflowing, brine
solution continues to be pumped in at a rate of
3 gal/min and the well-stirred solution continues to
be pumped out at a rate of 2 gal/min. Devise a
method for determining the number of pounds of
salt in the tank at " 150 minutes.
Determine the number of pounds of salt in the tank as
: '. Does your answer agree with your intuition?

Use a graphing utility to plot the graph of ( ) on
the interval [0, 500).

A 30-volt electromotive force is applied to an -series
circuit in which the inductance is 0.1 henry and the
resistance is 50 ohms. Find the current ( ) if (0) " 0.
Determine the current as : '.

Solve equation (7) under the assumption that 
( ) " 0 sin v and (0) " 0.

A 100-volt electromotive force is applied to an 
series circuit in which the resistance is 200 ohms and
the capacitance is 10#4 farad. Find the charge ( ) on
the capacitor if (0) " 0. Find the current ( ).

A 200-volt electromotive force is applied to an -series
circuit in which the resistance is 1000 ohms and the
capacitance is 5 ( 10#6 farad. Find the charge ( ) on the
capacitor if (0) " 0.4. Determine the charge and current
at " 0.005 s. Determine the charge as : '.

An electromotive force

is applied to an -series circuit in which the inductance
is 20 henries and the resistance is 2 ohms. Find the
current ( ) if (0) " 0.

( ) " '120,
0,

0 20
! 20

1
2

●

Suppose an -series circuit has a variable resistor. If the
resistance at time is given by " 1 % 2 , where 1 and

2 are known positive constants, then (9) becomes

.

If ( ) " 0 and (0) " 0, where 0 and 0 are
constants, show that

.

In (14) of Section 1.3 we saw that
a differential equation describing the velocity of a
falling mass subject to air resistance proportional to the
instantaneous velocity is

,

where ! 0 is a constant of proportionality. The positive
direction is downward.

Solve the equation subject to the initial condition
(0) " 0.

Use the solution in part (a) to determine the limit-
ing, or terminal, velocity of the mass. We saw how
to determine the terminal velocity without solving
the DE in Problem 40 in Exercises 2.1.
If the distance , measured from the point where the
mass was released above ground, is related to ve-
locity by ! " ( ), find an explicit expression
for ( ) if (0) " 0.

Suppose a small
cannonball weighing 16 pounds is shot vertically
upward, as shown in Figure 3.1.12, with an initial veloc-
ity 0 " 300 ft/s. The answer to the question “How high
does the cannonball go?” depends on whether we take
air resistance into account.

Suppose air resistance is ignored. If the positive
direction is upward, then a model for the state of
the cannonball is given by 2 ! 2 " # (equation
(12) of Section 1.3). Since ! " ( ) the last

" #

( ) " 0 % ( 0 # 0 )% 1

1 % 2
&1/ 2

( 1 % 2 ) %
1

" ( )

Find the
maximum height of the cannonball
in Problem 36

ground
level
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A differential equation for the veloc-
ity of a falling mass subjected to air resistance pro-
portional to the square of the instantaneous velocity is

,

where ! 0 is a constant of proportionality. The posi-
tive direction is downward.

Solve the equation subject to the initial condition
(0) " 0.

Use the solution in part (a) to determine the limit-
ing, or terminal, velocity of the mass. We saw how
to determine the terminal velocity without solving
the DE in Problem 41 in Exercises 2.1.
If the distance , measured from the point where
the mass was released above ground, is related to
velocity by ! " ( ), find an explicit expres-
sion for ( ) if (0) " 0.

Consider the
16-pound cannonball shot vertically upward in Prob-
lems 36 and 37 in Exercises 3.1 with an initial velocity 

0 " 300 ft/s. Determine the maximum height attained by
the cannonball if air resistance is assumed to be propor-
tional to the square of the instantaneous velocity. Assume
that the positive direction is upward and take " 0.0003.
[ : Slightly modify the DE in Problem 15.]

Determine a differential 
equation for the velocity ( ) of a mass sinking
in water that imparts a resistance proportional to
the square of the instantaneous velocity and also
exerts an upward buoyant force whose magnitude is
given by Archimedes’ principle. See Problem 18 in
Exercises 1.3. Assume that the positive direction is
downward.
Solve the differential equation in part (a).
Determine the limiting, or terminal, velocity of the
sinking mass.

The differential equation

describes the shape of a plane curve that will reflect all
incoming light beams to the same point and could be a
model for the mirror of a reflecting telescope, a satellite
antenna, or a solar collector. See Problem 29 in
Exercises 1.3. There are several ways of solving this DE.

Verify that the differential equation is homogeneous
(see Section 2.5). Show that the substitution "
yields

.
 11 % 2 (1 # 11 % 2) "

"
# % 1 2 % 2

" # 2

●

Use a CAS (or another judicious substitution) to
integrate the left-hand side of the equation. Show that
the curve must be a parabola with focus at the ori-
gin and is symmetric with respect to the -axis.
Show that the first differential equation can also be
solved by means of the substitution " 2 % 2.

A simple model for the shape of a
tsunami is given by

,

where ( ) ! 0 is the height of the wave expressed
as a function of its position relative to a point off-
shore. By inspection, find all constant solutions of
the DE.
Solve the differential equation in part (a). A CAS
may be useful for integration.
Use a graphing utility to obtain the graphs of all
solutions that satisfy the initial condition (0) " 2.

An outdoor decorative pond in the shape
of a hemispherical tank is to be filled with water pumped
into the tank through an inlet in its bottom. Suppose that
the radius of the tank is " 10 ft, that water is pumped
in at a rate of p ft3/min, and that the tank is initially
empty. See Figure 3.2.6. As the tank fills, it loses water
through evaporation. Assume that the rate of evaporation
is proportional to the area of the surface of the water
and that the constant of proportionality is " 0.01.

The rate of change ! of the volume of the water
at time is a net rate. Use this net rate to determine a
differential equation for the height of the water at
time The volume of the water shown in the figure is

" p 2 # p 3, where " 10. Express the area
of the surface of the water " p 2 in terms of 
Solve the differential equation in part (a). Graph the
solution.
If there were no evaporation, how long would it take
the tank to fill
With evaporation, what is the depth of the water at
the time found in part (c)? Will the tank ever be
filled? Prove your assertion

1
3

"  14 # 2

Decorative pond in Problem 20

Output: water evaporates
                 at rate proportional
                  to area  of surface

Input: water pumped in
         at rate    ft3

Output: water evaporates
                 at rate proportional
                  to area  of surface

Input: water pumped in
         at rate  3/min
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Consider the differential equation

where and In Section 3.1 we saw that in
the case the linear differential equation

is a mathematical model of a population
( ) that exhibits unbounded growth over the infinit

time interval , that is, See
Example 1 on page 84. 
( ) Suppose for that the nonlinear differential

equation 

is a mathematical model for a population of small
animals, where time is measured in months. Solve
the differential equation subject to the initial condi-
tion and the fact that the animal popula-
tion has doubled in 5 months. 

( ) The differential equation in part (a) is called a
because the population 

exhibits unbounded growth over a finite time 
interval that is, there is some time such

Find .
( ) From part (a), what is 

Suppose the population
model (4) is modified to b

( ) If show by means of a phase portrait
(see page 39) that, depending on the initial condi-
tion the mathematical model could in-
clude a doomsday scenario or an extinc-
tion scenario 

( ) Solve the initial-value problem

Show that this model predicts a doomsday for the
population in a finite time . 

( ) Solve the differential equation in part (b) subject to
the initial condition Show that this
model predicts extinction for the population as

Read the documentation for your
CAS on (or ) and 

The straight line that best fits a set of

: '.

(0) " 100.

" (0.0005 # 0.1), (0) " 300.

( ( ) : 0).
( ( ) : ')

(0) " 0,

! 0, ! 0

" ( # ).

(50)? (100)?
( ) : ' as : #.

(0, ),

( )

(0) " 10

" 1.01, ! 0,

" 0.01

( ) : ' as : '.[0, ')

> "
" 0

) 0.! 0

" 1% ,

●

data points is called a or a 
Your task is to construct a logistic model

for the population of the United States, defining ( )
in (2) as an equation of a regression line based on the
population data in the table in Problem 4. One way of 

doing this is to approximate the left-hand side of 

the first equation in (2), using the forward difference
quotient in place of ! :

.

Make a table of the values , ( ), and ( ) using
" 0, 10, 20, . . . , 160 and " 10. For example, the

first line of the table should contain " 0, (0), and
(0). With (0) " 3.929 and (10) " 5.308,

.

Note that (160) depends on the 1960 census popu-
lation (170). Look up this value.
Use a CAS to obtain a scatter plot of the data 
( ( ), ( )) computed in part (a). Also use a CAS to
find an equation of the regression line and to
superimpose its graph on the scatter plot.
Construct a logistic model ! " ( ), where ( )
is the equation of the regression line found in part (b).
Solve the model in part (c) using the initial condi-
tion (0) " 3.929.
Use a CAS to obtain another scatter plot, this time
of the ordered pairs ( , ( )) from your table in
part (a). Use your CAS to superimpose the graph of
the solution in part (d) on the scatter plot.
Look up the U.S. census data for 1970, 1980, and
1990. What population does the logistic model in part
(c) predict for these years? What does the model pre-
dict for the U.S. population ( ) as : '?

In Examples 3 and 4 of
Section 2.1 we saw that any solution ( ) of (4)
possesses the asymptotic behavior ( ) : ! as 

: ' for 0 ! ! and for 0 $ 0 $ ! ; as a
consequence the equilibrium solution " ! is
called an attractor. Use a root-finding application of
a CAS (or a graphic calculator) to approximate the
equilibrium solution of the immigration model

.

Use a graphing utility to graph the function 
( ) " (1 # ) % 0.3 # . Explain how this graph

can be used to determine whether the number found
in part (a) is an attractor.

" (1 # ) % 0.3 #

(0) "
1
(0)

 
(10) # (0)

10
" 0.035

( ) "
1
( )

 
( % ) # ( )

1
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Use a numerical solver to compare the solution
curves for the IVPs

for 0 " 0.2 and 0 " 1.2 with the solution curves
for the IVPs

for 0 " 0.2 and 0 " 1.2. Superimpose all curves on
the same coordinate axes but, if possible, use a differ-
ent color for the curves of the second initial-value
problem. Over a long period of time, what percentage
increase does the immigration model predict in the
population compared to the logistic model?

In Problem 16 let be the time it
takes the cannonball to attain its maximum height and
let be the time it takes the cannonball to fall from the
maximum height to the ground. Compare the value of

with the value of and compare the magnitude of
the impact velocity with the initial velocity 0. See
Problem 48 in Exercises 3.1. A root-finding application
of a CAS might be useful here. [ : Use the model in
Problem 15 when the cannonball is falling.]

A skydiver is equipped with a stopwatch
and an altimeter. As shown in Figure 3.2.7, he opens his
parachute 25 seconds after exiting a plane flying at an
altitude of 20,000 feet and observes that his altitude is
14,800 feet. Assume that air resistance is proportional to
the square of the instantaneous velocity, his initial ve-
locity on leaving the plane is zero, and " 32 ft/s2.

Find the distance ( ), measured from the plane, the
skydiver has traveled during freefall in time 
[ : The constant of proportionality in the
model given in Problem 15 is not specified. Use the
expression for terminal velocity obtained in part
(b) of Problem 15 to eliminate from the IVP. Then
eventually solve for .]
How far does the skydiver fall and what is his
velocity at " 15 s?

" (1 # ) % 0.3 # , (0) " 0

" (1 # ), (0) " 0

●

A helicopter hovers 500 feet above a
large open tank full of liquid (not water). A dense com-
pact object weighing 160 pounds is dropped (released
from rest) from the helicopter into the liquid. Assume
that air resistance is proportional to instantaneous ve-
locity while the object is in the air and that viscous
damping is proportional to 2 after the object has en-
tered the liquid. For air take " , and for the liquid
take " 0.1. Assume that the positive direction is
downward. If the tank is 75 feet high, determine the
time and the impact velocity when the object hits the
bottom of the tank. [ : Think in terms of two distinct
IVPs. If you use (13), be careful in removing the ab-
solute value sign. You might compare the velocity when
the object hits the liquid—the initial velocity for the
second problem—with the terminal velocity of the
object falling through the liquid.]

In Figure 3.2.8(a) suppose that the
-axis and the dashed vertical line " 1 represent, re-

spectively, the straight west and east beaches of a river
that is 1 mile wide. The river flows northward with a
velocity , where mi/h is a constant. A man
enters the current at the point (1, 0) on the east shore and
swims in a direction and rate relative to the river given by
the vector , where the speed mi/h is a constant.
The man wants to reach the west beach exactly at (0, 0)
and so swims in such a manner that keeps his velocity
vector always directed toward the point (0, 0). Use
Figure 3.2.8(b) as an aid in showing that a mathematical
model for the path of the swimmer in the river is

[ : The velocity of the swimmer along the path or
curve shown in Figure 3.2.8 is the resultant " % .
Resolve and into components in the - and 

"
# 1 2 % 2

.

| | "

| | "

1
4

( )

25 s

14,800 ft

Skydiver in Problem 26

(0, 0) (1, 0)

( )

( )

( ( ), ( ))

west
beach

east
beach

swimmer

current

(0, 0) (1, 0)

Path of swimmer in Problem 28
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When these new rates are decreased by rates proportional to the number of interac-
tions, we obtain another nonlinear model:

(13)
,

where all coefficients are positive. The linear system (10) and the nonlinear systems
(11) and (13) are, of course, called 

An electrical network having more than one loop also gives rise to
simultaneous differential equations. As shown in Figure 3.3.3, the current 1( ) splits
in the directions shown at point 1, called a of the network. By

we can write

. (14)

We can also apply to each loop. For loop 1 1 2 2 1,
summing the voltage drops across each part of the loop gives

. (15)

Similarly, for loop 1 1 1 2 2 2 1 we fin

. (16)

Using (14) to eliminate 1 in (15) and (16) yields two linear first-order equations for
the currents 2( ) and 3( ):

(17)

We leave it as an exercise (see Problem 14 in Exercises 3.3) to show that the sys-
tem of differential equations describing the currents 1( ) and 2( ) in the network con-
taining a resistor, an inductor, and a capacitor shown in Figure 3.3.4 is

(18)
  2 %  2 # 1 " 0.

  1 %  2  " ( ) 

2 
3 %  1 2 % 1 3 " ( ).

1 
2 %  ( 1 % 2) 2 % 1 3 " ( )

( ) " 1 1 % 2  
3

( ) " 1 1 % 1 
2 % 2 2

1( ) " 2( ) % 3( )

 " 2 # 2
2 # 2 " ( 2 # 2 # 2 )

 " 1 # 1
2 # 1 " ( 1 # 1 # 1 )

●

1

1

1

2

2

1

2

1

2

1 2
3

2

Network whose model
is given in (17)

Network whose
model is given in (18)

1 2
3

We have not discussed methods by which systems
of first-order differential equations can be solved.
Nevertheless, systems such as (2) can be solved with no
knowledge other than how to solve a single linear first
order equation. Find a solution of (2) subject to the
initial conditions (0) " 0, (0) " 0, (0) " 0.

In Problem 1 suppose that time is measured in days,
that the decay constants are 1 " #0.138629 and 

2 " #0.004951, and that 0 " 20. Use a graphing utility
to obtain the graphs of the solutions ( ), ( ), and ( )

on the same set of coordinate axes. Use the graphs to
approximate the half-lives of substances and

Use the graphs in Problem 2 to approximate the times
when the amounts ( ) and ( ) are the same, the
times when the amounts ( ) and ( ) are the same, and
the times when the amounts ( ) and ( ) are the same.
Why does the time that is determined when the amounts
( ) and ( ) are the same make intuitive sense?

Construct a mathematical model for a radioactive series
of four elements , , , and , where is a stable
element.
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●

Consider two tanks and , with liquid being pumped in
and out at the same rates, as described by the system of
equations (3). What is the system of differential equations
if, instead of pure water, a brine solution containing
2 pounds of salt per gallon is pumped into tank ?

Use the information given in Figure 3.3.5 to construct a
mathematical model for the number of pounds of salt

1( ), 2( ), and 3( ) at time in tanks , , and ,
respectively.

2( ), and 3( ) at time in tanks , , and , respectively.
Without solving the system, predict limiting values of

1( ), 2( ), and 3( ) as : '.

mixture
5 gal/min

mixture
6 gal/min

mixture
4 gal/min

pure water
4 gal/min

100 gal 100 gal100 gal

mixture
2 gal/min

mixture
1 gal/min

Mixing tanks in Problem 6

Two very large tanks and are each partially filled
with 100 gallons of brine. Initially, 100 pounds of salt
is dissolved in the solution in tank and 50 pounds of
salt is dissolved in the solution in tank The system
is closed in that the well-stirred liquid is pumped only
between the tanks, as shown in Figure 3.3.6.

mixture
2 gal/min

mixture
3 gal/min

100 gal100 gal

Mixing tanks in Problem 7

Use the information given in the figure to construct
a mathematical model for the number of pounds
of salt 1( ) and 2( ) at time in tanks and ,
respectively.
Find a relationship between the variables 1( )
and 2( ) that holds at time Explain why this
relationship makes intuitive sense. Use this rela-
tionship to help find the amount of salt in tank at

" 30 min.

Three large tanks contain brine, as shown in Figure 3.3.7.
Use the information in the figure to construct a mathe-
matical model for the number of pounds of salt 1( ),

Mixing tanks in Problem 8

mixture
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

pure water
4 gal/min

150 gal 100 gal200 gal

Consider the Lotka-Volterra predator-prey model
defined b

,

where the populations ( ) (predators) and ( ) (prey)
are measured in thousands. Suppose (0) " 6 and 
(0) " 6. Use a numerical solver to graph ( ) and ( ).

Use the graphs to approximate the time ! 0 when
the two populations are first equal. Use the graphs to
approximate the period of each population.

Consider the competition model defined by

,

where the populations ( ) and ( ) are measured in
thousands and in years. Use a numerical solver to
analyze the populations over a long period of time for
each of the following cases:

(0) " 1.5, (0) " 3.5
(0) " 1, (0) " 1
(0) " 2, (0) " 7
(0) " 4.5, (0) " 0.5

Consider the competition model defined by

,

where the populations ( ) and ( ) are measured in
thousands and in years. Use a numerical solver to

 " (1.7 # 0.1 # 0.15 )

 " (1 # 0.1 # 0.05 )

 " (1 # 0.1 # 0.3 )

 " (2 # 0.4 # 0.3 )

 " 0.2 # 0.025

 " #0.1 % 0.02
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●

But this determinant is simply the Wronskian evaluated at ! , and by assumption,
& 0. If we define ( ) ! 1 1( ) $ 2 2( ), we observe that ( ) satisfies the

differential equation since it is a superposition of two known solutions; ( ) satisfie
the initial conditions

and ( ) satisfies the linear equation and the initial conditions.
Because the solution of this linear initial-value problem is unique (Theorem 4.1.1),
we have ( ) ! ( ) or ( ) ! 1 1( ) $ 2 2( ).

( ) ! 1 1( ) $ 2 2( ) ! 1 and "( ) ! 1 "1( ) $ 2 "2( ) ! 2;

The functions 1 ! 3 and 2 ! #3 are both solutions of the homogeneous linear
equation ( # 9 ! 0 on the interval (#), ). By inspection the solutions are lin-
early independent on the -axis. This fact can be corroborated by observing that the
Wronskian

for every We conclude that 1 and 2 form a fundamental set of solutions, and
consequently, ! 1

3 $ 2
#3 is the general solution of the equation on the

interval.

( 3 , #3 ) ! $ 3

3 3

#3

#3 #3 $ ! #6 & 0

The function ! 4sinh 3 # 5 #3 is a solution of the differential equation in
Example 7. (Verify this.) In view of Theorem 4.1.5 we must be able to obtain this
solution from the general solution ! 1

3 $ 2
#3 . Observe that if we choose 

1 ! 2 and 2 ! #7, then ! 2 3 # 7 #3 can be rewritten as

The last expression is recognized as ! 4 sinh 3 # 5 #3 .

! 2 3 # 2 #3 # 5 #3 ! 4" 3 # #3

2 # # 5 #3 .

The functions 1 ! , 2 ! 2 , and 3 ! 3 satisfy the third-order equation
' # 6 ( $ 11 " # 6 ! 0. Since

for every real value of , the functions 1, 2, and 3 form a fundamental set of solu-
tions on (#), ). We conclude that ! 1 $ 2

2 $ 3
3 is the general solution

of the differential equation on the interval.

Any function , free of arbitrary parameters, that satisfies (7) is said to be a 
or of the equation. For example, it is a straightforward

task to show that the constant function ! 3 is a particular solution of the
nonhomogeneous equation ( $ 9 ! 27.

( , 2 , 3 ) ! p 2

2 2

4 2

3

3 3

9 3
p ! 2 6 & 0
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Let ! 1, 2, 3, . . . . Discuss how the observations
#1 ! 0 and ! ! can be used to find the gen-

eral solutions of the given differential equations.
( ! 0 ' ! 0 (4) ! 0
( ! 2 ' ! 6 (4) ! 24

Suppose that 1 ! and 2 ! # are two solutions of
a homogeneous linear differential equation. Explain
why 3 ! cosh and 4 ! sinh are also solutions of
the equation.

Verify that 1 ! 3 and 2 ! $ $3 are linearly
independent solutions of the differential equation

2 ( # 4 " $ 6 ! 0 on the interval (#), ).
Show that ( 1, 2) ! 0 for every real number 
Does this result violate Theorem 4.1.3? Explain.
Verify that 1 ! 3 and 2 ! 2 are also linearly
independent solutions of the differential equation
in part (a) on the interval (#), ).
Find a solution of the differential equation satisfy-
ing (0) ! 0, "(0) ! 0.

●

By the superposition principle, Theorem 4.1.2,
both linear combinations ! 1 1 $ 2 2 and

! 1 1 $ 2 2 are solutions of the differential
equation. Discuss whether one, both, or neither of
the linear combinations is a general solution of the
differential equation on the interval (#), ).

Is the set of functions 1( ) ! $2, 2( ) ! #3 lin-
early dependent or linearly independent on (#), )?
Discuss.

Suppose 1, 2, . . . , are linearly independent solu-
tions on (#), ) of a homogeneous linear th-order
differential equation with constant coefficients. By
Theorem 4.1.2 it follows that $1 ! 0 is also a solution
of the differential equation. Is the set of solutions

1, 2, . . . , , $1 linearly dependent or linearly inde-
pendent on (#), )? Discuss.

Suppose that 1, 2, . . . , are nontrivial solutions of
a homogeneous linear th-order differential equation
with constant coefficients and that ! $ 1. Is the set
of solutions 1, 2, . . . , linearly dependent or linearly
independent on (#), )? Discuss.

● Section 2.5 (using a substitution)
● Section 4.1

In the preceding section we saw that the general solution of a homogeneous
linear second-order differential equation

(1)

is a linear combination ! 1 1 $ 2 2, where 1 and 2 are solutions that constitute a linearly inde-
pendent set on some interval Beginning in the next section, we examine a method for determining
these solutions when the coefficients of the differential equation in (1) are constants. This method,
which is a straightforward exercise in algebra, breaks down in a few cases and yields only a single
solution 1 of the DE. It turns out that we can construct a second solution 2 of a homogeneous equa-
tion (1) (even when the coefficients in (1) are variable) provided that we know a nontrivial solution

1 of the DE. The basic idea described in this section is that (1)
involving the known solution 1. A second solution 2 of

(1) is apparent after this first-order di ferential equation is solved.

2( ) ( $ 1( ) " $ 0( ) ! 0

Suppose that 1 denotes a nontrivial solution of (1) and
that 1 is defined on an interval We seek a second solution 2 so that the set consist-
ing of 1 and 2 is linearly independent on Recall from Section 4.1 that if 1 and

2 are linearly independent, then their quotient 2! 1 is nonconstant on —that is,
2( )! 1( ) ! ( ) or 2( ) ! ( ) 1( ). The function ( ) can be found by substituting
2( ) ! ( ) 1( ) into the given differential equation. This method is called 

because we must solve a linear first-order di ferential equation to find
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●

By choosing 1 ! 1 and 2 ! 0, we find from ! ( ) 1( ) that a second solution of
equation (3) is

(5)

It makes a good review of differentiation to verify that the function 2( ) defined in
(5) satisfies equation (3) and that 1 and 2 are linearly independent on any interval
on which 1( ) is not zero.

2 ! 1( ) % 
#& ( ) 

1
2( )

 .

The function 1 ! 2 is a solution of 2 ( # 3 " $ 4 ! 0. Find the general solu-
tion of the differential equation on the interval (0, ).

From the standard form of the equation,

we find from (5

.

The general solution on the interval (0, ) is given by ! 1 1 $ 2 2; that is,
! 1

2 $ 2
2 ln 

! 2 % ! 2 ln 

; 3& / ! ln 3
! 3

2 ! 2 % 
3& /

4  

( #
3
 " $

4
2 ! 0,

( ) The derivation and use of formula (5) have been illustrated here because this
formula appears again in the next section and in Sections 4.7 and 6.3. We use (5)
simply to save time in obtaining a desired result. Your instructor will tell you
whether you should memorize (5) or whether you should know the first princi-
ples of reduction of order.
( ) Reduction of order can be used to find the general solution of a nonhomo-
geneous equation 2( ) ( $ 1( ) " $ 0( ) ! ( ) whenever a solution 1 of
the associated homogeneous equation is known. See Problems 17–20 in
Exercises 4.2.

In Problems 1–16 the indicated function 1( ) is a solution
of the given differential equation. Use reduction of order or
formula (5), as instructed, to find a second solution 2( ).

( # 4 " $ 4 ! 0; 1 ! 2

( $ 2 " $ ! 0; 1 ! #

( $ 16 ! 0; 1 ! cos 4

( $ 9 ! 0; 1 ! sin 3

( # ! 0; 1 ! cosh 

( # 25 ! 0; 1 ! 5

9 ( # 12 " $ 4 ! 0; 1 ! 2 /3

6 ( $ " # ! 0; 1 ! /3

2 ( # 7 " $ 16 ! 0; 1 ! 4

2 ( $ 2 " # 6 ! 0; 1 ! 2

( $ " ! 0; 1 ! ln 

4 2 ( $ ! 0; 1 ! 1/2 ln 
2 ( # " $ 2 ! 0; 1 ! sin(ln )
2 ( # 3 " $ 5 ! 0; 1 ! 2 cos(ln )
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Solve 

The auxiliary equation 4 $ 2 2 $ 1 ! ( 2 $ 1)2 ! 0 has roots
1 ! 3 ! and 2 ! 4 ! # Thus from Case II the solution is

By Euler’s formula the grouping 1 $ 2
# can be rewritten as

after a relabeling of constants. Similarly, ( 3 $ 4
# ) can be expressed as

( 3 cos $ 4 sin ). Hence the general solution is

Example 4 illustrates a special case when the auxiliary equation has repeated
complex roots. In general, if 1 ! a $ b, b . 0 is a complex root of multiplicity 
of an auxiliary equation with real coefficients, then its conjugate 2 ! a # b is also
a root of multiplicity From the 2 complex-valued solutions

we conclude, with the aid of Euler’s formula, that the general solution of the corre-
sponding differential equation must then contain a linear combination of the 2 real
linearly independent solutions

In Example 4 we identify ! 2, a ! 0, and b ! 1.
Of course the most difficult aspect of solving constant-coefficient differential equa-

tions is finding roots of auxiliary equations of degree greater than two. For example,
to solve 3 ' $ 5 ( $ 10 " # 4 ! 0, we must solve 3 3 $ 5 2 $ 10 # 4 ! 0.
Something we can try is to test the auxiliary equation for rational roots. Recall that
if 1 ! ! is a rational root (expressed in lowest terms) of an auxiliary equation

with integer coefficients, then is a factor of 0 and is
a factor of . For our specific cubic auxiliary equation, all the factors of 0 ! #4 and

! 3 are : 11, 12, 14 and : 11, 13, so the possible rational roots are
. Each of these numbers can then be tested—say, by

synthetic division. In this way we discover both the root and the factorization

The quadratic formula then yields the remaining roots 2 ! #1 $ and
3 ! #1 # . Therefore the general solution of 3 ' $ 5 ( $ 10 " # 4 ! 0 is
! 1

/3 $ # ( 2 cos $ 3 sin ).

Finding roots or approximation of roots of auxiliary equa-
tions is a routine problem with an appropriate calculator or computer software.
Polynomial equations (in one variable) of degree less than five can be solved by
means of algebraic formulas using the commands in and 
For auxiliary equations of degree five or greater it might be necessary to resort to nu-
merical commands such as and in Because of their
capability of solving polynomial equations, it is not surprising that these computer

2323
23

23

3 3 $ 5 2 $ 10 # 4 ! ( # 1
3)(3 2 $ 6 $ 12).

1 ! 1
3

> : 11, 12, 14, 11
3, 1

2
3, 1

4
3

$ % % % $ 1 $ 0 ! 0

 a  sin + ,  a  sin + ,  2 a  sin + ,  . . . ,  #1 a  sin + .

 a  cos + ,  a  cos + ,  2 a  cos + , . . . ,  #1 a  cos + ,

 (a# +) , (a# +) , 2 (a# +) , . . . , #1 (a# +) ,

 (a$ +) , (a$ +) , 2 (a$ +) , . . . , #1 (a$ +) ,

! 1 cos $ 2 sin $ 3  cos $ 4  sin .

1 cos $ 2 sin 

! 1 $ 2
# $ 3 $ 4

# .

4

4 $ 2 
2

2 $ ! 0.

!
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4 ( # 4 " # 3 ! 0, (0) ! 1, "(0) ! 5

( $ " $ 2 ! 0, (0) ! "(0) ! 0

( # 2 " $ ! 0, (0) ! 5, "(0) ! 10

' $ 12 ( $ 36 " ! 0, (0) ! 0, "(0) ! 1, ((0) ! #7

' $ 2 ( # 5 " # 6 ! 0, (0) ! "(0) ! 0, ((0) ! 1

In Problems 37–40 solve the given boundary-value problem.

( # 10 " $ 25 ! 0, (0) ! 1, (1) ! 0

( $ 4 ! 0, (0) ! 0, (p) ! 0

( # 2 " $ 2 ! 0, (0) ! 1, (p) ! 1

In Problems 41 and 42 solve the given problem first using
the form of the general solution given in (10). Solve again,
this time using the form given in (11).

( # 3 ! 0, (0) ! 1, "(0) ! 5

( # ! 0, (0) ! 1, "(1) ! 0

In Problems 43–48 each figure represents the graph of a
particular solution of one of the following differential
equations:

( # 3 " # 4 ! 0 ( $ 4 ! 0
( $ 2 " $ ! 0 ( $ ! 0
( $ 2 " $ 2 ! 0 ( # 3 " $ 2 ! 0

Match a solution curve with one of the differential equations.
Explain your reasoning.

( $ ! 0, "(0) ! 0, "(p>2) ! 0

2

2 # 4 # 5 ! 0, (1) ! 0, "(1) ! 2

In Problems 49–58 find a homogeneous linear differential equa-
tion with constant coefficients whose general solution is given.

! 1cos $ 2sin $ 3cos 2 $ 4sin 2

! 1 $ 2 $ 3
8

! 1 $ 2
2 cos5 $  3

2 sin5

! 1
# cos $ 2

# sin

! 1 cosh7 $ 2 sinh7! 1 cos3 $ 2 sin3

! 1
10 $ 2

10! 1 $ 2
2

! 1
#4 $ 2

#3! 1 $ 2
5

Graph for Problem 43

Graph for Problem 44

Graph for Problem 45

Graph for Problem 46

Graph for Problem 47

Graph for Problem 48
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When a ! 0 and ! 1, a special case of (7) is

(8)

For example, 2 $ 16 will annihilate any linear combination of sin 4 and cos 4
We are often interested in annihilating the sum of two or more functions. As we

have just seen in Examples 1 and 2, if is a linear differential operator such
that ( 1) ! 0 and ( 2) ! 0, then will annihilate the linear combination

1 1( ) $ 2 2( ). This is a direct consequence of Theorem 4.1.2. Let us now suppose
that 1 and 2 are linear differential operators with constant coefficients such that 1
annihilates 1( ) and 2 annihilates 2( ), but 1( 2) & 0 and 2( 1) & 0. Then the

of differential operators 1 2 annihilates the sum 1 1( ) $ 2 2( ). We can
easily demonstrate this, using linearity and the fact that 1 2 ! 2 1:

For example, we know from (3) that 2 annihilates 7 # and from (8) that 
2 $ 16 annihilates sin 4 Therefore the product of operators 2( 2 $ 16) will

annihilate the linear combination 7 # $ 6 sin 4

The differential operator that annihilates a function is not unique.
We saw in part (b) of Example 1 that $ 3 will annihilate #3 , but so will
differential operators of higher order as long as $ 3 is one of the factors of the op-
erator. For example, ( $ 3)( $ 1), ( $ 3)2, and 3( $ 3) all annihilate #3 .
(Verify this.) As a matter of course, when we seek a differential annihilator for a
function ! ( ), we want the operator of that does the job.

This brings us to the point of the preceding dis-
cussion. Suppose that ( ) ! ( ) is a linear differential equation with constant
coefficients and that the input ( ) consists of finite sums and products of the func-
tions listed in (3), (5), and (7)—that is, ( ) is a linear combination of functions of
the form

where is a nonnegative integer and a and b are real numbers. We now know
that such a function ( ) can be annihilated by a differential operator 1 of
lowest order, consisting of a product of the operators , ( # a) , and 
( 2 # 2a $ a2 $ b2) . Applying 1 to both sides of the equation ( ) ! ( )
yields 1 ( ) ! 1( ( )) ! 0. By solving the equation

1 ( ) ! 0, we can discover the of a particular solution for the original
equation ( ) ! ( ). We then substitute this assumed form into

( ) ! ( ) to find an explicit particular solution. This procedure for determining
, called the is illustrated in the next

several examples.
Before proceeding, recall that the general solution of a nonhomogeneous

linear differential equation ( ) ! ( ) is ! $ , where is the comple-
mentary function —that is, the general solution of the associated homogeneous
equation ( ) ! 0. The general solution of each equation ( ) ! ( ) is defined
on the interval (#), ).

 (constant), , * , *  cos + , and *  sin + ,

1 2( 1 $ 2) ! 1 2( 1) $ 1 2( 2)
! 2 1( 1) $ 1 2( 2)
! 2[ 1( 1)] $ 1[ 2( 2)] ! 0.  

zero zero

( 2 $ +2) (cos +
sin +

! 0.

●
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Integrating

gives ln$sin 3 $. Thus a particular solution is

The general solution of the equation is

! #
1

12
  cos 3 $

1
36

 (sin 3 ) ln$ sin 3 $.

1 ! # 1
12  and 2 ! 1

36

"1 ! 1 ! #
1

12
and "2 ! 2 !

1
12

 
cos 3
sin 3

Solve 

The auxiliary equation 2 # 1 ! 0 yields 1 ! #1 and 2 ! 1.
Therefore ! 1 $ 2

# . Now ( , # ) ! #2, and

Since the foregoing integrals are nonelementary, we are forced to write

and so (12)

In Example 3 we can integrate on any interval [ 0, ] that does not contain the origin.
We will solve the equation in Example 3 by an alternative method in Section 4.8.

The method that we have just examined for non
homogeneous second-order differential equations can be generalized to linear th-order
equations that have been put into the standard form

(13)

If ! 1 1 $ 2 2 $ % % % $ is the complementary function for (13), then a
particular solution is

! 1( ) 1( ) $ 2( ) 2( ) $ % % % $ ( ) ( ),

( ) $ #1( ) ( #1) $ % % % $ 1( ) " $ 0( ) ! ( ).

! $ ! 1 $ 2
# $

1
2
  %

0

 
#

 #
1
2
 #  %

0

  .

!
1
2
  %

0

 
#

 #
1
2
 #  %

0

  ,

 "2 !
(1> )
#2

,  2 ! #
1
2
 %

0

  .

 "1 ! #
# (1> )

#2
,  1 !

1
2
 %

0

 
#

 ,

( # !
1
.

(11)! $ ! 1 cos 3 $ 2 sin 3 #
1

12
  cos 3 $

1
36

 (sin 3 ) ln$ sin 3 $.

Equation (11) represents the general solution of the differential equation on, say,
the interval (0, p!6).

When computing the indefinite integrals of and
, we need not introduce any constants. This is because

 ! 1 1 $ 2 2 $ 1 1 $ 2 2.

 ! ( 1 $ 1) 1 $ ( 2 $ 1) 2 $ 1 1 $ 2 2

 ! $ ! 1 1 $ 2 2 $ ( 1 $ 1) 1 $ ( 2 $ 1) 2

"2

"1
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where the , ! 1, 2, . . . , are determined by the equations

(14)

The first # 1 equations in this system, like in (8), are assumptions
that are made to simplify the resulting equation after ! 1( ) 1( ) $ % % % $

( ) ( ) is substituted in (13). In this case Cramer’s Rule gives

where is the Wronskian of 1, 2, . . . , and is the determinant obtained by
replacing the th column of the Wronskian by the column consisting of the right-
hand side of (14) —that is, the column consisting of (0, 0, . . . , ( )). When ! 2,
we get (9). When ! 3, the particular solution is ! 1 1 $ 2 2 $ 3 3, where

1, 2, and 3 constitute a linearly independent set of solutions of the associated
homogeneous DE and 1, 2, 3 are determined from

(15)"1 ! 1, "2 ! 2, "3 ! 3,

" ! , ! 1, 2, . . . , ,

1 "1 $ 2 "2 ! 0

 1
( #1) "1 $ 2

( #1) "2 $ % % % $ ( #1) " ! ( ).

%
%
%

%
%
%

 "1 "1 $  "2 "2 $ % % % $  " " ! 0

 1 "1 $  2 "2 $ % % % $  " ! 0

"

●

1 ! p 0
0
( )

2

"2
(2

3

"3
(3

p , 2 ! p 1

"1
(1

0
0
( )

3

"3
(3

p , 3 ! p 1

"1
(1

2

"2
(2

0
0
( )
p , and ! p 1

"1
(1

2

"2
(2

3

"3
(3

p .
See Problems 25–28 in Exercises 4.6.

( Variation of parameters has a distinct advantage over the method of
undetermined coefficients in that it will yield a particular solution 
provided that the associated homogeneous equation can be solved. The pre-
sent method is not limited to a function ( ) that is a combination of the four
types listed on page 140. As we shall see in the next section, variation of
parameters, unlike undetermined coefficients, is applicable to linear DEs
with variable coefficients
( ) In the problems that follow, do not hesitate to simplify the form of .
Depending on how the antiderivatives of and are found, you might not
obtain the same as given in the answer section. For example, in Problem 3
in Exercises 4.6 both ! sin # cos and ! sin # cos 
are valid answers. In either case the general solution ! $ simplifies to

! 1 cos $ 2 sin # cos . Why?1
2

1
2

1
4

1
2

1
2

"2"1

In Problems 1–18 solve each differential equation by varia-
tion of parameters.

( $ ! sec ( $ ! tan 

( $ ! sin ( $ ! sec u tan u

( $ ! cos2 ( $ ! sec2

( # ! cosh ( # ! sinh 2

( # 9 !
9

3( # 4 !
2
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( $ 3 " $ 2 ! sin 

( # 2 " $ ! arctan 

( $ 2 " $ ! # ln 

3 ( # 6 " $ 6 ! sec 

In Problems 19–22 solve each differential equation by
variation of parameters, subject to the initial conditions
(0) ! 1, "(0) ! 0.

4 ( # ! /2

2 ( $ " # ! $ 1

( $ 2 " # 8 ! 2 #2 # #

( # 4 " $ 4 ! (12 2 # 6 ) 2

In Problems 23 and 24 the indicated functions are known lin-
early independent solutions of the associated homogeneous
differential equation on (0, ). Find the general solution of
the given nonhomogeneous equation.

;

1 ! #1/2 cos 2 ! #1/2 sin 

2 ( $ " $ ( 2 # 1
4) ! 3/2

4 ( # 4 " $ ! /211 # 2

2 ( $ 2 " $ ! 41
( # 2 " $ !

1 $ 2

( $ 3 " $ 2 !
1

1 $

2 ( $ " $ ! sec(ln );
1 ! cos(ln ), 2 ! sin(ln )

In Problems 25–28 solve the given third-order differential
equation by variation of parameters.

' $ " ! tan 

' $ 4 " ! sec 2

In Problems 29 and 30 discuss how the methods of unde-
termined coefficients and variation of parameters can be
combined to solve the given differential equation. Carry out
your ideas.

3 ( # 6 " $ 30 ! 15 sin $ tan 3

( # 2 " $ ! 4 2 # 3 $ #1

What are the intervals of definition of the general solu-
tions in Problems 1, 7, 9, and 18? Discuss why the inter-
val of definition of the general solution in Problem 24 is

(0, ).

Find the general solution of 4 ( $ 3 " # 4 2 ! 1
given that 1 ! 2 is a solution of the associated homo-
geneous equation.

' # 3 ( $ 2 " !
2

1 $

' # 2 ( # " $ 2 ! 4

● Review the concept of the auxiliary equation in Section 4.3.

The same relative ease with which we were able to find explicit solutions of
higher-order linear differential equations with constant coefficients in the preceding sections does
not, in general, carry over to linear equations with variable coefficients. We shall see in Chapter 6
that when a linear DE has variable coefficients, the best that we can expect is to find a
solution in the form of an infinite series. However, the type of differential equation that we consider
in this section is an exception to this rule; it is a linear equation with variable coefficients whose
general solution can always be expressed in terms of powers of , sines, cosines, and logarithmic
functions. Moreover, its method of solution is quite similar to that for constant-coefficient equations
in that an auxiliary equation must be solved.

A linear differential equation of the form

 $ #1
#1 

#1

#1 $ % % % $ 1  $ 0 ! ( ),
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The next example illustrates the solution of a third-order Cauchy-Euler 
equation.

Solve 

The first three derivatives of ! are

so the given differential equation becomes

! #1,
2

2 ! ( # 1) #2,
3

3 ! ( # 1)( # 2) #3,

3 
3

3 $ 5 2 
2

2 $ 7  $ 8 ! 0.

 ! ( 3 $ 2 2 $ 4 $ 8) ! ( $ 2)( 2 $ 4) ! 0.

 ! ( ( # 1)( # 2) $ 5 ( # 1) $ 7 $ 8)

 3 
3

3 $ 5 2 
2

2 $ 7  $ 8 ! 3 ( # 1)( # 2) #3 $ 5 2 ( # 1) #2 $ 7 #1 $ 8

In this case we see that ! will be a solution of the differential equation
for 1 ! #2, 2 ! 2 , and 3 ! #2 Hence the general solution is 

! 1
#2 $ 2 cos(2 ln ) $ 3 sin(2 ln ).

The method of undetermined coefficient
described in Sections 4.5 and 4.6 does not carry over, to nonhomoge-
neous linear differential equations with variable coefficients. Consequently, in our
next example the method of variation of parameters is employed.

Solve 2 ( # 3 " $ 3 ! 2 4 .

Since the equation is nonhomogeneous, we first solve the associated
homogeneous equation. From the auxiliary equation ( # 1)( # 3) ! 0 we fin
! 1 $ 2

3. Now before using variation of parameters to find a particular solution
! 1 1 $ 2 2, recall that the formulas and , where 1,

2, and are the determinants defined on page 158, were derived under the assump-
tion that the differential equation has been put into the standard form ( $ ( ) " $

( ) ! ( ). Therefore we divide the given equation by 2, and from

we make the identification ( ) ! 2 2 . Now with 1 ! , 2 ! 3, and

( #
3
 " $

3
2 ! 2 2

"2 ! 2>"1 ! 1>

! $1
3

3 2 $ ! 2 3, 1 ! $ 0
2 2

  3

3 2 $ ! #2 5 , 2 ! $1 0
2 2 $ ! 2 3 ,

we fin

The integral of the last function is immediate, but in the case of we integrate
by parts twice. The results are 1 ! # 2 $ 2 # 2 and 2 ! . Hence

! 1 1 $ 2 2 is

Finally, ! $ ! 1 $ 2
3 $ 2 2 # 2 .

! (# 2 $ 2 # 2 ) $ 3 ! 2 2 # 2 .

"1

"1 ! #
2 5

2 3 ! # 2 and "2 !
2 3

2 3 ! .
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can be expressed as the superposition of two solutions: 

(4)

where is the solution of the associated homogeneous DE with nonhomogeneous
initial conditions 

(5)

and is the solution of the nonhomogeneous DE with homogeneous (that is,
zero) initial conditions 

(6)

In the case where the coefficients and are constants the solution of the IVP (5)
presents no difficulties: We use the method of Section 4.3 to find the general solution
of the homogeneous DE and then use the given initial conditions to determine the
two constants in that solution. So we will focus on the solution of the IVP (6).
Because of the zero initial conditions, the solution of (6) could describe a physical
system that is initially at rest and so is sometimes called a . 

If form a fundamental set of solutions on the
interval of the associated homogeneous form of (2), then a particular solution of the
nonhomogeneous equation (2) on the interval can be found by variation of parame-
ters. Recall from (3) of Section 4.6, the form of this solution is

(7)

The variable coefficients in (7) are defined by (9) of Section 4.6

(8)

The linear independence of on the interval guarantees that the
Wronskian for all in . If and are numbers in , then
integrating the derivatives and in (8) on the interval and substitut-
ing the results into (7) give 

(9)

where

From the properties of the definite integral, the two integrals in the second line of (9)
can be rewritten as a single integral

(10) 

The function in (10),

(11)

is called the for the differential equation (2). 
Observe that a Green’s function (11) depends only on the fundamental solutions

of the associated homogeneous differential equation for (2) and 
on the forcing function Therefore all linear second-order differential equations
(2) with the same left-hand side but with different forcing functions have the same
the Green’s function. So an alternative title for (11) is the 

! 2 $ ( ) $ ( ).

( ).
1( ) and  2( )

( , ) ! 1( ) 2( ) # 1( ) 2( )
( )

( , )

( ) ! %
0

( , ) ( ) .

( ) ! ( 1( ), 2( )) ! $ 1( )
"1( )

2( )
"2( ) $

 ! %
0

 
# 1( ) 2( )

( )
 ( )   $   %

0

 1( ) 2( )
( )

 ( ) ,

 ( ) ! 1( )%
0

 
# 2( ) ( )

( )
  $  2( )%

0

 1( ) ( )
( )

 

[ 0, ]"2( )"1( )
0! ( 1( ), 2( )) & 0

1( ) and 2( )

"1( ) ! # 2( ) ( )
,    "2( ) ! 1( ) ( )

.

1( ) and  2( )

( ) ! 1( ) 1( ) $ 2( ) 2( ).

1( ) and 2( )

( $ ( ) " $ ( ) ! ( ),   ( 0) ! 0,  "( 0) ! 0.

( )

( $ ( ) " $ ( ) ! 0,   ( 0) ! 0,  "( 0) ! 1

( )

( ) ! ( ) $ ( ),

!

!

!
!
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In contrast to a second-order IVP, in which and are specified at the same
point, a BVP for a second-order DE involves conditions on and that are
specified at two di ferent points and Conditions such as

are just special cases of the more general homogeneous boundary conditions:
(22)
(23)

where are constants. Specificall , our goal is to find a integral
solution that is analogous to (10) for nonhomogeneous boundary-value problems
of the form

(24)

In addition to the usual assumptions that and are continuous on 
we assume that the homogeneous problem

possesses only the trivial solution This latter assumption is sufficient to guarantee
that a unique solution of (24) exists and is given by an integral 
where is a Green’s function. 

The starting point in the construction of is again the variation of parame-
ters formulas (7) and (8).

Suppose are linearly independent
solutions on of the associated homogeneous form of the DE in (24) and that 
is a number in the interval Unlike the construction of (9) where we started by
integrating the derivatives in (8) over the same interval, we now integrate the firs
equation in (8) on and the second equation in (8) on 

(25)

The reason for integrating over different intervals will become clear
shortly. From (25), a particular solution of the DE is

here we used the minus
sign in (25) to reverse

the limits of integration$11%11&

or (26)

The right-hand side of (26) can be written compactly as a single integral

(27)

where the function is 

(28)( , ) ! (
1( ) 2( )

( )
, 2 2

1( ) 2( )
( )

, 2 2 .

( , )

( ) ! % ( , ) ( ) ,

 ( ) ! % 2( ) 1( )
( )

( ) $ % 1( ) 2( )
( )

( ) .

 ( ) ! 1( ) % 2( ) ( )
( )

$ 2( ) % 1( ) ( )
( )

( ) ! 1( ) 1( ) $ 2( ) 2( )
"1( ) and "2( )

1( ) ! #% 2( ) ( )
( )

and 2( ) ! % 1( ) ( )
( )

.

[ ,  ]:[ , ]

[ , ].
[ , ]

1( ) and 2( )

( , )
( , )

( ) ! % ( , ) ( ) ,
! 0.

 2 ( ) $ 2 "( ) ! 0,   
 1 ( ) $ 1 "( ) ! 0

 ( $ ( ) " $ ( )  ! 0,

[ , ],( )( ), ( ),

 2 ( ) $ 2 "( ) ! 0.   
 1 ( ) $ 1 "( ) ! 0

 ( $ ( ) " $ ( )  ! ( ),

( )
1, 2, 1, and 2

2 ( ) $ 2 "( ) ! 0,
1 ( ) $ 1 "( ) ! 0

( ) ! 0, ( ) ! 0;          ( ) ! 0,    "( ) ! 0;          "( ) ! 0, "( ) ! 0.
! .!

"( )( )
"( )( )
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Consider the simple system of linear first-orde
equations

(1)

Operating on the first equation in (1) by while multiplying the second by #3 and
then adding eliminates from the system and gives 2 # 6 ! 0. Since the roots of
the auxiliary equation of the last DE are and , we obtain

(2)

Multiplying the first equation in (1) by 2 while operating on the second by and
then subtracting gives the differential equation for , 2 # 6 ! 0. It follows
immediately that

(3)

Now (2) and (3) do not satisfy the system (1) for every choice of 1, 2, 3, and
4 because the system itself puts a constraint on the number of parameters in a solu-

tion that can be chosen arbitrarily. To see this, observe that substituting ( ) and ( )
into the first equation of the original system (1) gives, after simplificatio

Since the latter expression is to be zero for all values of , we must have
and These two equations enable us to write 3

as a multiple of 1 and 4 as a multiple of 2 :

. (4)

Hence we conclude that a solution of the system must be

You are urged to substitute (2) and (3) into the second equation of (1) and verify
that the same relationship (4) holds between the constants.

( ) ! 1
#16 $ 2

16 , ( ) ! #
16
3

 1
#16 $

16
3

 2
16 .

3 ! #
16
3

 1 and 4 !
16
3

 2

16 2 # 3 4 ! 0.#16 1 # 3 3 ! 0

"#16 1 # 3 3# #16 $ "16 2 # 3 4# 16 ! 0.

( ) ! 3
#16 $ 4

16 .

( ) ! 1
#16 $ 2

16 .

2 ! #161 ! 16

! 3

! 2
or, equivalently,

# 3 ! 0
2 # ! 0.

●

Solve
(5)

Operating on the first equation by # 3 and on the second by and
then subtracting eliminates from the system. It follows that the differential equation
for is

Since the characteristic equation of this last differential equation is
2 $ # 6 ! ( # 2)( $ 3) ! 0, we obtain the solution

(6)

Eliminating in a similar manner yields ( 2 $ # 6) ! 0, from which we fin

(7)( ) ! 3
2 $ 4

#3 .

( ) ! 1
2 $ 2

#3 .

[( # 3)( $ 2) $ 2 ] ! 0 or ( 2 $ # 6) ! 0.

 ( # 3) #  2  ! 0.
 $  ( $ 2 )  ! 0
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where In this case the radian measured angle is defined in slightly
different manner than in (7):

. (7$)

For example, in Example 2 with and (7$) indicates that tan 
Because sin and cos the angle lies in the fourth quadrant and so
rounded to three decimal places rad. From (6$) we obtain
a second alternative form of solution (5):

.

Figure 5.1.4(a) illustrates the mass in Example 2
going through approximately two complete cycles of motion.  Reading left to right, the
first five positions (marked with black dots) correspond to the initial position of the
mass below the equilibrium position , the mass passing through the equilibrium
position for the first time heading upward ( " 0), the mass at its extreme displacement
above the equilibrium position , the mass at the equilibrium position
for the second time heading downward ( " 0), and the mass at its extreme displace-
ment below the equilibrium position . The black dots on the graph of (9),
given in Figure 5.1.4(b), also agree with the five positions just given. Note, however,
that in Figure 5.1.4(b) the positive direction in the -plane is the usual upward

( " 117#6)

( " #117#6)

( " 2
3)

( ) "
217

6
 cos(8 # (#0.245)) or ( ) "

217
6

 cos(8 ! 0.245)

f " tan#1(#1
4) " #0.245
ff % 0f & 0

f " #1
4.2 " #1

6,1 " 2
3

sin " 2

cos " 1% tan " 2

1

f" 2 2
1 ! 2

2.

6
17

6
17

0

2
3

0 0

 negative

 positive

(0, )2
3

period
4

amplitude

6
17

0

 negative

 positive

Simple harmonic motion
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The mass is initially released from rest unit (foot or meter) below the equilibrium
position. The motion is damped (b " 1.2) and is being driven by an external peri-
odic ( " p#2 s) force beginning at " 0. Intuitively, we would expect that even
with damping, the system would remain in motion until such time as the forcing
function was “turned off,” in which case the amplitudes would diminish. However,
as the problem is given, ( ) " 5 cos 4 will remain “on” forever.

We first multiply the di ferential equation in (26) by 5 and solve

by the usual methods. Because 1 " #3 ! , 2 " #3 # , it follows that
( ) " #3 ( 1 cos ! 2 sin ). Using the method of undetermined coefficients,

we assume a particular solution of the form ( ) " cos 4 ! sin 4 Differentiating
( ) and substituting into the DE gives

.

The resulting system of equations

yields and . It follows that

. (27)

When we set " 0 in the above equation, we obtain . By differentiating
the expression and then setting " 0, we also find that . Therefore the
equation of motion is

. (28)( ) " #3  !38
51

 cos #
86
51

 sin " #
25

102
 cos 4 !

50
51

 sin 4

2 " #86
51

1 " 38
51

( ) " #3 ( 1 cos ! 2 sin ) #
25
102

 cos 4 !
50
51

 sin 4

" 50
51" # 25

102

#6 ! 24 " 25, #24 # 6 " 0

* ! 6 $ ! 10 " (#6 ! 24 ) cos 4 ! (#24 # 6 ) sin 4 " 25 cos 4

2

2 ! 6 ! 10 " 0

1
2

t

x

steady state
xp(t)

transient
_ 1

1

/2

t

x
x(t)=transient

+ steady state

_ 1

1

/2

Graph of solution in
(28) of Example 6

x

2

x1=7
x1=3
x1=0

x1=_3
t

Graph of solution in
Example 7 for various initial velocities 1

The solution of the initial-value problem

,

where 1 is constant, is given by

Solution curves for selected values of the initial velocity 1 are shown in Figure 5.1.13.
The graphs show that the influence of the transient term is negligible for about

% 3p#2.

( ) " ( 1 # 2) # sin ! 2 sin .

transient steady-state

2

2 ! 2 ! 2 " 4 cos ! 2 sin , (0) " 0, $(0) " 1

When is a periodic function, such as
( ) " 0 sin g or ( ) " 0 cos g , the general solution of (25) for l % 0 is the sum

of a nonperiodic function ( ) and a periodic function ( ). Moreover, ( ) dies off
as time increases—that is, . Thus for large values of time, the dis-
placements of the mass are closely approximated by the particular solution ( ). The
complementary function ( ) is said to be a or 
and the function ( ), the part of the solution that remains after an interval of time, is
called a or Note therefore that the effect
of the initial conditions on a spring/mass system driven by is transient. In the
particular solution (28), is a transient term, and 

is a steady-state term. The graphs of these two terms and the
solution (28) are given in Figures 5.1.12(a) and 5.1.12(b), respectively.
# 25

102 cos 4 ! 50
51 sin 4

( ) "#3  (38
51 cos # 86

51 sin )

lim :,  ( ) " 0
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A mass is attached to the end of a spring whose con-
stant is After the mass reaches equilibrium, its support
begins to oscillate vertically about a horizontal line 
according to a formula ( ). The value of represents the
distance in feet measured from See Figure 5.1.21.

Determine the differential equation of motion if
the entire system moves through a medium offer-
ing a damping force that is numerically equal to
b( # ).
Solve the differential equation in part (a) if the spring
is stretched 4 feet by a mass weighing 16 pounds and
b" 2, ( ) " 5 cos , (0) " $(0) " 0.

Evaluate .

Compare the result obtained in part (b) of Problem 39
with the solution obtained using variation of parameters
when the external force is 0 cos v

Show that ( ) given in part (a) of Problem 39 can
be written in the form

.

If we define , show that when 0 is
small an approximate solution is

.

When 0 is small, the frequency g#2p of the
impressed force is close to the frequency v#2p of
free vibrations. When this occurs, the motion is as
indicated in Figure 5.1.22. Oscillations of this
kind are called and are due to the fact that
the frequency of sin 0 is quite small in compari-
son to the frequency of sin g The dashed curves,
or envelope of the graph of ( ), are obtained from
the graphs of 1( 0 #20g) sin 0 Use a graphing
utility with various values of 0, 0, and g to verify
the graph in Figure 5.1.22.

( ) " 0

20.
 sin 0  sin .

0 " 1
2 (. # ')

( ) "
#2 0

'2 # .2 sin 
1
2
 (. # ')  sin 

1
2
 (. ! ')

lim
.:'

 0

'2 # .2
 (cos . # cos ' )

A mass of 100 grams is attached to a spring whose
constant is 1600 dynes/cm. After the mass reaches equi-
librium, its support oscillates according to the formula
( ) " sin 8 , where represents displacement from its

original position. See Problem 35 and Figure 5.1.21.
In the absence of damping, determine the equation
of motion if the mass starts from rest from the equi-
librium position.
At what times does the mass pass through the equi-
librium position?
At what times does the mass attain its extreme
displacements?
What are the maximum and minimum displace-
ments?
Graph the equation of motion.

In Problems 37 and 38 solve the given initial-value problem.

Show that the solution of the initial-value problem

is .( ) " 0

'2 # .2 (cos . # cos ' )

2

2 ! '2 " 0 cos . , (0) " 0, $(0) " 0

2

2 ! 9 " 5 sin 3 , (0) " 2, $(0) " 0

(0) " #1, $(0) " 1

2

2 ! 4 " #5 sin 2 ! 3 cos 2 ,

support

( )

Oscillating support in Problem 35

Beats phenomenon in Problem 41

Can there be beats when a damping force is added to the
model in part (a) of Problem 39? Defend your position
with graphs obtained either from the explicit solution of
the problem

or from solution curves obtained using a numerical
solver.

Show that the general solution of

2

2 ! 2  ! '2 " 0 sin .

2

2 ! 2 ! '2 " 0cos . , (0) " 0, $(0) " 0
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is one model of a free spring/mass system in which the damping force is proportional
to the square of the velocity. One can then envision other kinds of models: linear
damping and nonlinear restoring force, nonlinear damping and nonlinear restoring
force, and so on. The point is that nonlinear characteristics of a physical system lead
to a mathematical model that is nonlinear.

Notice in (2) that both ( ) " 3 and ( ) " ! 1
3 are odd functions of 

To see why a polynomial function containing only odd powers of provides a
reasonable model for the restoring force, let us express as a power series centered
at the equilibrium position " 0:

When the displacements are small, the values of are negligible for suffi-
ciently large. If we truncate the power series with, say, the fourth term, then

( ) " 0 ! 1 ! 2
2 ! 3

3. For the force at % 0,

,

and for the force at # & 0,

to have the same magnitude but act in the opposite direction, we must have
(# ) " # ( ). Because this means that is an odd function, we must have 0 " 0

and 2 " 0, and so ( ) " 1 ! 3
3. Had we used only the first two terms in the

series, the same argument yields the linear function ( ) " 1 A restoring force with
mixed powers, such as ( ) " 1 ! 2

2, and the corresponding vibrations are said
to be . In the next discussion we shall write 1 " and 3 " 1.

Let us take a closer look at the equation in (1) in

(# ) " 0 # 1 ! 2
2 # 3

3

( ) " 0 ! 1 ! 2
2 ! 3

3

( ) " 0 ! 1 ! 2
2 ! 3

3 ! 9 9 9.

linear springhard 
spring 

soft spring 

Hard and soft springs

x
  x(0)= 2,
x'(0)= _3

t

  x(0)= 2,
x'(0)= _3

t

x

x(0)= 2,
x'(0)= 0

  x(0)= 2,
x'(0)= 0

Numerical solution
curves

The differential equations

(4)

and (5)

are special cases of the second equation in (2) and are models of a hard spring and
a soft spring, respectively. Figure 5.3.2(a) shows two solutions of (4) and
Figure 5.3.2(b) shows two solutions of (5) obtained from a numerical solver. The
curves shown in red are solutions that satisfy the initial conditions (0) " 2,
$(0) " #3; the two curves in blue are solutions that satisfy (0) " 2, $(0) " 0.

These solution curves certainly suggest that the motion of a mass on the hard
spring is oscillatory, whereas motion of a mass on the soft spring appears to be
nonoscillatory. But we must be careful about drawing conclusions based on a
couple of numerical solution curves. A more complete picture of the nature of the
solutions of both of these equations can be obtained from the qualitative analysis
discussed in Chapter 10.

2

2 ! # 3 " 0

2

2 ! ! 3 " 0

the case in which the restoring force is given by ( ) " ! 1
3, % 0. The

spring is said to be if 1 % 0 and if 1 & 0. Graphs of three types of
restoring forces are illustrated in Figure 5.3.1. The next example illustrates
these two special cases of the differential equation 2 # 2 ! ! 1

3 " 0, 
% 0, % 0.
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u$(0) " 2. The blue curve represents a periodic solution—the pendulum
back and forth as shown in Figure 5.3.4(b) with an apparent amplitude 

: 1. The red curve shows that u increases without bound as time increases—the
pendulum, starting from the same initial displacement, is given an initial velocity of
magnitude great enough to send it over the top; in other words, the pendulum is

about its pivot as shown in Figure 5.3.4(c). In the absence of damping, the
motion in each case is continued indefinitel .

The first-order differential equation # " # 1 is
equation (16) of Section 1.3. This differential equation, established with the aid
of Figure 1.3.8 on page 26, serves as a mathematical model for the shape of a flex
ible cable suspended between two vertical supports when the cable is carrying a
vertical load. In Section 2.2 we solved this simple DE under the assumption that
the vertical load carried by the cables of a suspension bridge was the weight of a
horizontal roadbed distributed evenly along the -axis. With " r , r the weight
per unit length of the roadbed, the shape of each cable between the vertical supports
turned out to be parabolic. We are now in a position to determine the shape of a uni-
form flexible cable hanging only under its own weight, such as a wire strung between
two telephone posts. The vertical load is now the wire itself, and so if r is the linear
density of the wire (measured, say, in pounds per feet) and is the length of the
segment 1 2 in Figure 1.3.8 then " r Hence

. (8)

Since the arc length between points 1 and 2 is given by

, (9)

it follows from the fundamental theorem of calculus that the derivative of (9) is

. (10)

Differentiating (8) with respect to and using (10) lead to the second-order equation

. (11)

In the example that follows we solve (11) and show that the curve assumed by
the suspended cable is a Before proceeding, observe that the nonlinear
second-order differential equation (11) is one of those equations having the form

( , $, *) " 0 discussed in Section 4.10. Recall that we have a chance of solving an
equation of this type by reducing the order of the equation by means of the substitu-
tion " $.

2

2 "
7

1
 or

2

2 "
7

1
 B1 ! ! "2

" B1 ! ! "2

" )
0

 B1 ! ! "2

"
7

;1

2(0) " 1
2,

From the position of the -axis in Figure 1.3.8 it is apparent that initial conditions
associated with the second differential equation in (11) are (0) " and $(0) " 0.

If we substitute " $, then the equation in (11) becomes . Sepa-

rating variables, we find tha

.) 11 ! 2
"

7

1
 ) gives sinh#1 "

7

1
 ! 1

"
7

;1

 11 ! 2
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( )

5 lb
upward
force

Chain pulled upward
by a constant force in Example 4

A uniform 10-foot-long chain is coiled loosely on the ground. One end of the chain
is pulled vertically upward by means of constant force of 5 pounds. The chain weighs
1 pound per foot. Determine the height of the end above ground level at time See
Figure 5.3.6.

Let us suppose that " ( ) denotes the height of the end of the chain in
the air at time , " # , and the positive direction is upward. For the portion of the
chain that is in the air at time we have the following variable quantities:

Thus from (14) we have

(15)

Because " # , the last equation becomes

. (16)

The nonlinear second-order differential equation (16) has the form ( , $, *) " 0,
which is the second of the two forms considered in Section 4.10 that can possibly
be solved by reduction of order. To solve (16), we revert back to (15) and use " $

along with the Chain Rule. From the second equation in (15)

can be rewritten as

. (17)

On inspection (17) might appear intractable, since it cannot be characterized as any
of the first-order equations that were solved in Chapter 2. However, by rewriting
(17) in differential form ( , ) ! ( , ) " 0, we observe that although the
equation

(18)

is not exact, it can be transformed into an exact equation by multiplying it by an
integrating factor. From ( # )# " 1# we see from (13) of Section 2.4 that
an integrating factor is When (18) is multiplied by m( ) " , the
resulting equation is exact (verify). By identifying < #< " 2 ! 32 2 # 160 ,
< #< " 2 and then proceeding as in Section 2.4, we obtain

. (19)

Since we have assumed that all of the chain is on the floor initially, we have
(0) " 0. This last condition applied to (19) yields 1 " 0. By solving the algebraic

equation for " # % 0, we get another first-orde
differential equation,

." B160 #
64
3

 

1
2 

2 2 ! 32
3  

3 # 80 2 " 0

1
2

 2 2 !
32
3

3 # 80 2 " 1

) / " ln " .

( 2 ! 32 # 160) !  " 0

 ! 2 " 160 # 32

" "  

  
2

2 ! ! "2
! 32 " 160

Product Rule

% "  160 & 32 .(     ) " 5 & or–––
32

––– ––– –––

  :  " 5 # " 5 # .

 :  " > " >32,

 :  " (  ft) # (1 lb/ft) " ,
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A mass weighing 32 pounds stretches a spring 6 inches.
The mass moves through a medium offering a damping
force that is numerically equal to b times the instanta-
neous velocity. Determine the values of b% 0 for which
the spring/mass system will exhibit oscillatory motion.

A spring with constant " 2 is suspended in a liquid that
offers a damping force numerically equal to 4 times the
instantaneous velocity. If a mass is suspended from the
spring, determine the values of for which the subse-
quent free motion is nonoscillatory.

The vertical motion of a mass attached to a spring 
is described by the IVP

. Determine the maximum vertical
displacement of the mass.

A mass weighing 4 pounds stretches a spring 18 inches.
A periodic force equal to ( ) " cos g ! sin g is
impressed on the system starting at " 0. In the absence
of a damping force, for what value of g will the system
be in a state of pure resonance?

Find a particular solution for * ! 2l $ ! v2 " ,
where is a constant force.

A mass weighing 4 pounds is suspended from a spring
whose constant is 3 lb/ft. The entire system is immersed
in a fluid offering a damping force numerically equal
to the instantaneous velocity. Beginning at " 0, an
external force equal to ( ) " # is impressed on the
system. Determine the equation of motion if the mass is
initially released from rest at a point 2 feet below the
equilibrium position.

Two springs are attached in series as shown in
Figure 5.R.1. If the mass of each spring is ignored,
show that the effective spring constant of the
system is defined by 1# " 1# 1 ! 1# 2.
A mass weighing pounds stretches a spring

foot and stretches a different spring foot. The two
springs are attached, and the mass is then attached to
the double spring as shown in Figure 5.R.1. Assume
that the motion is free and that there is no damping
force present. Determine the equation of motion if
the mass is initially released at a point 1 foot below
the equilibrium position with a downward velocity of

.
Show that the maximum speed of the mass is
2
3

 23 ! 1.

2
3 ft /s

1
4

1
2

(0) " 4, $(0) " 2

1
4

 * ! $ ! " 0,

A series circuit contains an inductance of " 1 h, a
capacitance of " 10#4 f, and an electromotive force
of ( ) " 100 sin 50 V. Initially, the charge and
current are zero.

Determine the charge ( ).
Determine the current ( ).
Find the times for which the charge on the capacitor
is zero.

Show that the current ( ) in an -series circuit

satisfies , where $( ) 

denotes the derivative of ( ).
Two initial conditions (0) and $(0) can be specifie
for the DE in part (a). If (0) " 0 and (0) " 0,
what is $(0)?

Consider the boundary-value problem

.

Show that except for the case l " 0, there are two
independent eigenfunctions corresponding to each
eigenvalue.

A bead is constrained to slide along a frictionless rod of
length The rod is rotating in a vertical plane with a
constant angular velocity v about a pivot fixed at the
midpoint of the rod, but the design of the pivot allows
the bead to move along the entire length of the rod. Let
( ) denote the position of the bead relative to this rotat-

ing coordinate system as shown in Figure 5.R.2. To
apply Newton’s second law of motion to this rotating
frame of reference, it is necessary to use the fact that the
net force acting on the bead is the sum of the real forces
(in this case, the force due to gravity) and the inertial
forces (coriolis, transverse, and centrifugal). The math-
ematics is a little complicated, so we just give the result-
ing differential equation for :

.

Solve the foregoing DE subject to the initial
conditions (0) " 0, $(0) " 0.
Determine the initial conditions for which the bead
exhibits simple harmonic motion. What is the min-
imum length of the rod for which it can accom-
modate simple harmonic motion of the bead?
For initial conditions other than those obtained in
part (b), the bead must eventually fly off the rod.
Explain using the solution ( ) in part (a).
Suppose v " 1 rad/s. Use a graphing utility to
graph the solution ( ) for the initial conditions
(0) " 0, $(0) " 0, where 0 is 0, 10, 15, 16, 16.1,

and 17.

 
2

2 " '2 #  sin '

* ! " 0, (0) " (2-), $(0) " $(2-)

  
2

2 !   !
1 " $( )

2

1

Attached springs in Problem 20
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If 1 and 2 are equal, then there always exist two linearly indepen-
dent solutions of equation (1) of the form

(21)

(22)

When the difference 1 " 2 is a positive integer
(Case II), we or be able to find two solutions having the
form This is something that we do not know in advance but is
determined after we have found the indicial roots and have carefully examined the
recurrence relation that defines the coefficients . We just may be lucky enough
to find two solutions that involve only powers of , that is, 
(equation (19)) and (equation (20) with ! 0). See Problem 31
in Exercises 6.3. On the other hand, in Example 4 we see that the difference of the in-
dicial roots is a positive integer ( 1 " 2 ! 1) and the method of Frobenius failed to
give a second series solution. In this situation equation (20), with ' 0, indicates what
the second solution looks like. Finally, when the difference 1 " 2 is a zero (Case III),
the method of Frobenius fails to give a second series solution; the second solution (22)
always contains a logarithm and can be shown to be equivalent to (20) with ! 1. One
way to obtain the second solution with the logarithmic term is to use the fact that

(23)

is also a solution of ) $ ( ) ( $ ( ) ! 0 whenever 1( ) is a known solution.
We illustrate how to use (23) in the next example.

 2( ) ! 1( ) )  
") ( )

2
1( )

  

 2( ) ! !#
!0 $ 2

 1( ) ! !#
!0 $ 1

 ! !#
!0 $ .

  2( ) ! 1( ) ln  $!
#

!1
 

$ 1.

 1( ) !!
#

!0

$ 1, 0 ' 0,

●

Find the general solution of ) $ ! 0.

From the known solution given in Example 4,

we can construct a second solution 2( ) using formula (23). Those with the time,
energy, and patience can carry out the drudgery of squaring a series, long division,
and integration of the quotient by hand. But all these operations can be done with
relative ease with the help of a CAS. We give the results:

  ! 1( ) ln $ 1( ) &" 1 $
7

12
$

19
144

2 $ * * *',

  ! 1( ) &" 1 $ ln $
7

12
$

19
144

2 $ * * *'

  ! 1( ) ) 
 & 1

2 $
1

$
7

12
$

19
72

$ * * *'

  ! 1( ) ) 

  & 2 " 3 $
5

12
4 "

7
72

5 $ * * *' 

  2( ) ! 1( ) ) 
" 0

[ 1( )]2
 ! 1( ) ) 

  & "
1
2

2 $
1

12
3 "

1
144

4 $ * * *'2

 1( ) ! "
1
2

2 $
1

12
3 "

1
144

 4 $ * * * ,

; after long division

; after integrating

; after squaring
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or

On the interval (0, #) the general solution is ! 1 1( ) $ 2 2( ).

Note that the final form of 2 in Example 5 matches (20) with ! 1; the series
in the brackets corresponds to the summation in (20) with 2 ! 0.

  2( ) ! 1( ) ln $ &"1 "
1
2

$
1
2

2 $ * * *'.

●

( ) The three different forms of a linear second-order differential equation in (1),
(2), and (3) were used to discuss various theoretical concepts. But on a practical
level, when it comes to actually solving a differential equation using the method
of Frobenius, it is advisable to work with the form of the DE given in (1).
( ) When the difference of indicial roots 1 " 2 is a positive integer
( 1 & 2), it sometimes pays to iterate the recurrence relation using the
smaller root 2 first. See Problems 31 and 32 in Exercises 6.3
( ) Because an indicial root is a solution of a quadratic equation, it could
be complex. We shall not, however, investigate this case.
( ) If ! 0 is an irregular singular point, then we might not be able to fin

solution of the DE of form   !!#
!0 $ .

In Problems 1–10 determine the singular points of the given
differential equation. Classify each singular point as regular
or irregular.

3 ) $ 4 2 ( $ 3 ! 0

( $ 3)2 ) " ! 0

( 2 " 9)2 ) $ ( $ 3) ( $ 2 ! 0

( 3 $ 4 ) ) " 2 ( $ 6 ! 0
2( " 5)2 ) $ 4 ( $ ( 2 " 25) ! 0

( 2 $ " 6) ) $ ( $ 3) ( $ ( " 2) ! 0

( 2 $ 1)2 ) $ ! 0
3( 2 " 25)( " 2)2 ) $ 3 ( " 2) ( $ 7( $ 5) ! 0

( 3 " 2 2 $ 3 )2 ) $ ( " 3)2 ( " ( $ 1) ! 0

In Problems 11 and 12 put the given differential equation
into form (3) for each regular singular point of the equation.
Identify the functions ( ) and ( ).

( 2 " 1) ) $ 5( $ 1) ( $ ( 2 " ) ! 0

) $ ( $ 3) ( $ 7 2 ! 0

) "
1

( $
1

( " 1)3 ! 0

In Problems 13 and 14, ! 0 is a regular singular point of the
given differential equation. Use the general form of the indi-
cial equation in (14) to find the indicial roots of the singu-
larity. Without solving, discuss the number of series solutions
you would expect to find using the method of Frobenius

) $ ( $ 10 ! 0

In Problems 15–24, ! 0 is a regular singular point of
the given differential equation. Show that the indicial roots
of the singularity do not differ by an integer. Use the method
of Frobenius to obtain two linearly independent series
solutions about ! 0. Form the general solution on (0, #).

2 ) " ( $ 2 ! 0

2 ) $ 5 ( $ ! 0

2 2 ) " ( $ ( 2 $ 1) ! 0

3 ) $ (2 " ) ( " ! 0

2 ) " (3 $ 2 ) ( $ ! 0

2 ) " ( " 2
9) ! 0

4 ) $ 1
2 ( $ ! 0

2 ) $ (5
3 $ 2) ( " 1

3 ! 0

; after multiplying out
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Yet another equation, important because many DEs fit into its form by appro-
priate choices of the parameters, is

(18)

Although we shall not supply the details, the general solution of (18),

(19)

can be found by means of a change in both the independent and the dependent

variables: If is not an integer, then in (19) can be

replaced by " .

! , ( ) ! $ % /
( ).

! & 1 ( ) $ 2 ( )',

) $
1 " 2  ( $ $ 2 2 2 "2 $

2 " 2 2

2 % ! 0,  0.

●

Find the general solution of ) $ 3 ( $ 9 ! 0 on (0, #).

By writing the given DE as

we can make the following identifications with (18)

The first and third equations imply that ! "1 and With these values the
second and fourth equations are satisfied by taking ! 6 and ! 2. From (19)
we find that the general solution of the given DE on the interval (0, #) is

! "1[ 1 2(6 1/2) $ 2 2(6 1/2)].

! 1
2.

1 " 2 ! 3,  2 2 ! 9, 2 " 2 ! "1, and  2 " 2 2 ! 0.

 ) $
3 ( $

9 ! 0,

Recall that in Section 5.1 we saw that one mathematical model for the free undamped
motion of a mass on an aging spring is given by ) $ "! ! 0, ! & 0. We are
now in a position to find the general solution of the equation. It is left as a problem  

to show that the change of variables transforms the differential 
equation of the aging spring into

The last equation is recognized as (1) with # ! 0 and where the symbols 
and play the roles of and , respectively. The general solution of the new
equation is ! 1 0( ) $ 2 0( ). If we resubstitute , then the general solution of

) $ "! ! 0 is seen to be

See Problems 33 and 39 in Exercises 6.4.

The other model that was discussed in Section 5.1 of a spring whose character-
istics change with time was ) $ ! 0. By dividing through by , we see that 

the equation is Airy’s equation ) $ !2 ! 0. See Example 5 in

Section 6.2. The general solution of Airy’s differential equation can also be written
in terms of Bessel functions. See Problems 34, 35, and 40 in Exercises 6.4.

 ) $ ! 0

 ( ) ! 1 0$2
1

 B  "1 / 2% $ 2 0$2
1

 B  "1 / 2%.

 2  
2

2 $   $ 2 ! 0.

 !
2
1

 B  "1 / 2
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In view of the property 0(1 $ !) ! !0(!) and the fact that the values
of for ! 0, ! 1, ! 2, and ! 3 are, respectively,

In general,

Hence

From (2) of Section 6.1 you should recognize that the infinite series in the last line is
the Maclaurin series for and so we have shown that

(23)

We leave it as an exercise to show that

(24)

See Figure 6.4.5 and Problems 31, 32, and 38 in Exercises 6.4.
If is an integer, then is half an odd integer. Because 

and we see from (10) that 
For we have, in turn, 

and In view of (23) and (24) these  results are the same as

(25)

and (26)

Bessel functions of half-integral order are used
to define two more important functions:

and (27)

The function is called the and 
is the For example, for the
expressions in (27) become 

and . 0( ) ! Bp2 1>2( ) ! "B p2  B 2
p

 cos ! "
cos

 0( ) ! Bp2 1>2( ) ! B p2  B 2
p

 sin !
sin

! 0
( )( )

( ) ! B p2 $1>2( ).( ) ! Bp2 $1>2( )

"1>2( ) ! B 2
p

 sin .

1>2( ) ! "B 2
p

 cos

"1>2( ) ! 1>2( ).
1>2( ) ! " "1>2( )! 0 and  ! "1"( $1>2)( ).("1) $1

$1>2( ) !sin( $ 1
2)p! cos p! ("1) ,

cos( $ 1
2) p ! 0n ! $ 1

2

"1/2( ) ! B 2
-

 cos .

1/2( ) ! B 2
-

 sin .

sin ,

1/2( ) !!
#

!0
  

("1)

!
(2 $ 1)!

22 $1 !
 1-

$2%
2 $1/2

! B 2
-

   !
#

!0
  

("1)
(2 $ 1)!

2 $1.

0(1 $ 1
2 $ ) !

(2 $ 1)!
22 $1 !

 1- .

0( 9
2) ! 0(1 $ 7

2) ! 7
2 0( 7

2) !
7 ! 5

26 ! 2!
 1- !

7 ! 6 ! 5!
26 ! 6 ! 2!

 1- !
7!

273!
 1-.

0( 7
2) ! 0(1 $ 5

2) ! 5
2 0( 5

2) !
5 ! 3

23  1- !
5 ! 4 ! 3 ! 2 ! 1

234 ! 2
 1- !

5!
252!

 1-

0( 5
2) ! 0(1 $ 3

2) ! 3
2 0( 3

2) !
3
22 1-

0(3
2) ! 0(1 $ 1

2) ! 1
2 0( 1

2) ! 1
2 1-

0(1 $ 1
2 $ )

0(1
2) ! 1-

●

2 4 6 8 10 12 14

0

0.5

1

0.5

x

y

J-1/2

J1/2

Bessel functions of
order (red)and order "1

2
1
2 (blue)
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end embedded in the ground, will deflect, or bend away,
from the vertical under the influence of its own weight
when its length or height exceeds a certain critical value.
It can be shown that the angular deflection &( ) of the
column from the vertical at a point ( ) is a solution of
the boundary-value problem:

where is Young’s modulus, is the cross-sectional
moment of inertia, ' is the constant linear density, and 
is the distance along the column measured from its base.
See Figure 6.4.7. The column will bend only for those
values of for which the boundary-value problem has a
nontrivial solution.

Restate the boundary-value problem by making the
change of variables ! " Then use the results
of a problem earlier in this exercise set to express
the general solution of the differential equation in
terms of Bessel functions.
Use the general solution found in part (a) to find a
solution of the BVP and an equation which define
the critical length , that is, the smallest value of

for which the column will start to bend.
With the aid of a CAS, find the critical length 
of a solid steel rod of radius ! 0.05 in., 
' ! 0.28 lb/in., ! 2.6 4 107 lb/in.2, ! ( 2,
and ! 1

4 - 4.

  
25

2 $ 6 ( " )5 ! 0, 5(0) ! 0, 5(( ) ! 0,

Use the information in Problem 37 to find a solu-
tion of

if it is known that is zero at ! 0.
Use Table 6.4.1 to find the Euler load 1 for the
column.
Use a CAS to graph the first buckling mode 1( )
corresponding to the Euler load 1. For simplicity
assume that 1 ! 1 and ! 1.

For the simple pendu-
lum described on page 220 of Section 5.3, suppose that
the rod holding the mass at one end is replaced by a
flexible wire or string and that the wire is strung over a
pulley at the point of support in Figure 5.3.3. In this
manner, while it is in motion in a vertical plane, the
mass can be raised or lowered. In other words, the
length ( ) of the pendulum varies with time. Under
the same assumptions leading to equation (6) in Sec-
tion 5.3, it can be shown* that the differential equation
for the displacement angle & is now

If increases at constant rate and if (0) ! 0,
show that a linearization of the foregoing DE is

(34)

Make the change of variables ! ( 0 $ ) and
show that (34) becomes

Use part (b) and (18) to express the general solution
of equation (34) in terms of Bessel functions.
Use the general solution obtained in part (c) to solve
the initial-value problem consisting of equation (34)
and the initial conditions &(0) ! &0, &((0) ! 0.
[ : To simplify calculations, use a further

change of variable 

Also, recall that (20) holds for both 1( ) and 1( ).
Finally, the identity

will be helpful.]

" 2
-1( ) 2( ) " 2( ) 1( ) !

!
2

 1 ( 0 $ ) ! 2 B  1/ 2.

25
2 $

2
 

5
$ 5 ! 0.

( 0 $ )5) $ 2 5( $ 5 ! 0.

5) $ 2 (5( $  sin 5 ! 0.

1 1(21, )

  
2

2 $ ! 0, (0) ! 0, ( ) ! 0

0

( )

ground

Beam in Problem 41

In Example 4
of Section 5.2 we saw that when a constant vertical
compressive force, or load, was applied to a thin
column of uniform cross section and hinged at both
ends, the deflection ( ) is a solution of the BVP:

If the bending stiffness factor is proportional
to , then ( ) ! , where is a constant of
proportionality. If ( ) ! ! is the maximum
stiffness factor, then ! and so ( ) ! .

  
2

2 $ ! 0, (0) ! 0, ( ) ! 0.

*See Mary Boas, John Wiley
& Sons, Inc., 1966. Also see the article by Borelli, Coleman, and Hobson
in vol. 58, no. 2, March 1985.

( )
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In contrast to part (a), this result is valid for 5 because lim : #
(( (5) " 0 

demands ( 5 * 0 or 5.

 "
1
( 5

.

 "
( (( (5)

( 5 "0

#

 !{ 5 } " !#

0
 

5  (  " !#

0
 

(( (5)  

Evaluate .

From Definition 7.1.1 and two applications of integration by parts we
obtain

At this point we have an equation with on both sides of the equality.
Solving for that quantity yields the result

.

!!! For a linear combination of functions we can write

whenever both integrals converge for Hence it follows that

. (3)

Because of the property given in (3), ! is said to be a 

!{% ( ) ! & ( )} " %!{ ( )} ! &!{ ( )} " % ( ) ! & ( )

!#

0
 

(  [% ( ) ! & ( )] " % !#

0
 

(  ( ) ! & !#

0
 

(  ( ) 

!{sin 2 } "
2

2 ! 4
, 0

!{sin 2 }

lim (  cos 2  " 0,   0
:#

Laplace transform of sin 2  

( (  sin 2–––––––––––– 2–

2–

!{sin 2 } " ! (  sin 2  "

!{sin 2 }.

"   ! ! (  cos 2
#

0

#

0

#

0

( (  cos 2–––––––––––– 2–"   (2–"

2––2"
4––2(

[ ! (  sin 2 ]#

0

#

0

" ! (  cos 2 ,          0
#

0

!{sin 2 }

In this example we use the results of the preceding examples to illustrate the linear-
ity of the Laplace transform.

From Examples 1 and 2 we have for 0,

.

From Examples 3 and 4 we have for 5,

 ! {4 5 ( 10 sin 2 } " 4! { 5 } ( 10! {sin2 } "
4
( 5

(
20

2 ! 4
.

 ! {1 ! 5 } " ! {1} ! 5! { } "
1

!
5
2
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In Problems 1–18 use Definition 7.1.1 to find !{ ( )}.

( ) " %0,
cos ,

0 + ) >2
        $ >2

( ) " %sin ,
0,     

0 + )

$

( ) " %2 ! 1,
0,         

0 + ) 1
$ 1

( ) " % ,
1,

0 + ) 1
$ 1

( ) " %4,
0,

0 + ) 2
$ 2

( ) " %(1,
1,

0 + ) 1
$ 1

Graph for Problem 8

Graph for Problem 9

Graph for Problem 10

( )
(2, 2)

1

1

Graph for Problem 7

( )
(2, 2)

1

1

( )

1

1

( )

( ) " 2 ! 6 ( 3 ( ) " (4 2 ! 16 ! 9

( ) " ( ! 1)3 ( ) " (2 ( 1)3

( ) " 1 ! 4 ( ) " 2 ( (9 ! 5

( ) " (1 ! 2 )2 ( ) " ( ( ( )2

( ) " 4 2 ( 5 sin 3 ( ) " cos 5 ! sin 2

( ) " sinh ( ) " cosh 

( ) " sinh ( ) " ( cosh 

In Problems 37–40 find !{ ( )} by first using a trigono-
metric identity.

( ) " sin 2 cos 2 ( ) " cos2

( ) " sin(4 ! 5)

We have encountered the in our
study of Bessel functions in Section 6.4 (page 258).
One definition of this function is given by the improper
integral

Use this definition to show that

Use Problem 41 and a change of variables to obtain the
generalization

of the result in Theorem 7.1.1(b).

In Problems 43–46 use Problems 41 and 42 and the fact
that to find the Laplace transform of the given
function.

( ) " (1/2 ( ) " 1/2

( ) " 3/2 ( ) " 2 1/2 ! 8 5/2

Make up a function ( ) that is of exponential order but
where ( ) " '( ) is not of exponential order. Make up
a function that is not of exponential order but whose
Laplace transform exists.

Suppose that for 1 and that
for 2. When does 

Figure 7.1.4 suggests, but does not prove, that the func-
tion is not of exponential order. How does
the observation that for and 
sufficiently la ge, show that for any ?

Use part (c) of Theorem 7.1.1 to show that

!{ ( ! ) } " , where and are real
( !

( ( )2 ! 2

2
02 ln ! ,

( ) "  2

!{ 1( ) ! 2( )} " 1( ) ! 2( )?

!{ 2( )} " 2( )
!{ 1( )} "  1( )

,(1
2) " 1p

! { %} "
,(% ! 1)

%!1 , % * (1,

,(a ! 1) " a,(a).

,(%) " !#

0

a(1 (  , a 0.

,(a)

( ) " 10 cos# (
6$

( ) " !7 ( ) " (2 (5

( ) " 4 ( ) " 2 (2

( ) " ( sin ( ) " cos 

( ) " cos ( ) " sin 

In Problems 19–36 use Theorem 7.1.1 to find !{ ( )}.

( ) " 2 4 ( ) " 5

( ) " 4 ( 10 ( ) " 7 ! 3
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and 2 " (1. Show how Euler’s formula (page 133) can
then be used to deduce the results

.

Under what conditions is a linear function
( ) " ! , - 0, a linear transform?

Explain why the function

is not piecewise continuous on [0, ).

Show that the function does not possess a
Laplace transform. [ : Write as two im-
proper integrals:

Show that 1 diverges.]

 ! {1> 2} " !1

0

(

2  ! !#

1

(

2  " 1 ! 2.

 ! {1> 2}
( ) " 1> 2

#

( ) " % ,   0 + ) 2
4,  2 ) ) 5
1>( ( 5), 5

 ! {  sin } "
( ( )2 ! 2

 ! {  cos } "
(

( ( )2 ! 2

Show that the Laplace transform exists.
[ : Start with integration by parts.]

If and is a constant, show that

. 

This result is known as the 

Use the given Laplace transform and the result in
Problem 55 to find the indicated Laplace transform.
Assume that and are positive constants.

 ! {sin  sinh } "
2

4 ! 4
; ! {sin  sinh }

 ! {1 ( cos } "
1

( 2 ! 1)
; ! {1 ( cos }

 ! {sin } "
1

2 ! 1
; ! {sin }

 ! { } "
1
( 1

; ! { }

 ! { ( )} "
1
  # $
0 ! { ( )} " ( )

 ! {2 2 cos 2}

(3 " ! (1% 1
! 3'!{ (3 } "

1
! 3

" ! (1%1
2'!{ } "

1
2

1 " ! (1%1'!{1} "
1

If ( ) represents the Laplace transform of a function
( ), that is, , we then say ( ) is the of
( ) and write . For example, from Examples 1, 2, and 3 of

Section 7.1 we have, respectively,
( ) " ! (1{ ( )}

! { ( )} " ( )

● Partial fraction decomposition
● See the 

In this section we take a few small steps into an investigation of how
the Laplace transform can be used to solve certain types of equations for an unknown function. We
begin the discussion with the concept of the inverse Laplace transform or, more precisely, the inverse
of a Laplace transform ( ). After some important preliminary background material on the Laplace
transform of derivatives '( ), ''( ), . . . , we then illustrate how both the Laplace transform and the in-
verse Laplace transform come into play in solving some simple ordinary differential equations.
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and thus, from the linearity of !(1 and part (c) of Theorem 7.2.1,

 ! (1% 2 ! 6 ! 9
( ( 1)( ( 2)( ! 4)' " ( 16

5
 ! (1% 1

( 1' !
25
6

 ! (1% 1
( 2' !

1
30

 ! (1% 1
! 4'

. (5)

As was pointed out in the introduction to this chap-
ter, our immediate goal is to use the Laplace transform to solve differential equations.
To that end we need to evaluate quantities such as and . For
example, if ' is continuous for $ 0, then integration by parts gives

or (6)

Here we have assumed that as . Similarly, with the aid of (6),

or (7)

In like manner it can be shown that

(8)

The recursive nature of the Laplace transform of the derivatives of a function 
should be apparent from the results in (6), (7), and (8). The next theorem gives the
Laplace transform of the th derivative of The proof is omitted.

!{ .( )} " 3 ( ) ( 2 (0) ( '(0) ( /(0).

 !{ /( )} " 2 ( ) ( (0) ( '(0).

; from (6) "  [ ( ) ( (0)] ( '(0)

 " ( '(0) ! !{ '( )}

 !{ /( )} " !#

0
 

(   /( ) " (  
'( ) "#

0
!  !#

0
 

(  
'( ) 

: #(  ( ) : 0

 !{ '( )} " ( ) ( (0).

 " ( (0) ! !{ ( )}

 !{ '( )} " !#

0
 

(  '( ) " (   ( ) "0

#

!  !#

0
 

(  ( ) 

!{ 2 > 2}!{ > }

 " ( 16
5

 !
25
6

 2 !
1

30
 (4

It is apparent from the general result given in

If , ', . . . , ( (1) are continuous on [0, #) and are of exponential order and if
( )( ) is piecewise continuous on [0, #), then

where .( ) " !{ ( )}

!{  ( )( )} " ( ) ( (1 (0) ( (2 '(0) ( 0 0 0 (  ( (1)(0),

Theorem 7.2.2 that depends on and the ( 1 derivatives
of ( ) evaluated at This property makes the Laplace transform ideally suited
for solving linear initial-value problems in which the differential equation has 

Such a differential equation is simply a linear combination of terms
, ', /, . . . , ( ):

(0) " 0, '(0) " 1, . . . , ( (1)(0) " (1,

  
! (1

  
(1

(1 ! 0 0 0 ! 0 " ( ),

" 0.
( ) " ! { ( )}! { > }
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. "
1
6

!
1
3

 ( (
1
2

 (2  cos 12 (
12
3

 (2  sin 12

 ( ) "
1
6

 ! (1%1' !
1
3

 ! (1% 1
! 1' (

1
2
 ! (1% ! 2

( ! 2)2 ! 2' (
2

312
 ! (1% 12

( ! 2)2 ! 2'

In engineering, one frequently encounters functions 
that are either “off ” or “on.” For example, an external force acting on a mechanical
system or a voltage impressed on a circuit can be turned off after a period of time.
It is convenient, then, to define a special function that is the number 0 (off ) up to a
certain time " and then the number 1 (on) after that time. This function is called
the or the , named after the English polymath

(1850–1925).

Notice that we define only on the nonnegative -axis, since this is all
that we are concerned with in the study of the Laplace transform. In a broader sense

for ) The graph of is given in Figure 7.3.2. In the case
when " 0, we take 

When a function defined for $ 0 is multiplied by , the unit step
function “turns off ” a portion of the graph of that function. For example, consider
the function ( ) " 2 ( 3. To “turn off ” the portion of the graph of for 0 + ) 1,
we simply form the product (2 ( 3) . See Figure 7.3.3. In general, the
graph of ( ) is 0 (off ) for 0 + ) and is the portion of the graph of (on)
for $

The unit step function can also be used to write piecewise-defined functions in
a compact form. For example, if we consider 0 + ) 2, 2 + ) 3, and $ 3
and the corresponding values of and , it should be apparent
that the piecewise-defined function shown in Figure 7.3.4 is the same as

. Also, a general piecewise-defined function of
the type

(9)

is the same as

. (10)

Similarly, a function of the type

(11)

can be written

(12)( ) " ( )["( ( ) ( "( ( )].

( ) " %0,
( ),

0,

0 + )

+ )

$

( ) " ( ) ( ( ) "( ( ) ! ( ) "( ( )

( ) " % ( ),
( ),

0 + )

$

( ) " 2 ( 3"( ( 2) ! "( ( 3)

"( ( 3)"( ( 2)

"( ( )
"( ( 1)

"( ( )
"( ) " 1 for $ 0.

"( ( )"( ( ) " 0

"( ( )

Graph of unit step
function

1

Function is
( ) " (2 ( 3) " ( ( 1)

1

Function is
( ) " 2 ( 3"( ( 2) ! "( ( 3)

1

2
( )

The is defined to b

"( ( ) " %0,
1,

0 + )

$ .

"( ( )
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Recall that because the beam is embedded at both ends, the boundary
conditions are (0) " 0, '(0) " 0, ( ) " 0, '( ) " 0. Now by (10) we can express

( ) in terms of the unit step function:

Transforming (19) with respect to the variable gives

or

If we let 1 " /(0) and 2 " .(0), then

,

and consequently

( ) " 1
3 ! 2

4 !
2 0 ( >25 (

1
6 !

1
6

 ( /2

 4 ( ) ( /(0) ( .(0) "
2 0 ( >2 (

1
2 !

1
2
 ( /2 .

 # 4 ( ) ( 3 (0) ( 2 '(0) ( /(0) ( . (0)$ "
2 0 ( >2 (

1
2 !

1
2
 ( /2

 "
2 0 (2

( ! # (
2$ "# (

2$ .

 ( ) " 0#1 (
2 $ ( 0#1 (

2 $ "# (
2$

 " 1

2
 2 ! 2

6
 3 ! 0

60 
 (5

2
 4 ( 5 ! # (

2$
5
"# (

2$ .

 ( ) " 1

2!
 ! (1%2!

3' ! 2

3!
 ! (1%3!

4' !
2 0 ( >24!

 ! (1%4!
5' (

1
5!

 ! (1%5!
6' !

1
5!

 ! (1%5!
6

 ( / 2'

Applying the conditions ( ) " 0 and '( ) " 0 to the last result yields a system of
equations for 1 and 2:

Solving, we find 1 " 23 0
2&(960 ) and 2 " (9 0 &(40 ) Thus the deflec

tion is given by

( ) "
23 0

2

1920
  2 (

3 0

80
  3 ! 0

60
 (5

2
 4 ( 5 ! # (

2$
5
"# (

2$ .

 1 ! 2 
2

2
!

85 0
3

960
" 0.

 1 
2

2
! 2 

3

6
!

49 0
4

1920
" 0

In Problems 1–20 find either ( ) or ( ), as indicated.

!% 3  #9 ( 4 ! 10 sin 
2$'

!{(1 ( ! 3 (4 ) cos 5 }

!{ (2  cos 4 }!{  sin 3 }

!{ 2 ( ( 1)2}!{ ( ! 2 )2}

!{ 10 (7 }!{ 3 (2 }

!{ (6 }!{ 10 }

! (1%( ! 1)2

( ! 2)4'! (1% 2 ( 1
2( ! 1)3'

! (1% 5
( ( 2)2'! (1%( ! 1)2'

! (1% 2 ! 5
2 ! 6 ! 34'! (1% 2 ! 4 ! 5'

! (1% 1
2 ! 2 ! 5'! (1% 1

2 ( 6 ! 10'

! (1% 1
( ( 1)4'! (1% 1

( ! 2)3'
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Graph for Problem 50

( )

Graph for Problem 51

( )

Graph for Problem 52

( )

Graph for Problem 53

( )

Graph for Problem 54

( )

In Problems 55–62 write each function in terms of unit step
functions. Find the Laplace transform of the given function.

( ) " %0,
2,

0 + ) 1
        $ 1

( ) " %1,
0,
1,

0 + ) 4
4 + ) 5

        $ 5

( ) " %2,
(2,

0 + ) 3
        $ 3

( ) " %sin ,
0,     

0 + ) 2
        $ 2

( ) " % ,
0,

0 + ) 2
        $ 2

( ) " %0,
sin ,

0 + ) 3 >2
        $ 3 >2

Graph for Problem 62

3

2

1

staircase function

( )

1 2 3 4

Graph for Problem 61

1

rectangular pulse

( )

In Problems 63–70 use the Laplace transform to solve the
given initial-value problem.

' ! " ( ), (0) " 0, where ( ) "

' ! " ( ), (0) " 0, where

' ! 2 " ( ), (0) " 0, where

where

, (0) " 1, '(0) " 0

, (0) " 0, '(0) " 1

where

/ ! 4 ' ! 3 " 1 ( "( ( 2) ( "( ( 4) ! "( ( 6),
(0) " 0, '(0) " 0

 ( ) " %0,
1,
0,

0 + )

+ ) 2
$ 2

/ ! " ( ), (0) " 0, '(0) " 1,

/ ( 5 ' ! 6 " "( ( 1)

/ ! 4 " sin  "( ( 2 )

 ( ) " %1,
0,

0 + ) 1
        $ 1

/ ! 4 " ( ), (0) " 0, '(0) " (1,

 ( ) " % ,
0,

0 + ) 1
        $ 1

( ) " % 1,
(1,

0 + ) 1
        $ 1

%0,
5,

0 + ) 1
        $ 1
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Suppose a 32-pound weight stretches a spring 2 feet. If the
weight is released from rest at the equilibrium position,
find the equation of motion ( ) if an impressed force
( ) " 20 acts on the system for 0 + ) 5 and is then

removed (see Example 5). Ignore any damping forces.
Use a graphing utility to graph ( ) on the interval [0, 10].

Solve Problem 71 if the impressed force ( ) " sin acts
on the system for 0 + ) 2p and is then removed.

In Problems 73 and 74 use the Laplace transform to find the
charge ( ) on the capacitor in an series circuit subject to
the given conditions.

(0) " 0, " 2.5 1, " 0.08 f, ( ) given in
Figure 7.3.19

( )

3

5

( ) in Problem 73

( )

1.5

30

30

( ) in Problem 74

(0) " 0, " 10 1, " 0.1 f, ( ) given in
Figure 7.3.20

Use the Laplace transform to find the current
( ) in a single-loop -series circuit when
(0) " 0, " 1 h, " 10 1, and ( ) is as given

in Figure 7.3.21.
Use a computer graphing program to graph ( ) for
0 + + 6. Use the graph to estimate max and
min, the maximum and minimum values of the

current.

( ) in Problem 75

( ) in Problem 76

2

1

1

( )

3 2

sin , 0 3 2

31

( )

0

Use the Laplace transform to find the charge ( ) 
on the capacitor in an -series circuit when 

(0) " 0, " 50 1, " 0.01 f, and ( ) is as
given in Figure 7.3.22.
Assume that 0 " 100 V. Use a computer graphing
program to graph ( ) for 0 + + 6. Use the
graph to estimate max, the maximum value of
the charge.

A cantilever beam is embedded at its left end and free
at its right end. Use the Laplace transform to find the
deflection ( ) when the load is given by

Solve Problem 77 when the load is given by

Find the deflection ( ) of a cantilever beam embedded
at its left end and free at its right end when the load is as
given in Example 10.

A beam is embedded at its left end and simply supported
at its right end. Find the deflection ( ) when the load is
as given in Problem 77.

Reread Example 4 in Sec-
tion 3.1 on the cooling of a cake that is taken out of an
oven.

Devise a mathematical model for the temperature of
a cake while it is the oven based on the fol-
lowing assumptions: At " 0 the cake mixture is at
the room temperature of 70°; the oven is not pre-
heated, so at " 0, when the cake mixture is placed
into the oven, the temperature inside the oven is also
70°; the temperature of the oven increases linearly
until " 4 minutes, when the desired temperature
of 300° is attained; the oven temperature is a con-
stant 300° for $ 4.
Use the Laplace transform to solve the initial-value
problem in part (a).

 ( ) " % 0,  
0,

0,  

0 ) ) >3>3 ) ) 2 > 3
2 > 3 ) ) .

 ( ) " % 0,
0,  

0 ) ) > 2> 2 + ) .
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The convolution theorem is sometimes
useful in finding the inverse Laplace transform of the product of two Laplace
transforms. From Theorem 7.4.2 we have

(4)

Many of the results in the table of Laplace transforms in Appendix III can be derived
using (4). For example, in the next example we obtain entry 25 of the table:

. (5)!{sin (  cos } "
2 3

( 2 ! 2 )2

! (1{ ( ) ( )} "  " .

Evaluate .

Let so that

.

In this case (4) gives

. (6)

With the aid of the product-to-sum trigonometric identity

and the substitutions " t and " ( ( t) we can carry out the integration in (6):

Multiplying both sides by 2 3 gives the inverse form of (5).

When ( ) " 1 and , the
convolution theorem implies that the Laplace transform of the integral of is

. (7)

The inverse form of (7),

, (8)

can be used in lieu of partial fractions when is a factor of the denominator and
is easy to integrate. For example, we know for ( ) " sin that
and so by (8)

and so on.

 ! (1% 1
3( 2 ! 1)' " ! (1%1> 2( 2 ! 1)' " !

0
 (5 ( sin 5) 5 " 1

2 
2 ( 1 ! cos 

 ! (1% 1
2( 2 ! 1)' " ! (1%1> ( 2 ! 1)' " !

0
 (1 ( cos 5) 5 " ( sin 

 ! (1% 1
( 2 ! 1)' " ! (1%1>( 2 ! 1)' " !

0
 sin 5 5 " 1 ( cos 

( ) " 1>( 2 ! 1),
( ) " ! (1{ ( )}

!
0

  (5) 5 " ! (1% ( )'

!%!
0

  (5) 5' "
( )

!{ ( )} " ( ) " 1>
 "

sin (  cos 
2 3 .

 "
1

2 2
 ( 1

2
 sin (25 ( ) ( 5 cos 

0

 ! (1% 1
( 2 ! 2)2' "

1
2 2 !

0
 [cos (25 ( ) ( cos ] 5

sin  sin "
1
2

 [cos( ( ) ( cos( ! )]

! (1% 1
( 2 ! 2)2' "

1
2 !

0
 sin 5 sin ( ( 5) 5

( ) " ( ) "
1 ! (1% 2 ! 2' "

1
 sin 

( ) " ( ) "
1

2 ! 2

! (1% 1
( 2 ! 2)2'
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The convolution theorem and the result in (7)
are useful in solving other types of equations in which an unknown function appears
under an integral sign. In the next example we solve a 
for ( ),

. (9)

The functions ( ) and ( ) are known. Notice that the integral in (9) has the convo-
lution form (2) with the symbol playing the part of 

( ) " ( ) ! !
0

 (5) ( ( 5) 5

-series circuit

Solve .

In the integral we identify ( ( t) " (t so that ( ) " . We take
the Laplace transform of each term; in particular, by Theorem 7.4.2 the transform of
the integral is the product of and :

.

After solving the last equation for ( ) and carrying out the partial fraction
decomposition, we find

.

The inverse transform then gives

In a single-loop or series circuit, Kirchhoff’s second law states
that the sum of the voltage drops across an inductor, resistor, and capacitor is equal
to the impressed voltage ( ). Now it is known that the voltage drops across an in-
ductor, resistor, and capacitor are, respectively,

,

where ( ) is the current and , , and are constants. It follows that the current in a
circuit, such as that shown in Figure 7.4.2, is governed by the 

. (10)  ! ( ) !
1

 !
0

 (5) 5 " ( )

  , ( ), and
1

 !
0

 (5) 5

 " 3 2 ( 3 ! 1 ( 2 ( .

 ( ) " 3! (1%2!
3' ( ! (1%3!

4' ! ! (1%1' ( 2! (1% 1
! 1'

( ) "
6
3 (

6
4 !

1
(

2
! 1

( ) " 3 !
2
3 (

1
! 1

( ( ) !
1
( 1

!{ } " 1> ( ( 1)!{ ( )} " ( )

( ) " 3 2 ( ( ( !
0

 (5) (5 5 for ( )

Determine the current ( ) in a single-loop series circuit when " 0.1 h, 
" 2 1, " 0.1 f, (0) " 0, and the impressed voltage is

.( ) " 120 ( 120  "( ( 1)
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The latter expression, which is not a function at all, can be characterized by the two
properties

.

The unit impulse d( ( 0) is called the 
It is possible to obtain the Laplace transform of the Dirac delta function by the for-

mal assumption that .!{7( ( 0)} " lim : 0 !{7 ( ( 0)}

( ) 7( ( 0) " %#,
0,

" 0

- 0
and ( )!#

0
7( ( 0) " 1

Unit impulse

! !

0

0

21 2

0 0

! "

Solve / ! " 4 d( ( 2p) subject to

(0) " 1, '(0) " 0 (0) " 0, '(0) " 0.

The two initial-value problems could serve as models for describing the motion of a
mass on a spring moving in a medium in which damping is negligible. At " 2p the
mass is given a sharp blow. In (a) the mass is released from rest 1 unit below the
equilibrium position. In (b) the mass is at rest in the equilibrium position.

From (3) the Laplace transform of the differential equation is

.

Using the inverse form of the second translation theorem, we fin

.

Since sin( ( 2p) " sin , the foregoing solution can be written as

(5)( ) " %cos , 0 + ) 2
cos ! 4 sin , $ 2 .

( ) " cos ! 4 sin ( ( 2 ) "( ( 2 )

2 ( ) ( ! ( ) " 4 (2 or ( ) " 2 ! 1
!

4 (2

2 ! 1

For 0 0, (3)!{7( ( 0)} " ( 0.

To begin, we can write d ( ( 0 ) in terms of the unit step function by
virtue of (11) and (12) of Section 7.3:

By linearity and (14) of Section 7.3 the Laplace transform of this last expression is

(4)

Since (4) has the indeterminate form 0&0 as , we apply L’Hôpital’s Rule:

. 

Now when 0 " 0, it seems plausible to conclude from (3) that

The last result emphasizes the fact that d( ) is not the usual type of function that we have
been considering, since we expect from Theorem 7.1.3 that !{ ( )} : 0 as : #.

! {7( )} " 1.

!{7( ( 0)} " lim
: 0

 !{7 ( ( 0)} " ( 0 lim
: 0

 # ( (

2 $ " ( 0

: 0

!{7 ( ( 0)} "
1

2
 ( ( ( 0( )

(
( ( 0! )

" ( 0 # ( (

2 $.

7 ( ( 0) "
1

2
 ["( ( ( 0 ( )) ( "( ( ( 0 ! ))].
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In Problems 1–12 use the Laplace transform to solve the
given system of differential equations.

(0) " 0, (0) " 1 (0) " 1, (0) " 1

(0) " (1, (0) " 2 (0) " 0, (0) " 0

(0) " 0, (0) " 0

(0) " 0, (0) " 1

(0) " 0, '(0) " (2, (0) " 1, '(0) " 0,
(0) " 0, '(0) " 1 (0) " (1, '(0) " 5

(0) " 8, '(0) " 0, (0) " 0, (0) " 0,
(0) " 0, '(0) " 0 '(0) " 0, /(0) " 0

(0) " 0, '(0) " 2, (0) " 0

(0) " 0, (0) " 1
2

" 3 (  !   "( ( 1)

" 4 ( 2 ! 2"( ( 1)

2

2  ! 3 " (

 
2

2 ! 3 ! 3 " 0

! 2 ( 2 
3

3 " 0 
2

2 (
2

2 " 4

( 4 !    
3

3 " 6 sin  
2

2 !
2

2 " 2

2

2 ! ( 4 " 0
2

2 ! ( " 0

2

2 ! !    " 0
2

2 ! ( " 0

!    ! 2 " 0

! ( !   " 0

    ! ( 3 ( 3 " 2

2 ! ( 2          " 1

(   ! (   "  " 5 (

! 3 !         " 1" ( 2

 " 8 (  " 2

 " 2 ! " ( !

Solve system (1) when 1 " 3, 2 " 2, 1 " 1, 2 " 1
and 1(0) " 0, , 2(0) " 1, .

Derive the system of differential equations describing the
straight-line vertical motion of the coupled springs shown
in Figure 7.6.6. Use the Laplace transform to solve the
system when 1 " 1, 2 " 1, 3 " 1, 1 " 1, 2 " 1 and

1(0) " 0, , 2(0) " 0, .'2(0) " 1'1(0) " (1

'2(0) " 0'1(0) " 1

2

2

3

2 0

1

1

1 0

Coupled springs in Problem 14

Show that the system of differential equations for
the currents 2( ) and 3( ) in the electrical network
shown in Figure 7.6.7 is

Solve the system in part (a) if " 5 1, 1 " 0.01 h,
2 " 0.0125 h, " 100 V, 2(0) " 0, and 3(0) " 0.

Determine the current 1( ).

 2 
3 ! 2 ! 3 " ( ).

 1 
2 ! 2 ! 3 " ( )

Network in Problem 15

1

1 2
3

2

In Problem 12 in Exercises 3.3 you were asked to
show that the currents 2( ) and 3( ) in the electrical
network shown in Figure 7.6.8 satisfy

 ( 1 
2 ! 2 

3 !
1

 3 " 0.

  2 !  3 ! 1 2 " ( )
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If and , then 
. _______

_______ _______

_______ _______

_______

_______

_______

_______

_______

_______

_______

_______

_______

_______

exists for _______.

If , then _______.

If and 0, then 
_______.

_______ whereas 

_______.

In Problems 25–28 use the unit step function to find an
equation for each graph in terms of the function " ( ),
whose graph is given in Figure 7.R.1.

!{ !0
  (5) 5} "

!{!0
 5 (5) 5} "

!{ ( ( )"( ( )} "

!{ ( )} "  ( )

!{ 8  ( )} "!{ ( )} "  ( )

!{ (5 }

! (1% 1
2 2 ! 2 2' "

! (1% !
2 ! 2 

( ' "

! (1% (5

2 ' "

! (1% 2 ( 10 ! 29' "

! (1% 1
2 ( 5' "

! (1% 1
( ( 5)3' "

! (1% 1
3 ( 1' "

! (1%20
6' "

!{sin 2  "( ( )} "

!{  sin 2 } "

!{ (3  sin 2 } "!{sin 2 } "

!{ (7 } "!{ (7 } "

! (1{ ( ) ( )} "  ( ) ( )
!{ ( )} " ( )!{ ( )} " ( )

In Problems 29–32 express in terms of unit step functions.
Find and .!{ ( )}!{ ( )}

Graph for Problem 25

0

0

( )

Graph for Problems 25–28

Graph for Problem 26

Graph for Problem 27

Graph for Problem 28

0

0

0 1

Graph for Problem 29

Graph for Problem 30

Graph for Problem 31

Graph for Problem 32

1

1

2 3 4

( )

2

1

1

( )

3

 sin 3 ,  

1 2 3

2
1

( )
(3, 3)

1 2

1

( )
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When each of the functions 1, 2, . . . , in (2) is linear
in the dependent variables 1, 2, . . . , , we get the of a first-orde
system of linear equations:

We refer to a system of the form given in (3) simply as a We
assume that the coefficients as well as the functions are continuous on a
common interval When ( ) ! 0, ! 1, 2, . . . , , the linear system (3) is said to
be otherwise, it is 

If ( ), and ( ) denote the respective
matrices

1( )

2( )

( )

  !
 (  

 
 ) ,

11( )

21( )

1( )

1 ( )

2 ( )

( )

12( )

22( )

2( )

. . .

. . .

. . .

 ( ) !
 (   ) ,

1( )

2( )

( )

 ( ) !
 (  ) ,...

...
...

...

! 11( ) 1 " 12( ) 2 " . . . " 1 ( )  " 1( )

! 21( ) 1 " 22( ) 2 " . . . " 2 ( )  " 2( )

! 1( ) 1 " 2( ) 2 " . . . " ( )  " ( ).

1–––

2–––

–––

...
...

(3)

● Matrix notation and properties are used extensively throughout this chapter. It is imperative that
you review either Appendix II or a linear algebra text if you unfamiliar with these concepts.

Recall that in Section 4.9 we illustrated how to solve systems of linear
differential equations in unknowns of the form

(1)

where the were polynomials of various degrees in the differential operator . In this chapter
we confine our study to systems of first-order DEs that are special cases of systems that have the
normal form

A system such as (2) of first-order equations is called a

! 1( ,  1,  2, . . . ,  )

! 2( ,  1,  2, . . . ,  )

! ( ,  1,  2, . . . ,  ).

1–––

2–––

–––

...
...

11( ) 1 " 12( ) 2 " . . . " 1 ( )  ! 1( )

21( ) 1 " 22( ) 2 " . . . " 2 ( )  ! 2( )

1( ) 1 " 2( ) 2 " . . . " ( )  ! ( ),

...
...

(2) 
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_ 1_2_3 2 31

_ 1_2_3 2 31

1
2
3
4
5
6

t

x

! $ "

! $ $ "

! $ " ! $ $ "

_2
_ 4
_ 6

2
4
6

t

y

_2
_ 4
_ 6
_8

_ 10
12.5 15105 7.52.5

2
4

x

y

A solution from (5)
yields three different curves in three
different planes

Solve
(4)

We first find the eigenvalues and eigenvectors of the matrix of
coefficients

From the characteristic equation

we see that the eigenvalues are l1 ! $1 and l2 ! 4.
Now for l1 ! $1, (3) is equivalent to

Thus 1 ! $ 2. When 2 ! $1, the related eigenvector is

For 2 ! 4 we have

so therefore with 2 ! 2 the corresponding eigenvector is

Since the matrix of coefficients is a 2 ) 2 matrix and since we have found two lin-
early independent solutions of (4),

we conclude that the general solution of the system is

(5)

You should keep firmly in mind that writing a solution of a sys-
tem of linear first-order differential equations in terms of matrices is simply an
alternative to the method that we employed in Section 4.9, that is, listing the individ-
ual functions and the relationship between the constants. If we add the vectors on the
right-hand side of (5) and then equate the entries with the corresponding entries in
the vector on the left-hand side, we obtain the more familiar statement

As was pointed out in Section 8.1, we can interpret these equations as parametric
equations of curves in the -plane or Each curve, corresponding to
specific choices for 1 and 2, is called a For the choice of constants

1 ! 2 ! 1 in the solution (5) we see in Figure 8.2.1 the graph of ( ) in the
-plane, the graph of ( ) in the -plane, and the trajectory consisting of the points

! 1
$ " 3 2

4 , ! $ 1
$ " 2 2

4 .

! 1 1 " 2 2 ! 1! 1
$1" $ " 2!3

2" 4 .

1 ! ! 1
$1" $ and 2 ! !3

2" 4 ,

2 ! !3
2".

1 ! 3
2 2;

 2 1 $ 3 2 ! 0

 $2 1 " 3 2 ! 0

1 ! ! 1
$1".

 2 1 " 2 2 ! 0.

 3 1 " 3 2 ! 0

det( $ ) ! #2 $

2
3

1 $ # ! 2 $ 3 $ 4 ! ( " 1)( $ 4) ! 0

 ! 2 " .

 ! 2 " 3
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In Problems 15 and 16 use a CAS or linear algebra software
as an aid in finding the general solution of the given system.

Use computer software to obtain the phase portrait
of the system in Problem 5. If possible, include
arrowheads as in Figure 8.2.2. Also include four
half-lines in your phase portrait.
Obtain the Cartesian equations of each of the four
half-lines in part (a).
Draw the eigenvectors on your phase portrait of the
system.

Find phase portraits for the systems in Problems 2 and 4.
For each system find any half-line trajectories and
include these lines in your phase portrait.

In Problems 19–28 find the general solution of the given
system.

# ! !
4
0
0

1
4
0

0
1
4"# ! !

1
2
0

0
2
1

0
$1

0"

# ! !
1
0
0

0
3

$1

0
1
1"# ! !

5
1
0

$4
0
2

0
2
5"

 ! 4 " 2 " 3! $ "

 ! 2 " 2! " $

 ! 3 " 2 " 4! 3 $ $

# ! !12
4

$9
0"# ! !$1

$3
3
5"

 ! $5 " 4 ! 9 $ 3

 ! $6 " 5 ! 3 $

# ! !
1
0
1
0

 $2.8

0
5.1
2
1
0

 2
 0

$3
$3.1
 0

$1.8
$1

0
4
1.5

0
3
0
0
1
"

# ! !
0.9
0.7
1.1

2.1
6.5
1.7

3.2
4.2
3.4"

●

In Problems 29 and 30 solve the given initial-value problem.

Show that the 5 ) 5 matrix

has an eigenvalue l1 of multiplicity 5. Show that three
linearly independent eigenvectors corresponding to l1
can be found.

Find phase portraits for the systems in Problems 20
and 21. For each system find any half-line trajectories
and include these lines in your phase portrait.

In Problems 33–44 find the general solution of the given
system.

# ! !
4
0

$4

0
6
0

1
0
4"# ! !

1
$1
$1

$1
1
0

2
0
1"

 ! $4 $ 3 !

 ! 3 " 6 ! $

 ! 2 " " 2 !

# ! !1
1

$8
$3"# ! !4

5
$5
$4"

 ! $2 " 6 ! $2 " 3

 ! 4 " 5 ! 5 "

 ! $2 $! 5 " 2

 ! "! 6 $

! !
2
0
0
0
0

1
2
0
0
0

0
0
2
0
0

0
0
0
2
0

0
0
0
1
2
"

# ! !
0
0
1

0
1
0

1
0
0" , (0) ! !

1
2
5"

# ! ! 2
$1

4
6" , (0) ! !$1

6"
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In Problems 45 and 46 solve the given initial-value problem.

Find phase portraits for the systems in Problems 36, 37,
and 38.

Solve (2) of Section 7.6 using the first method
outlined in the (page 345)—that is, express
(2) of Section 7.6 as a first-order system of four lin-
ear equations. Use a CAS or linear algebra software
as an aid in finding eigenvalues and eigenvectors of
a 4 ) 4 matrix. Then apply the initial conditions to
your general solution to obtain (4) of Section 7.6.
Solve (2) of Section 7.6 using the second method out-
lined in the —that is, express (2) of Sec-
tion 7.6 as a second-order system of two linear equa-
tions. Assume solutions of the form ! sin v

# ! !6
5

$1
4" , (0) ! !$2

8"

# ! !
1
1
1

$12
2
1

$14
$3
$2" , (0) ! !

4
6

$7"

# ! !
2

$1
$1

4
$2

0

4
0

$2"# ! !
2

$5
0

5
$6

0

1
4
2"

●

and ! cos v Find the eigenvalues and eigen-
vectors of a 2 ) 2 matrix. As in part (a), obtain (4)
of Section 7.6.

Solve each of the following linear systems.

Find a phase portrait of each system. What is the geo-
metric significance of the line ! $ in each portrait?

Consider the 5 ) 5 matrix given in Problem 31. Solve
the system # ! without the aid of matrix methods,
but write the general solution using matrix notation. Use
the general solution as a basis for a discussion of how the
system can be solved using the matrix methods of this
section. Carry out your ideas.

Obtain a Cartesian equation of the curve define
parametrically by the solution of the linear system in
Example 6. Identify the curve passing through (2, $1)
in Figure 8.2.5. [ : Compute 2, 2, and ]

Examine your phase portraits in Problem 47. Under
what conditions will the phase portrait of a 2 ) 2
homogeneous linear system with complex eigenvalues
consist of a family of closed curves? consist of a family
of spirals? Under what conditions is the origin (0, 0) a
repeller? An attractor?

# ! ! 1
$1

1
$1"# ! !1

1
1
1"

As in Section 4.4, the method of undetermined coefficient
consists of making an educated guess about the form of a particular solution vector

; the guess is motivated by the types of functions that make up the entries of the

● Section 4.4 (Undetermined Coefficients
● Section 4.6 (Variation of Parameters)

In Section 8.1 we saw that the general solution of a nonhomogeneous linear
system # ! " ( ) on an interval is ! " , where 
is the or general solution of the associated homogeneous linear system

# ! and is any of the nonhomogeneous system. In Section 8.2 we saw
how to obtain when the coefficient matrix was an ) matrix of constants. In the present
section we consider two methods for obtaining .

The methods of and used in Chapter 4 to
find particular solutions of nonhomogeneous linear ODEs can both be adapted to the solution of
nonhomogeneous linear systems # ! " ( ). Of the two methods, variation of parameters
is the more powerful technique. However, there are instances when the method of undetermined
coefficients provides a quick means of finding a particular solutio

! 1 1 " 2 2 " & & & "
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Suppose ! $1, where is defined as in (9). Use
(3) to show that ! $1.

If is defined as in (9), then fin

In Problems 23 and 24 use the results of Problems 19–22 to
solve the given system.

Reread the discussion leading to the result given in (7).
Does the matrix $ always have an inverse? Discuss.

A matrix is said to be if there exists
some positive integer such that ! . Verify that

is nilpotent. Discuss why it is relatively easy to compute
when is nilpotent. Compute and then use (1) to

solve the system # ! .

! !$1
$1
$1

1
0
1

1
1
1
"

# ! !2
1

1
2"

# ! ! 2
$3

1
6"

●

Use (1) to find the general solution of

. Use a CAS to find . Then use 

the computer to find eigenvalues and eigenvectors 

of the coefficient matrix and form the 

general solution in the manner of Section 8.2.
Finally, reconcile the two forms of the general solu-
tion of the system.
Use (1) to find the general solution of

. Use a CAS to find . In the

case of complex output, utilize the software to do
the simplification; for example, in if

$ has complex entries, then
try the command 

Use (1) to find the general solution o

.

Use MATLAB or a CAS to find .

# ! !
$4

0
$1

0

0
$5

0
3

6
0
1
0

0
$4

0
2
"

# ! !$3
2

$1
$1"

! !4
3

2
3"

# ! !4
3

2
3"

In Problems 1 and 2 fill in the blanks

The vector is a solution of

for ! __________.

The vector is solution of 

the initial-value problem 

for 1 ! __________ and 2 ! __________.

Consider the linear system .

Without attempting to solve the system, determine
which one of the vectors

1 ! !0
1
1
", 2 ! ! 1

1
$1

", 3 ! ! 3
1

$1
", 4 ! ! 6

2
$5

"

# ! ! 4
1

$1

6
3

$4

6
2

$3
"

# ! !1
6

10
$3" , (0) ! !2

0"
! 1!$1

1" $9 " 2!5
3" 7

# ! !1
2

4
$1" $ !8

1"
! !4

5"
is an eigenvector of the coefficient matrix. What is
the solution of the system corresponding to this
eigenvector?

Consider the linear system # ! of two differential
equations, where is a real coefficient matrix. What is
the general solution of the system if it is known that

l1 ! 1 " 2 is an eigenvalue and is a corre-

sponding eigenvector?

In Problems 5–14 solve the given linear system.

# ! !0
1
2

2
1
2

1
$2
$1

"# ! !1
0
4

$1
1
3

1
3
1
"

# ! !$2
$2

5
4"# ! ! 1

$2
2
1"

! 2 $ 4 ! $

! $4 " 2 ! 2 "

1 ! !1"
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●

a calculator that uses base 10 arithmetic and carries four digits, so that is repre-
sented in the calculator as 0.3333 and is represented as 0.1111. If we use this 
calculator to compute for ! 0.3334, we obtain

With the help of a little algebra, however, we see that

so when . This exam-
ple shows that the effects of round-off error can be quite serious unless some care is
taken. One way to reduce the effect of round-off error is to minimize the number of
calculations. Another technique on a computer is to use double-precision arithmetic
to check the results. In general, round-off error is unpredictable and difficult to ana-
lyze, and we will neglect it in the error analysis that follows. We will concentrate on
investigating the error introduced by using a formula or algorithm to approximate the
values of the solution.

In the sequence of values 1, 2,
3, . . . generated from (1), usually the value of 1 will not agree with the actual solu-

tion at 1 —namely, ( 1)—because the algorithm gives only a straight-line
approximation to the solution. See Figure 2.6.2. The error is called the 

or It occurs at each step; that is, if we
assume that is accurate, then $1 will contain local truncation error.

To derive a formula for the local truncation error for Euler’s method, we use
Taylor’s formula with remainder. If a function ( ) possesses $ 1 derivatives that
are continuous on an open interval containing and , then

where is some point between and Setting ! 1, ! , and ! $1 ! $ ,
we get

or

Euler’s method (1) is the last formula without the last term; hence the local
truncation error in $1 is

The value of is usually unknown (it exists theoretically), so the error cannot
be calculated, but an upper bound on the absolute value of the error is 

In discussing errors that arise from the use of numerical methods, it is helpful to use
the notation ( ). To define this concept, we let ( ) denote the error in a numerical
calculation depending on Then ( ) is said to be of order , denoted by ( ), if there
exist a constant and a positive integer such that ( ) % for sufficiently small.
Thus the local truncation error for Euler’s method is ( 2). We note that, in general, if
( ) in a numerical method is of order and is halved, the new error is approximately
( !2) ! !2 ; that is, the error is reduced by a factor of 1!2 .

""

where ! max
& & $1 

" '( ) ".
2>2!,

'( ) 
2

2!
, where & & $1.

$1

( $1) !  $ ( , ) $ '( ) .
2

––
2!

( $1) ! ( ) $ "( ) 
1!

$ '( ) 
2

2!

( ) ! ( ) $ "( ) 
#

1!
$ ( ( ( $ ( )( ) 

( # )
!

$ ( $1)( ) 
( # ) $1

( $ 1)!
,

! 0.3334, ( 2 # 1
9) ! ( # 1

3) # 0.3334 $ 0.3333 ! 0.6667

2 # 1
9

# 1
3

!
( # 1

3)( $ 1
3)

# 1
3

! $
1
3
,

(0.3334)2 # 0.1111
0.3334 # 0.3333

!
0.1112 # 0.1111
0.3334 # 0.3333

! 1.

( 2 # 1
9) ! ( # 1

3)
1
9

1
3
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●

1 ! 0 $ These equations can be readily visualized. In Figure 9.1.1, observe that
0 ! ( 0, 0) and are slopes of the solid straight lines shown passing

through the points ( 0, 0) and , respectively. By taking an average of these

slopes, that is, , we obtain the slope of the parallel 

dashed skew lines. With the first step, rather than advancing along the line through
( 0, 0) with slope ( 0, 0) to the point with -coordinate obtained by Euler’s
method, we advance instead along the red dashed line through ( 0, 0) with slope ave
until we reach 1. It seems plausible from inspection of the figure that 1 is an
improvement over .

In general, the improved Euler’s method is an example of a 
The value of given by (4) predicts a value of ( ), whereas the value of

$1 defined by formula (3) corrects this estimate
*$1

*1

*1

ave !
( 0, 0) $ ( 1, 1*)

2

( 1, *1 )
1 ! ( 1, *1 )

( 1 ,  1 ) 

( 1 ,  * 1 ) 
0 

1 

ave 

0 1

( 0, 0)

( 1, )

( 1, )
0 ( 0, 0)
1 ( 1, *1)( 1, ( 1))

solution
curve

( 0, 0) ( 1, *1)
2ave

Slope of red dashed
line is the average of 0 and 1

Improved Euler’s Method with ! 0.05

Actual Abs. % Rel.
value error error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1077 1.1079 0.0002 0.02
1.10 1.2332 1.2337 0.0004 0.04
1.15 1.3798 1.3806 0.0008 0.06
1.20 1.5514 1.5527 0.0013 0.08
1.25 1.7531 1.7551 0.0020 0.11
1.30 1.9909 1.9937 0.0029 0.14
1.35 2.2721 2.2762 0.0041 0.18
1.40 2.6060 2.6117 0.0057 0.22
1.45 3.0038 3.0117 0.0079 0.26
1.50 3.4795 3.4904 0.0108 0.31

Improved Euler’s Method with ! 0.1

Actual Abs. % Rel.
value error error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2320 1.2337 0.0017 0.14
1.20 1.5479 1.5527 0.0048 0.31
1.30 1.9832 1.9937 0.0106 0.53
1.40 2.5908 2.6117 0.0209 0.80
1.50 3.4509 3.4904 0.0394 1.13

A brief word of caution is in order here. We cannot compute all the values of 
first and then substitute these values into formula (3). In other words, we cannot use
the data in Table 9.1.1 to help construct the values in Table 9.1.3. Why not?

The local trunca-
tion error for the improved Euler’s method is ( 3). The derivation of this result is
similar to the derivation of the local truncation error for Euler’s method. Since the

*

Use the improved Euler’s method to obtain the approximate value of (1.5) for the
solution of the initial-value problem " ! 2 , (1) ! 1. Compare the results for

! 0.1 and ! 0.05.

With 0 ! 1, 0 ! 1, ( , ) ! 2 , ! 0, and ! 0.1, we firs
compute (4):

We use this last value in (3) along with 1 ! 1 $ ! 1 $ 0.1 ! 1.1:

The comparative values of the calculations for ! 0.1 and ! 0.05 are given in
Tables 9.1.3 and 9.1.4, respectively.

1 ! 0 $ (0.1) 
2 0 0 $ 2 1 *1

2
! 1 $ (0.1) 

2(1)(1) $ 2(1.1)(1.2)
2

! 1.232.

*1 ! 0 $ (0.1)(2 0 0) ! 1 $ (0.1)2(1)(1) ! 1.2.
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●

Fundamentally, all Runge-Kutta methods are gener-
alizations of the basic Euler formula (1) of Section 9.1 in that the slope function is
replaced by a weighted average of slopes over the interval % % $1. That is,

(1)

Here the weights , ! 1, 2, . . . , , are constants that generally satisfy 
1 $ 2 $ ( ( ( $ ! 1, and each , ! 1, 2, . . . , , is the function evalu-

ated at a selected point ( , ) for which % % $1. We shall see that the are
defined recursively. The number is called the of the method. Observe that
by taking ! 1, 1 ! 1, and 1 ! ( , ), we get the familiar Euler formula

$1 ! $ ( , ). Hence Euler’s method is said to be a 

The average in (1) is not formed willy-nilly, but parameters are chosen so that
(1) agrees with a Taylor polynomial of degree As we saw in the preceding section,
if a function ( ) possesses $ 1 derivatives that are continuous on an open interval
containing and , then we can write

where is some number between and If we replace by and by
$1 ! $ , then the foregoing formula becomes

where is now some number between and $1. When ( ) is a solution of
" ! ( , ) in the case ! 1 and the remainder is small, we see that 

a Taylor polynomial ( $1) ! ( ) $ "( ) of degree one agrees with the
approximation formula of Euler’s method

$1 ! $ " ! $ ( , ).

1
2 

2 '( )

( $1) ! ( $ ) ! ( ) $ "( ) $
2

2!
 '( ) $ ( ( ( $

$1

( $ 1)!
 ( $1)( ),

( ) ! ( ) $ "( ) 
#

1!
$ '( ) 

( # )2

2!
$ ( ( ( $ ( $1)( ) 

( # ) $1

( $ 1)!
,

weighted average

$1 !  $ ( 1 1 $ 2 2 $ … $ ).

● Section 2.6 (see page 78)

Probably one of the more popular as well as most accurate numerical proce-
dures used in obtaining approximate solutions to a first-order initial-value problem " ! ( , ),
( 0) ! 0 is the As the name suggests, there are Runge-Kutta

methods of different orders.

To further illustrate (1), we con-
sider now a This consists of finding con-
stants or parameters 1, 2, a, and b so that the formula

(2)

where

 2 ! ( $ , $ ) 1),

 1 ! ( , )

 $1 ! $ ( 1 1 $ 2 2),
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It can be proved that a determinant det can be expanded by cofactors using any
row or column. If det has a row (or a column) containing many zero entries,
then wisdom dictates that we expand the determinant by that row (or column).

The of the " matrix (1) is the " matrix given by

In other words, the rows of a matrix become the columns of its transpose .

11

12

1

1

2

21

22

2

. . .

. . .

. . .

 !
 ( .)...

...

The transpose of is 

If then  ! (5 0 3).! !5
0
3
",

! !3 2 #1
6 5 2
2 1 4

".! ! 3 6 2
2 5 1

#1 2 4
"

Let be an " matrix. If there exists an " matrix such that

where is the multiplicative identity, then is said to be the 
and is denoted by ! #1.

! ! ,

Let be an " matrix. If det % 0, then is said to be If 
det ! 0, then is said to be 

The following theorem gives a necessary and sufficient condition for a square
matrix to have a multiplicative inverse.

An " matrix has a multiplicative inverse #1 if and only if is
nonsingular.

The following theorem gives one way of finding the multiplicative inverse for a
nonsingular matrix.
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and

Matrices are an invaluable aid in solving algebraic systems of linear equations in
variables or unknowns,

(5)

If denotes the matrix of coefficients in (5), we know that Cramer’s rule could be
used to solve the system whenever det % 0. However, that rule requires a
herculean effort if is larger than 3 " 3. The procedure that we shall now consider
has the distinct advantage of being not only an efficient way of handling large
systems, but also a means of solving consistent systems (5) in which det ! 0 and
a means of solving linear equations in unknowns.

11 1 $ 12 2 $ ' ' ' $ 1 ! 1

21 1 $ 22 2 $ ' ' ' $ 2 ! 2

                             �                  �

1 1 $ 2 2 $ ' ' ' $ ! .

%
0

( ) ! ! %0 sin 2  

%0 
3  

%0 (8 # 1) " ! !#1
2

 cos 2 $ 1
2

1
3 

3 # 1
3

4 2 #
".

●

The of the system (5) is the " ( $ 1) matrix

11

21

1

1

2

12

22

2 

. . .

. . .

. . .( ...

1

2 ) ....&
If is the column matrix of the , ! 1, 2, . . . , , the augmented matrix of (5)

is denoted by 

Recall from algebra that we can transform an
algebraic system of equations into an equivalent system (that is, one having the same
solution) by multiplying an equation by a nonzero constant, interchanging the posi-
tions of any two equations in a system, and adding a nonzero constant multiple of an
equation to another equation. These operations on equations in a system are, in turn,
equivalent to on an augmented matrix:

( ) Multiply a row by a nonzero constant.
( ) Interchange any two rows.
( ) Add a nonzero constant multiple of one row to any other row.

To solve a system such as (5) using an augmented ma-
trix, we use either or the 
In the former method, we carry out a succession of elementary row operations until
we arrive at an augmented matrix in 

( ) The first nonzero entry in a nonzero row is 1
( ) In consecutive nonzero rows the first entry 1 in the lower row appears t

the right of the first 1 in the higher ro .
( ) Rows consisting of all 0’s are at the bottom of the matrix.

( $ ).
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In Problems 55 and 56 show that the given matrix has
complex eigenvalues. Find the eigenvectors of the matrix.

If ( ) is a 2 " 2 matrix of differentiable functions and
( ) is a 2 " 1 column matrix of differentiable func-

tions, prove the product rule

Derive formula (3). [ : Find a matrix

for which ! . Solve for 11, 12, 21, and 22. Then
show that ! .]

! ! 11 12

21 22
"

 [ ( ) ( )] ! ( ) &( ) $ &( ) ( ).

!2 #1 0
5 2 4
0 1 2

"!#1 2
#5 1"

●

If is nonsingular and ! , show that ! .

If and are nonsingular, show that ( )#1 ! #1 #1.

Let and be " matrices. In general, is

A square matrix is said to be a if
all its entries off the main diagonal are zero—that is,

! 0, % The entries on the main diagonal may
or may not be zero. The multiplicative identity matrix 
is an example of a diagonal matrix.

Find the inverse of the 2 " 2 diagonal matrix

when 11 % 0, 22 % 0.
Find the inverse of a 3 " 3 diagonal matrix 
whose main diagonal entries are all nonzero.
In general, what is the inverse of an " diagonal
matrix whose main diagonal entries are all
nonzero?

! ! 11 0
0 22

"

( $ )2 ! 2 $ 2 $ 2?
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2 ! 2 $ sin 2( $ ) #
4( ! 2 $ 3) # ( $ )2

2 # 2.9800, 4 # 3.1151
10 # 2.5937, 20 # 2.6533; #

5 # 0.4198, 10 # 0.4124
5 # 0.5639, 10 # 0.5565
5 # 1.2194, 10 # 1.2696

Euler: 10 # 3.8191, 20 # 5.9363
RK4: 10 # 42.9931, 20 # 84.0132

! ! , a repeller for % 0, an attractor for & 0
true

true

semi-stable for even and unstable for odd; 
semi-stable for even and asymptotically stable 
for odd.
2 $ sin 2 # 2 ln( 2 $ 1) $
(6 $ 1) 3 # !3 3 $

# csc , (p, 2p)

7.9 yr; 10 yr
760; approximately 11 persons/yr
11 h
136.5 h
(15) # 0.00098 0 or approximately 0.1% of 0

15,600 years
(1) # 36.67° F; approximately 3.06 min

approximately 82.1 s; approximately 145.7 s
390°
about 1.6 hours prior to the discovery of the body

( ) # 200 ! 170 ! /50

# 1
4 ( $ 2 1 0 ! 0)2, ( 0 ! 2 1 0, ")

# 1
4 $ ( 2 $ 4)!4

# !1 $ 1
25 4 (!1 $ 5 ln )

# ( ! 1)2 ( ! 3)2

$ (sin ) #

# 1

3

3 #  sin

#
2

$ (!1
4 $ !3)!1

!cot( $ ) $ csc( $ ) # $ 12 ! 1

( ) # 1000 ! 1000 ! /100

64.38 lb

as 

As .
( ) # ! ! ( ! ) ! ; (ln 2)!

1.988 ft

# 2000

1,000,000; 5.29 mo

For 0 & 0 & 1, time of extinction is

.

;

time of extinction is

29.3 g; as ; 0 g of and 30 g of 

or 30.36 min
approximately 858.65 s or 14.31 min
243 s or 4.05 min

576 110 s

( ) # #1 !
4  $2

;  is 0 * * 1 !4

: ": 60

#
213

 'tan!1 513
$ tan!1 #2 0 ! 513 $(

( ) #
5
2

$
13
2

  tan'! 13
2

 $ tan!1 #2 0 ! 513 $(
# ! 1

3
 ln 4( 0 ! 1)

0 ! 4

( ) #
4( 0 ! 1) ! ( 0 ! 4) !3

( 0 ! 1) ! ( 0 ! 4) !3

( ) #
2000

1999 $
; (10) # 1834

: ", ( ) : >( ) # 0 ( 1! 2)

331
3 seconds

( ) #
4

 #  $ 0$ ! 0

4
 # 0

 $ 0$
3

 $  # 0 ! $
( ) #   !  # 0 ! $ ! /

: ":

( ) # $ # 0 ! $ ! /

( ) # "60 ! 60 ! /10, 0 * * 20
60( 2 ! 1) ! /10, % 20

( ) # 1
100 ! 1

100
!50 ; ( ) # 1

2
!50

( ) # 3
5 ! 3

5 !500 ; : 3
5 as : "

( ) # 1000 ! 10 ! 1
10 (100 ! )2; 100 min
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2 # 2
2 # sin 4

2 # sinh 2 # 2 /3

2 # 4 ln& & 2 # 1
2 # cos(ln ) 2 # 2 $ $ 2

# 1 $ 2
! /4 # 1

3 $ 2
!2

# 1
!4 $ 2

!4 # 1
2 /3 $ 2

! /4

# 1cos 3 $ 2sin 3
# 2 ( 1cos $ 2sin )

# 1 $ 2
! $ 3

5

# 1
! $ 2

3 $ 3
3

# 1 $ ! ( 2cos $ 3sin )
# 1

! $ 2
! $ 3

2 !

# 1 $ 2 $ 3
! $ 4

! $ 5
!5

# 0

# 5 ! 5

# 0

' ! 6 ( $ 5 # 0 ' ! 2 ( # 0

' $ 9 # 0 ' $ 2 ( $ 2 # 0

(' ! 8 ' # 0

# 1
! $ 2

!2 $ 3

# 1 $ 2 $ 3

$ 12
25 

 sin 2 ! 9
25 cos 2

# 1
! $ 2

! ! 1
2 cos  

# 1
 cos 2 $ 2

 sin 2 $ 1
4

   sin 2
# 1 cos $ 2 sin ! 1

2
 2 cos $ 1

2
  sin 

# 1 cos 2 $ 2 sin 2 ! 3
4

  cos 2
# 1

/2 $ 2
/2 $ 12 $ 1

2
 2 /2 

# 1 cos 13 $ 2 sin 13 $ (!4 2 $ 4 ! 4
3) 3

# 1
!2 $ 2

!2 $ 2 ! 4 $ 7
2

# 1
5 $ 2

5 $ 6
5 $ 3

5

# cosh 13 $
513

 sinh13

#
1
2
 #1 !

513$ !13 $
1
2
 #1 $

513$ 13 ;

# 5
36 ! 5

36 !6 $ 1
6 !6

# !1
3 !( !1) $ 1

3 5( !1)
# 2 cos 4 ! 1

2 sin 4

$ 3  cos 12 13 $ 4  sin 1
2 13 

# 1 cos 12 13 $ 2 sin 12 13 
# 1 $ 2 $ ! /2 ( 3 cos 12 13 $ 4 sin 12 13 )

# ! /3( 1 cos 13 12 $ 2 sin 13 12 )

2 # 2 , # 5
2 3

2 # 2 , # !1
2

# 1 cos $ 2 sin $ 3 cos $ 4 sin 
$ 2 ! 2 ! 3

# !200 $ 200 ! /5 ! 3 2 $ 30
# !10 !2 cos $ 9 !2 sin $ 7 !4

# 6 cos ! 6(cot 1) sin $ 2 ! 1

(3 ! 2)(3 $ 2) # sin 
( ! 6)( $ 2) # ! 6

( $ 5)2 #
( ! 1)( ! 2)( $ 5) # !

( $ 2)( 2 ! 2 $ 4) # 4
4 ( ! 2)
2 $ 4 3( 2 $ 16)

( $ 1)( ! 1)3 ( 2 ! 2 $ 5)
1, , 2, 3, 4 6 , !3 /2

1, 5 , 5

# 1
!3 $ 2

3 ! 6
# 1 $ 2

! $ 3

# 1
! $ 2

3 ! $ 3

# 1cos 5 $ 2sin 5 ! 2 cos 5

$ sin $ 2 cos ! cos 

# 2 2  cos 2 ! 3
64

 2  sin 2 $ 1
8

 3 $ 3
16

 2 $ 3
32

 

# !) cos ! 11
3  sin ! 8

3 cos 2 $ 2  cos 
# ! 41

125 $ 41
125

 5 ! 1
10

 2 $ 9
25

 

# 5
8

 !8 $ 5
8

 8 ! 1
4

# 1 $ 2 $ 3 $ 4 $ 1
2

 2 $ 1
2

 2

# 1 $ 2 $ 3
2 $ 1

6
 3 $ ! 13

# 1 $ 2 $ 3
!8 $ 11

256
 2 $ 7

32
 3 ! 1

16
 4

# ! /2# 1 cos 13
2

 $ 2 sin 
13
2

 $

#  ( 1cos 2 $ 2sin 2 ) $ 1
3

  sin 
# 1

! $ 2 $ 1
6

 3 ! 1
4

 2 $ 1
4

 ! 5
# 1

!3 $ 2
!3 ! 1

49
 4 $ 2

343
 4

# 1 cos 5  $ 2 sin 5 $ 1
4 sin 

# 1
!3 $ 2

4 $ 1
7

 4

# 1 $ 2 $ 3
! $ 2

3
 4 ! 8

3
 3 $ 8 2

# 1
!2 $ 2

!2 $ 1
2

 $ 1

cos 15 , sin 15

# "cos 2 $ 5
6 sin 2 $ 1

3 sin ,
2
3 cos 2 $ 5

6 sin 2 ,
0 * * )>2

% )>2
#

!4 sin 13
sin 13 $ 13 cos 13

$ 2

# 11 ! 11 $ 9 $ 2 ! 12 2 $ 1
2

 5

# 0

2.2 sin . ! 0

2.
  cos .

# 12 sin 2 ! 1
2

# 1 $ 2 $ 3
2 ! ! 3 ! 2

3
 3

# 1 $ 2 $ 3
6 ! 1

4 
2 ! 6

37 cos $ 1
37 sin 
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# 1
! $ 2

!2 $ ( ! $ !2 ) ln(1 $ )
# 1

!2 $ 2
! ! !2 sin 

# 1
!1/2 cos $ 2

!1/2 sin $ !1/2

# 1
!1 $ 2

2

# 1 $ 2 ln 
# 1 cos(2 ln ) $ 2 sin(2 ln )

# 1
!2 $ 2

!2 ln 

# 1 $ 2 $ 3
2 $ 4

!3

# 1 $ 2 ln $ (ln )2

# 1
!1 $ 2 ! ln 

# 2 ! 2 !2

# cos(ln ) $ 2 sin(ln )

# 1
!10 $ 2

2

# 2(! )1/2 ! 5(! )1/2 ln(! ), & 0

# 1cos[ln( $ 2)] $ 2sin[ln( $ 2)]

# 1( $ 3)2 $ 2( $ 3)7

# 2 [ 1 cos(3 ln ) $ 2 sin(3 ln )] $ 4
13 $ 3

10
 

# 1
!1 $ 2

!8 $ 1
30

 2

# 3
4 ! ln $ 1

4
 2

# 1 $ 2
5 $ 1

5
 5 ln 

# 1
3 $ 2 cos(12 ln ) $ 3 sin(12 ln )

# !1/2[ 1 cos(1
6

 13 ln ) $ 2 sin(1
6

 13 ln )]

# 1 cos (1
5 ln ) $ 2 sin (1

5 ln )
# 1

(2!16) $ 2
(2$16)

# 1 $ 2
! $ 3

2 $ 1
30

 4

! sin  ln& sec $ tan &
# 1 $ 2 cos $ 3 sin ! ln& cos &

# 4
9

 !4 $ 25
36

 2 ! 1
4

 !2 $ 1
9

 !

# 1
4

 ! /2 $ 3
4

 /2 $ 1
8

 2 /2 ! 1
4

 /2

$ 1
3

  cos  ln& cos &
# 1

 sin $ 2  cos $ 1
3

  sin 
# 1

! $ 2
! $ 1

2
 2 !  ln ! 3

4 2 !

0 % 0

# 1
2 $ 2

!2 $ 1
4

 # 2  ln& & ! !2 %
0

 
4

 $,

# 1 $ 2
! $ 1

2
  sinh 

# 1 cos $ 2 sin $ 1
2 ! 1

6 cos 2
# 1 cos $ 2 sin ! 1

2  cos 
# 1 cos $ 2 sin $  sin $ cos  ln& cos &

where ( )

where 

# 1 $ 2
# ( 1 ! 2) $ 2
# 1 cos $ 2 sin $ $ 1
# 1 sin ! 2 cos $ ! 1

( ) # 1
2 (ln )2 $ 1

2 ln

( ) # ! cos ! sin $

( ) #
sin( ! 1)

sin1
!

sin
sin1

$ 1

( ) # 1
2

2 ! 1
2

( ) # ( ! 1)%
0

( ) $ %1
( ! 1) ( )

( ) # "0,                & 0
10 ! 10 cos ,   0 * * 3)

!20cos ,        % 3)

# cos ! sin $ ( ), 

# " 1 ! cosh , & 0
!1 $ cosh , 0

( ) # 5 $ 3 ! $ ( ),

# 46
45

3 ! 1
20

!2 $ 1
36 ! 1

6 ln

# 4 ! 2 2 ! ln

# (cos1! 2) ! $ (1 $ sin1! cos1) !2 ! !2 sin
# ! sin ! cos ln&sin &
# ! 5 $ 6 5 $ 1

2
2 5

# 25
16

!2 ! 9
16

2 $ 1
4

2

( ) # !cos $
p

2
sin ! sin ! cos ln&sin &

( ) # 1
2

2 5

( ) # 1
4

2 ! 1
16

2 $ 1
16

!2

# 1cos3 $ 2sin3 $ 1
3%

0

sin3( ! )( $ sin )

# 1
! $ 2

! $ %
0

( ! ) !( ! ) !

# 1
!4 $ 2

4 $ 1
4%

0

sinh4( ! ) !2

( ) # 1
3%

0

sin3( ! ) ( )

( ) # %
0

( ! ) !( ! ) ( )

( ) # 1
4%

0

sinh 4( ! ) ( )
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# 1# cos 2
!sin 2 $ $ 2 #sin 2

cos 2 $

# 1# 1
!1$ $ 2 '# 1

!1$ $ #0
1$ (

# 1
3

# 3 #1
1$ 3 $ 4 #1

3$ 5

# 1#
3
2 

3 ! 1
2 

5

3
2 

3 ! 3
2 

5 $ $ 2 #!1
2 

3 $ 1
2 

5

!1
2 

3 $ 3
2 

5 $ or

# 1#1 $ 3 $ 2 $ 2 # !9
1 ! 3 $ 2

# # 2 $ 3 2

2
!9 2

2 ! 3 2 $;

# 3 # 3
!2$ 2 $ 4 # 1

!2$ !2

# 1#
3
2

 2 ! 1
2

 !2

! 2 $ !2 $ $ 2 #
3
4 

2 ! 3
4 

!2

!1
2 

2 $ 3
2 

!2 $ or

# #
3
2

 2 ! 1
2

 !2

! 2 $ !2

3
4

 2 ! 3
4

 !2

!1
2

 2 $ 3
2

 !2 $;

# # $ 1

!2
$ ! 4# $ 1

!2
$ $ 6#

!2 $ 1
$

# 1#cosh  
sinh $ $ 2 #sinh 

cosh $ ! #1
1$

# 3 #1
0$ $ 4 #0

1$ 2 $ #!3
1
2
$

# 1# $ 1

!2
$ $ 2 # $ 1

!2
$ $ 3 #

!2 $ 1
$

# 1#1
0$ $ 2 #0

1$ 2

# # $ 1

!2
$ 1

!2 !2 $ 1
$

# #0
0
2 $; ! # # !

0
0
!2 $

for # 0.1, 5 # 2.0801; for # 0.05, 10 # 2.0592
for # 0.1, 5 # 0.5470; for # 0.05, 10 # 0.5465
for # 0.1, 5 # 0.4053; for # 0.05, 10 # 0.4054
for # 0.1, 5 # 0.5503; for # 0.05, 10 # 0.5495
for # 0.1, 5 # 1.3260; for # 0.05, 10 # 1.3315
for # 0.1, 5 # 3.8254; for # 0.05, 10 # 3.8840;
at # 0.5 the actual value is (0.5) # 3.9082

1 # 1.2

Actual value is (0.1) # 1.2214. Error is 0.0214.
If # 0.05, 2 # 1.21.
Error with # 0.1 is 0.0214. Error with # 0.05
is 0.0114.

1 # 0.8

for 0 * * 0.1.
Actual value is (0.1) # 0.8234. Error is 0.0234.
If # 0.05, 2 # 0.8125.
Error with # 0.1 is 0.0234. Error with # 0.05
is 0.0109.

Error is 19 2 !3( !1).

If # 0.1, 5 # 1.8207.
If # 0.05, 10 # 1.9424.
Error with # 0.1 is 0.2325. Error with # 0.05
is 0.1109.

'( ) 
2

2
* 19(0.1)2(1) # 0.19

'( ) 
2

2
# 5 !2  

(0.1)2

2
# 0.025 !2 * 0.025

 # 0.0244

'( ) 
2

2
# 4 2  (0.1)2

2
# 0.02 2  * 0.02 0.2

# 1#!1
1
0
$ $ 2 #!1

0
1
$ $ 3#1

1
1
$ 3

$ # sin  
sin $ cos $ ln& csc ! cot &

# 1# cos 
cos ! sin $ $ 2 # sin 

sin  $ cos $ ! #1
1$

# 1#1
0$ 2 $ 2 #4

1$ 4 $ # 16
!4$ $ # 11

!1$

# 1#!2
3
1
$ 2 $ 2 #0

1
1
$ 4 $ 3 # 7

12
!16

$ !3
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Absolute convergence of a power 
series, 232

Absolute error, 78
Acceleration due to gravity, 26, 193
Adams-Bashforth-Moulton method, 373
Adams-Bashforth predictor, 373
Adams-Moulton corrector, 373
Adaptive numerical method, 371
Addition:

of matrices, APP-4 
of power series, 234

Aging spring, 197, 261, 268
Agnew, Ralph Palmer, 33, 137
Air resistance:

proportional to square of velocity, 30,
45, 102 

proportional to velocity, 26, 45, 92
Airy, George Biddel, 243
Airy’s differential equation: 

definition of, 197, 243
numerical solution curves, 246 
power series solutions, 241–243
solution in terms of Bessel functions,

261, 268
Algebra of matrices, APP-3
Algebraic equations, methods for solving,

APP-10
Alternative form of second translation

theorem, 295
Ambient temperature, 22
Amperes (A), 25
Amplitude:

damped, 200
of free vibrations, 195

Analytic at a point, 233
Annihilator approach to method of

undetermined coefficients, 14
Annihilator differential operator, 149
Approaches to the study of differential

equations:
analytical, 27
numerical, 27 
qualitative, 27

Archimedes’ principle, 30, 102
Arithmetic of power series, 234
Associated homogeneous differential

equation, 119
Associated homogeneous system, 331, 348
Asymptotically stable critical point, 42
Attractor, 42, 336
Augmented matrix:

definition of, APP-10
elementary row operations on, APP-10 

in reduced row-echelon form,
APP-11 

in row-echelon form, APP-10
Autonomous differential equation:

first-orde , 38 
second-order, 188 
translation property of, 42

Auxiliary equation:
for Cauchy-Euler equations, 163
for linear equations with constant

coefficients, 133
roots of, 133, 163–165

Axis of symmetry, 210

Backward difference, 381
Ballistic pendulum, 226
Beams:

cantilever, 211 
deflection curve of, 210
embedded, 211
free, 211
simply supported, 211 
static deflection of, 29
supported on an elastic foundation, 322

Beats, 208
Bernoulli’s differential equation, 73
Bessel, Friedrich Wilhelm, 257
Bessel functions:

aging spring and, 261, 268
differential equations solvable in terms

of, 259–261 
differential recurrence relations for,

262–263
of the first kind, 258
graphs of, 259, 260, 264
of half-integral order, 263–264 
modified of the first kind, 260 
modified of the second kind, 260
numerical values of, 262
of order n, 258
of order , 264
of order , 264 
properties of, 262
recurrence relation for, 268
of the second kind, 258, 259 
spherical, 264
zeros of, 262

Bessel’s differential equation:
general solution of, 259 
modified of order n, 260 
of order n, 257
parametric of order n, 259–260 
solution of, 257

!

Boundary conditions:
definition of, 17, 18
periodic, 217

Boundary-value problem:
definition of, 17, 18
numerical methods for ODEs, 381, 383
for an ordinary differential equations,

17, 118 
shooting method for, 383

Branch point, 110
Buckling modes, 214
Buckling of a tapered column, 256
Buckling of a thin vertical column, 269
Buoyant force, 30
BVP, 17, 118

Calculation of order , 364
Cantilever beam, 211
Capacitance, 25
Carbon dating, 85
Carrying capacity, 95
Catenary, 221
Cauchy, Augustin-Louis, 163
Cauchy-Euler differential equation: 

auxiliary equation for, 163 
definition of, 162–16
general solution of, 163, 164, 165 
method of solution for, 163
reduction to constant coefficients, 16

Center of a power series, 232
Central difference, 381
Central difference approximations, 381
Chain pulled up by a constant 

force, 223
Change of scale theorem, 281
Characteristic equation of a matrix, 334,

APP-15
Characteristic values, APP-14
Characteristic vectors, APP-14
Chebyshev, Pafnuty, 270
Chebyshev’s differential equation, 270
Chemical reactions:

first-orde , 23
second-order, 23, 46, 98–99

Circuits, differential equations of, 25,
88–89

Circular frequency, 194
Clamped end of a beam, 211
Classification of ordinary di ferential

equations:
by linearity, 4
by order, 3 
by type, 2
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Closed form solution, 9
Clepsydra, 105
Coefficient matrix, 326–32
Cofactor, APP-6
Column bending under its own weight,

268–269
Column matrix, 327, APP-1
Competition models, 109–110
Competition term, 96
Competitive interactions, 96, 109, 414
Complementary error function, 59
Complementary function:

for a homogeneous linear differential
equation, 125 

for a homogeneous linear system, 
331, 348

Concentration of a nutrient in a cell, 112
Continuing method, 373
Continuous compound interest, 22, 90
Convergent improper integral, 274
Convergent power series, 232
Convolution of two functions, 302
Convolution theorem, inverse form of, 304
Convolution theorem, Laplace 

transform, 303
Cooling/Warming, Newton’s Law of,

22–23, 86–87, 91
Coulomb, Charles Augustin de, 323
Coulomb friction, 230, 323
Coulombs (C), 25
Coupled pendulums, 323
Coupled springs, 315–316
Cover-up method, 288
Criterion for an exact differential, 64
Critical loads, 213–214
Critical point of an autonomous first-orde

differential equation:
asymptotically stable, 42
definition of, 38
isolated, 45 
semi-stable, 42 
unstable, 42

Critical speeds, 216–217
Critically damped series circuit, 203
Critically damped spring/mass system, 198
Curvature, 189, 210
Cycloid, 114

Damped amplitude, 200
Damped motion, 197
Damped nonlinear pendulum, 225
Damping constant, 197
Damping factor, 198
Daphnia, 96
DE, 2
Dead sea scrolls, 86
Dead zone, 323
Decay, radioactive, 22, 85–86, 115
Decay constant, 85
Definition, interval of, 
Deflection of a beam, 210–211, 296

Deflection curve, 21
Density-dependent hypothesis, 95
Derivative notation, 3
Derivatives of a Laplace transform, 301
Determinant of a square matrix:

definition of, APP-6
expansion by cofactors, APP-6

Diagonal matrix, 357, APP-20
Difference equation replacement for an

ODE, 381
Difference quotients, 381
Differences, finite, 38
Differential, exact, 64
Differential equation: 

autonomous, 38
Bernoulli, 73
Bessel, 257
Cauchy-Euler, 162
Chebyshev, 270
definition of, 2
exact, 64
families of solutions for, 7–8 
first order, 3, 35
Hermite, 270 
homogeneous linear, 119
with homogeneous coefficients, 7
Laguerre, 311
Legendre, 257 
linear, 4, 54
modified Bessel, 260
nonautonomous, 38
nonhomogeneous linear, 119 
nonlinear, 4
normal form of, 4 
notation for, 3 
order of, 3 
ordinary, 2
parametric Bessel, 260
parametric modified Bessel, 260
partial, 2
Riccati, 75 
separable, 46 
solution of, 5–6, 8 
standard form of, 54
systems of, 9, 106, 180, 365, 

375–377, 385 
type, 2

Differential equations as mathematical
models, 20–21

Differential equations solvable in terms of
Bessel functions, 259–261

Differential form of a first-order equation
3, 64

Differential of a function of two 
variables, 63

Differential operator, 120
Differential recurrence relation, 

262–263
Differentiation notation, 3
Differentiation of a power series, 233
Dirac delta function:

definition of, 31
Laplace transform of, 313

Direction field of a first-order d ferential
equation:

for an autonomous first-orde
differential equation, 42 

definition of, 3
method of isoclines for, 38, 44 
nullclines for, 44

Discontinuous coefficients, 5
Discretization error, 364
Distributions, theory of, 314
Divergent improper integral, 274
Divergent power series, 232
Domain:

of a function, 6 
of a solution, 6

Doomsday equation, 103
Dot notation, 3
Double cosine series, 490
Double eigenvalues, 496
Double pendulum, 318
Double spring systems, 206, 

315–316, 319
Draining of a tank, 24, 101
Driven motion, 200
Driving function, 61, 193
Drosophila, 96
Duffing s differential equation, 224
Dynamical system, 28

Effective spring constant, 206
Eigenfunctions of a boundary-value

problem, 192, 213
Eigenvalues of a boundary-value problem,

192, 213
Eigenvalues of a matrix: 

complex, 342–344 
definition of, 334, APP-14 
distinct real, 334
of multiplicity , 338
of multiplicity three, 340
of multiplicity two, 338, APP-17 
repeated, 337

Eigenvectors of a matrix, 334, APP-14
Elastic curve, 210
Electrical networks, 110, 317
Electrical series circuits, analogy with

spring/mass systems, 203
Electrical vibrations: 

forced, 204 
free, 203

Elementary functions, 10
Elementary row operations: 

definition of, APP-10 
notation for, APP-11

Elimination methods:
for systems of algebraic equations, 

APP-10
for systems of ordinary differential

equations, 180
Embedded end of a beam, 211
Emigration model, 98
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