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To The Student

You are probably taking this course early in your undergraduate studies after two or
three semesters of calculus, and most likely in your second year. Like calculus, linear
algebra is a subject with elegant theory and many diverse applications. However,
in this course you will be exposed to abstraction at a much higher level. To help
with this transition, some colleges and universities offer a Bridge Course to Higher
Mathematics. If you have not already taken such a course, this may likely be the
first mathematics course where you will be expected to read and understand proofs of
theorems, provide proofs of results as part of the exercise sets, §ng apply the concepts
presented. All this is in the context of a speciﬁc bod %ﬁb If you approach
this task with an open mind and a willj he eXxt, some parts perhaps
more than once, it will be an exciti % ing experience. Whether you are
taking this course as part major or because linear algebra is applied
in your specific @ ~a clear u@standmg of the theory is essential for

ppl nc pt nea al hematics or other fields of science. The

les a t are designed to prepare you for the types

\l\l roblems yo fixpe ee in thlS course and other more advanced courses in

\, \e mathe r nization of the material is based on our philosophy that each

P ( e @ e fully developed before readers move onto the next. The image of a tree
e ont cover of the text is a metaphor for this learning strategy. It is particularly

apphcable to the study of mathematics. The trunk of the tree represents the material
that forms the basis for everything that comes afterward. In our text, this material is
contained in Chaps. 1 through 4. All other branches of the tree, representing more
advanced topics and applications, extend from the foundational material of the trunk or
from the ancillary material of the intervening branches. We have specifically designed
our text so that you can read it and learn the concepts of linear algebra in a sequential
and thorough manner. If you remain committed to learning this beautiful subject, the
rewards will be significant in other courses you may take, and in your professional
career. Good luck!

Jim DeFranza
jdefranza@stlawu.edu

Dan Gagliardi
gagliardid@canton.edu
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1.2 Matrices and Elementary Row Operations 19

DEFINITION 2 Echelon Form An m x n matrix is in row echelon form if

1. Every row with all O entries is below every row with nonzero entries.

2. If rows 1,2,...,k are the rows with nonzero entries and if the leading
nonzero entry (pivot) in row i occurs in column ¢;, for 1,2,...,k, then
Cl<Cr < <Ck.

The matrix is in reduced row echelon form if, in addition,
3. The first nonzero entry of each row is a 1.
4. Each column that contains a pivot has all other entries 0.

The process of transforming a matrix to reduced row echelon form is called
Gauss-Jordan elimination.

m Solve the linear system by transforming the augmen{} tI'lX to reduced row

echelon form.
2)C4
t 2 + X3 + 3x4 = 2
wo X 1 + x3 +2x4= 1
Solutio Tb{&)\nte trix of 1s
A 30 e
\l\ © 0B
\ e ge = 2
P a- 1 1 -1 2 1
To transform the matrix into reduced row echelon form, we first use the leading 1

in row 1 as a pivot to eliminate the terms in column 1 of rows 2, 3, and 4. To do
this, we use the three row operations

2R+ R, — R,

W N =
|
o)

Ry + R3; — R3
—Ri+ R4 — R4
in succession, transforming the matrix
1 -1 -2 1 0 1 -1 -2 1 0
2 —1 —3 20—6 N 0 1 1 0| -6
—1 2 N 0 0 1 —1 4| 2
1 1 -1 2 1 0 2 1 1

For the second step we use the leftmost 1 in row 2 as the pivot and eliminate
the term in column 2 above the pivot, and the two terms below the pivot. The
required row operations are

Ry + Ry — R
—R2 TP R3 — R3
—2Ry + Ry — R4

—p—
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1.3 Matrix Algebra 27
then
a11=—2 a12=1 apy = 4
a) = 5 ay =17 a3 = 11
az) = 2 azy = 3 asz3z = 22

A vector is an n x 1 matrix. The entries of a vector are called its components.
For a given matrix A, it is convenient to refer to its row vectors and its column
vectors. For example, let

1 2 —1
A=13 0 1
4 —1 2
Then the column vectors of A are
1 2 —1
oL e
4

(;O
while the row vectors f g@‘x aﬁy, are

e\l\' “0 ‘ 5({)% ‘3

P ( e\, a‘lgo m >< n matrices A and B are equal if they have the same number of rows
P lumns and their corresponding entries are equal. Thus, A = B if and only if
ajj =b;j, forl <i <mand1 < j < n. Addition and scalar multiplication of matrices

are also defined componentwise.

DEFINITION 1 Addition and Scalar Multiplication If A and B are two m X n matrices,
then the sum of the matrices A 4+ B is the m x n matrix with the ij term given by
ajj + b;j. The scalar product of the matrix A with the real number ¢, denoted by
cA, is the m x n matrix with the ij term given by ca;;.

m Perform the operations on the matrices

2 0 1 =% 3 =l
A= 4 3 -1 and B = 3 5 6
-3 6 5 4 2 1

a.A+ B b.2A — 3B

—p—



$ Confirming Pages

28 Chapter 1 Systems of Linear Equations and Matrices

Solution a. We add the two matrices by adding their corresponding entries, so that

2 0 1 -2 3 -1
A+B=| 43 -1 |+| 35 6
36 5 4 2 1

[ 24+ (=2) 043 1+ (-1)
= 443 3+5 —-1+6
—34+4 6+2 5+1

030
=785
1.8 6

b. To evaluate this expression, we first multiply each entry of the matrix A by 2
and each entry of the matrix B by —3. Then we add the resulting matrices.

This gives
2 0 1 @\L—l_
24+ (=3B) =2 4 3 6@. 5 6
. 4 2 1
6 -9 3
9 —15 —18

0
9 ;2
prevt W\;;ge il ({{? 7

In Example 1(a) reversing the order of the addition of the matrices gives the
same result. That is, A + B = B + A. This is so because addition of real numbers
is commutative. This result holds in general, giving us that matrix addition is also a
commutative operation. Some other familiar properties that hold for real numbers also
hold for matrices and scalars. These properties are given in Theorem 4.

THEOREM 4 Properties of Matrix Addition and Scalar Multiplication Let A, B, and
C be m x n matrices and ¢ and d be real numbers.
.A+B=B+A
A+ B+C)=(A+B)+C
.c(A+B)=cA+cB
(c+d)A=cA+dA
. c(dA) = (cd)A
. The m x n matrix with all zero entries, denoted by 0, is such that A +0 =
0+ A=A.
7. For any matrix A, the matrix —A, whose components are the negative of each
component of A, is such that A + (—A) = (—A)+ A =0.

A U B W N =

—p—
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30 Chapter 1  Systems of Linear Equations and Matrices

Observe that the dot product of two vectors is a scalar. For example,

2 -5
-3 . 1 | =QFE)+EH D)+ (-DHE) = —
-1 4

Now to motivate the concept and need for matrix multiplication we first introduce
the operation of multiplying a vector by a matrix. As an illustration let

(1] [l]

The product of B and v, denoted by By, is a vector, in this case with two components.
The first component of Bv is the dot product of the first row vector of B with v,
while the second component is the dot product of the second row vector of B with v,

so that
| 1 -1][1 DD + D
-2 1 3 (= 2)(1) 1,
Using this operation, the matrlx a\‘@ vector v = [ 3 } to the vector

Bv = N 6oq matrix, then the product of A and B
ol
ew © @‘[-1 ISED

atlon then arises, is there a single matrix which can be used to transform

prev!

the orlgmal vector ; to | ] ? To answer this question, let
v | ¥ A= | @1 an and B | bn b
y a;  da by1 bxn

The product of B and v is
bix + by
Bv =
{ byx +bpny
Now, the product of A and Bv is
[an an bix + biay
A(Bv) =
(BY) | a21 ax ] { byx + by }

_ [ an®ux 4+ bi2y) + ain(baix + bry)
| a21(brix +bi2y) + an(baix + bany)

_ [ (an1b11 + anba)x + (ai1bia + annbxn)y ]
| (a21b11 + anbai)x + (az1bia + axnbn)y

[ aubi +anby  anbi +anbxn X
| ax1bi +axnby  anbiz +axnbx y

—p—
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1.4 The Inverse of a Square Matrix 39
37. Suppose that A is an n x n matrix. Show that if 42. An n x n matrix A is called idempotent provided
for each vector x in R”, Ax = 0, then A is the that A2 = AA = A. Suppose that A and B are
Zero matrix. n x n idempotent matrices. Show that if

o AB = BA, then the matrix AB is idempotent.
38. For each positive integer n, let

n 14+n A" = —A. Show that if a matrix is

o [ 1—n —n } 43. An n x n matrix A is skew-symmetric provided
n =

skew-symmetric, then the diagonal entries are 0.
Show that A, A, = Apsm-

44. The trace of an n X n matrix A is the sum of the

. . . .
39. Find all 2 x 2 matrices that satisfy AA" = 0. diagonal terms, denoted tr(A).

40. Suppose that A and B are symmetric matrices. a. If A and B are n x n matrices, show that
Show that if AB = BA, then AB is symmetric. tr(A + B) = tr(A) + tr(B).
41. If A is an m x n matrix, show that AA’ and A’A b. If A is an n x n matrix and c is a scalar, show
are both defined and are both symmetric. that tr(cA) = ¢ tl'(A)K
1.4 » TheInverse of a Squ \@a@
In the real mﬂ mber 1 is the multiplicative identity. That is, for any
real

-a=a
\e\l\l “ We also kn%c%hfo “y number x with x # 0, there exists the number 1 T also
Q x-—=1
X

We seek a similar relationship for square matrices. For an n x n matrix A, we can
check that the n x n matrix

preV

100 0
010 0
;=001 0
00 0 1

is the multiplicative identity. That is, if A is any n x n matrix, then
Al =TA=A

This special matrix is called the identity matrix. For example, the 2 x 2,3 x 3, and
4 x 4 identity matrices are, respectively,

1000
10 (1)(1)8 and 0100
0 1 0 01 n 00 1 0

00 0 1

—p—



—p—

40 Chapter 1  Systems of Linear Equations and Matrices

DEFINITION 1

Solution

P(e\"e\N

THEOREM 7

Inverse of a Square Matrix Let A be an n x n matrix. If there exists an n x n

matrix B such that
AB=1=BA
then the matrix B is a (multiplicative) inverse of the matrix A.

Find an inverse of the matrix

Confirming Pages

In order for a 2 x 2 matrix B = [ il iz } to be an inverse of A, matrix B must
3 X4
satisfy
1 1 X1 X2 | | x1+ x3 x2+ )C4
1 2 X3 X4 + 2x3
This matrix equation is equivale \ r'system
m NO 6 9’ X4 =
“( O 9 o3 +2x4 = 1
The a % and the reduced row echelon form are given by
01 01 1 0 0 O 2
O 1 0 1(0 N 01 0 0] -1
1 0 2 0|0 0O 0 1 0]-—1
01 0 21 0 0 0 1 1
Thus, the solution is x; =2, xp = —1, x3 = —1, x4 = 1, and an inverse matrix is

The reader should verify that AB = BA = 1.

Theorem 7 establishes the uniqueness, when it exists, of the multiplicative inverse.

The inverse of a matrix, if it exists, is unique.

Proof Assume that the square matrix A has an inverse and that B and C are
both inverse matrices of A. That is, AB = BA =1 and AC = CA = I. We show

that B = C. Indeed,
B =BI =B(AC)=(BA)C=({)C=C

—p—
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42 Chapter 1 Systems of Linear Equations and Matrices

To illustrate the use of the formula, let

=15

L1 3 1] | 3
A ‘6—(—1>{—12}_l—; 1

For an example which underscores the necessity of the condition that ad — bc # 0,
we consider the matrix
A 1 1
11

Observe that in this case ad — bc =1 —1 = 0. Now, the matrix A is invertible if
X1 X2
X3

then

N~ =

there is a B = such that

1 1 X1 xz .
1 1 X3 X4 K
This matrix equation yields the 1ncon51s‘nérst
=1

o\e>
\e\l\l ience A is no NQ}L BGQ xy=1

T he e of larger square matrices, we extend the method of aug-

P ( e\, Pn%g ices. Let A be an n x n matrix. Let B be another n x n matrix, and let

B, B,,~..,B, denote the n column vectors of B. Since AB;, AB», ..., AB, are the
column vectors of AB, in order for B to be the inverse of A, we must have

1 0 0

0 1 0

AB; = | . AB, = | . AB, =

0 0 1
That is, the matrix equations

1 0 0

0 1 0

Ax = . Ax = . . AX =
0 0 1

must all have unique solutions. But all n linear systems can be solved simultaneously
by row-reducing the n x 2n augmented matrix

ayy dipp ... dip 1 0 ... 0
a)y dzp ... dp 0 1 0
ay1  ap2 an, |10 0 1
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1.4 The Inverse of a Square Matrix 43

On the left is the matrix A, and on the right is the matrix /. Then A will have an
inverse if and only if it is row equivalent to the identity matrix. In this case, each
of the linear systems can be solved. If the matrix A does not have an inverse, then
the row-reduced matrix on the left will have a row of zeros, indicating at least one of
the linear systems does not have a solution.

Example 2 illustrates the procedure.

m Find the inverse of the matrix

1 -2
A=| — 2 0
0 -1 1

Solution To find the inverse of this matrix, place the identity on the_right to form the 3 x 6

@@ g

Now use ro the matrix on the left to the identity, while
apply W ‘& rdtions to t“@x on the right. The final result is
\N “( 6‘ 2 O“ 0 1 0

0 0

Py 6\’ P A e s )

2
Al =11 2
1
1

The reader should check that AA~! = A~

m Use the method of Example 2 to determine whether the matrix

1 -1 2
A=1]3 -3 1
3 =3 1

is invertible.

Solution Following the procedure described above, we start with the matrix

1 -1 2|1 0 O
3 -3 1(0 1 O
3 3 1]0 0 1

—p—
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1.6 Determinants 57
Some examples of upper triangular matrices are
11 2 -1 0 1 1 0 1
{ 0 2 } 0O 0 3 and 0 0 0 1
0 0 2 0 0 1
and some examples of lower triangular matrices are
1 0 0O
1 0 200 0 0 0O
0O 1 O and
11 1 0 2 1 3 10
01 2 1

THEOREM 13 If A is an n x n triangular matrix, then the determinant of A is the product of the
terms on the diagonal. That is,

det(A) =dapy-a- ann

Proof We present the proof for an upper tr1 . The proof for a
lower triangular matrix is identical. The ro ion on n. If n = 2, then
det(A) = ajjar; — 0 and hence 1 the dlagonal terms.
Assume that the r nxn trlangular matrix. We need to show
that the sam n + 1) X 9 1) triangular matrix A. To this end let
.‘( O %1 ain  Aipgr |
. \l\l 6 022 azz -+ Ay A2+
\e ge ’( as oo @ a3
P a 0 0 0 ctr Apn An,n+1
0 0 0 e 0 Ap+1,n+1 |

Using the cofactor expansion along row n + 1, we have

ayy a2 aiz -+ Ap
0 ay azz -+ Ay
det(A) = (_1)(n+1)+(n+l)an+l bl 0 0 a3 -+ azy
0O 0 0 - ap
Since the determinant on the right is n x n and upper triangular, by the inductive

hypothesis

det(A) = (=¥ (apt1 01 (@102 - - - @)

= a11d * - - Applp+1,n+1

Properties of Determinants

Determinants for large matrices can be time-consuming to compute, so any properties
of determinants that reduce the number of computations are useful. Theorem 14 shows
how row operations affect the determinant.

—p—
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1.6 Determinants 63
m Use Cramer’s rule to solve the linear system.
2x +3y =2
—Sx+7y=3
Solution The determinant of the coefficient matrix is given by
2 3
5 7 |= 4—(-15 =29
and since the determinant is not zero, the system has a unique solution. The solution
is given by
2 3 2 2
3 7 14-9 5 =5 3 6—(—10) 16
X = = = — and y = . = e
29 29 29 29 29 29

THEOREM 18 Cramer’sRule ‘I\e nvertible matrix, and let b be a column vector
with n comp @ e the 16rqbtamed by replacing the ith column of A

X1

e\l\l “(wnh b. If x% “e unique solution to the linear system Ax = b, then
P a'g det(A;)

Xi =

det(A)

Proof Let I; be the matrix obtained by replacing the ith column of the identity
matrix with x. Then the linear system is equivalent to the matrix equation

Al; = A; SO det(Al;) = det(A;)

prev!

i=1,2,...,n

By Theorem 15, part 1, we have
det(A) det(l;) = det(Al;) = det(A;)
Since A is invertible, det(A) # 0 and hence
det(A;)
det(A)
Expanding along the ith row to find the determinant of /; gives

det(l;) = x; det(l) = x;

det(l;) =

where [ is the (n — 1) x (n — 1) identity. Therefore,
_det(A;)
~ det(A)
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68 Chapter 1  Systems of Linear Equations and Matrices

39. a. Find the equation of the parabola in the form In Exercises 44—51, use Cramer’s rule to solve the

li tem.

Cy’+Dx+Ey+F =0 mnear system

that passes through the points (-2, —2), (3, 2), 44. {
and (4, —3).

b. Sketch the graph of the parabola.

2x +3y=4
2x +2y=4

45.
40. a. Find the equation of the circle in the form
AX>+y)+Dx+Ey+F=0 46.
that passes through the points (-3, —3), (—1, 2),

and (3, 0). 47, { :9x —4y i 3

b. Sketch the graph of the circle.
—10x — 7y=—12

12x+11ly= 5 K
—x—3 U
that passes through the points (0, —4), (0, 4), 49. y O .

(1, =2), and (2, 3).

b. Sketch the graph of the hyperbola. 0‘% N 3
. y+ z=
42. a. Find the equation of the elli SW & @q
+ X‘I'Q 2x+3y+2z=-2
3) 1. —x—3y—8z=-2

W
M otlg thep01 42y —Taz 2
P . and (4, 2)9 y—iz=
he €

41. a. Find the equation of the hyperbola in the form 48
Ax>+Cy*+ Dx+Ey+F=0

. Sketch the graph o eTlipSe. 52. An n x n matrix is skew-symmetric provided
A" = —A. Show that if A is skew-symmetric and
43. a. Find the equation of the ellipse in the form n is an odd positive integer, then A is not
Ax>+ Bxy+Cy>+ Dx +Ey+ F =0 invertible.

that passes thl‘ough the pOintS (_1’ O), (0’ 1)’ 53. IfAisa3 x3 matrix, show that det(A) = det(At)

(1,0),(2,2), and (3, 1). 54. If A is an n x n upper triangular matrix, show
b. Sketch the graph of the ellipse. that det(A) = det(A").

1.7 » Elementary Matrices and LU Factorization

In Sec. 1.2 we saw how the linear system Ax = b can be solved by using Gaussian
elimination on the corresponding augmented matrix. Recall that the idea there was
to use row operations to transform the coefficient matrix to row echelon form. The
upper triangular form of the resulting matrix made it easy to find the solution by using
back substitution. (See Example 1 of Sec. 1.2.) In a similar manner, if an augmented
matrix is reduced to lower triangular form, then forward substitution can be used to
find the solution of the corresponding linear system. For example, starting from the

—p—
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76 Chapter 1 Systems of Linear Equations and Matrices

Using forward substitution, we solve the system Ly = b for y, obtaining y; =1,
y» =5, and y3 = 10. Next we solve the linear system Ux =y. That is,

1 2 -1 X1 1
0 3 1 X2 = 5
0 0 X3 10

Using back substitution, we obtain x3 = 2, x, = 1, and x| = 1.
The following steps summarize the procedure for solving the linear system
Ax = b when A admits an LU factorization.

. Use Theorem 23 to write the linear system Ax =b as L(Ux) =b

. Define the vector y by means of the equation Ux =y.

. Use forward substitution to solve the system Ly = b for y.

. Use back substitution to solve the system Ux =y for x. Nthhat X is the solution

T S R

to the original linear system. u

(;O -

PLU Factorization \

We have seen that 5@1] factorization provided that it can be row-

reduced wit %m g rows clude this section by noting that when
h{n§es %re requlre a factorization is still possible. In this

'ﬁ atrix A red = PLU, where P is a permutation matrix,
that is, a matrl from interchanging rows of the identity matrix. As an

e ill t
prev! pw@ .

A=|1 4 3
|1 2 0 |
The matrix A can be reduced to
(1 2 0]
U=|0 2 3
|0 0 =5 |
by means of the row operations R;: R; < R3, Ro: —Ri+ Ry — R», and

R3: —Ry + Rz —> Rj3. The corresponding elementary matrices are given by

00 1 100 1 00
E/=|0 1 0 Ex=| -1 10 and E3=|0 1 0
1 00 00 1 0 —1 1



—p—
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1.7 Elementary Matrices and LU Factorization 77

Observe that the elementary matrix E; is a permutation matrix while E, and E3 are

lower triangular. Hence,

I
- O O
S - O
S O =
O = =
—_—— O
- O O

Il

~
h
=

Fact Summary

1 2 0
0 2 3
0 0 -5

1. A row operation on a matrix A can be performed by multiplying A by an

elementary matrix.

3. An n x n matrix A is invertible 1f and it

roduct of

2. An elementary matrix is invertible, and the 1nvem elementary matrix.
S

elementary matrices.

prev\@ Padc 96°

Exercise Set 1

In Exercises 1-4:

a. Find the 3 x 3 elementary matrix E that performs 5
the row operation.
b. Compute EA, where
1 2 1
A=1|3 1 2
1 1 -4
1. 2Ri+ R, — R,
2. Rl <> R2
3. 3R+ R3s — R3 8.
4. —R{ + R3 — R3

In Exercises 5-10:

a. Find the elementary matrices required to
reduce A to the identity.

—p—

orlzatlon if it can be reduced to an

é no row interchanges.

4. An m x n matri @3
upper ggia % it
ﬂggn L is 9
\l\l -‘( O(“U factorl %ﬂl es an efficient method for solving Ax = b.

b. Write A as the product of elementary matrices.

103
'A_—24}
[—2 5
a-[3]]
1 2 —1]
A=|2 5 3
|12 0|
[ —1 1 1]
A= 310
-2 1 1|
[0 1 1
A=11 2 3
|01 0
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1.8 Applications of Systems of Linear Equations

300 8.

A

800 < <500

<300

A
7

A Y

700
6. Find the traffic flow pattern for the network in the
figure. Flow rates are in cars per hour. Give one

specific solution.
100

400 « - « I <500 S
500 v ‘ mr Note
I\“ ﬁg( c> @ A O“

P (eN\e

G

Confirming Pages

85

Find the traffic flow pattern for the network in the
figure. Flow rates are in cars per half-hour. What
is the smallest possible value for xg?

150 100

200
300

100 200

. The table lists the n ¥ milligrams of
vitamin A @.ﬂ min C, and niacin
c f four different foods. A

f Wants to prepare a meal that provides

of vitamin A, 300 mg of vitamin B, 400

amin C, and 70 mg of niacin. Determine

any grams of each food must be included,
and describe any limitations on the quantities of
each food that can be used.

250

Group 1 | Group 2 | Group 3 | Group 4
7. Find the traffic flow pattern for the network in the Vitamin A 20 30 40 10
figure. Flow rates are in cars per half-hour. What Vitamin B 40 20 35 20
is the current status of the road labeled x5? Vitamin C 50 40 10 30
150
Niacin 5 5 10 5
X1 X4
10. The table lists the amounts of sodium, potassium,
100 < )is <50 carbohydrates, and fiber in a single serving of
three food groups. Also listed are the daily
X X3 recommended amounts based on a 2000-calorie
diet. Is it possible to prepare a diet using the three
food groups alone that meets the recommended
100 amounts?
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90 Chapter 1

7. a. Explain why the matrix

S

I
co oo~
o0~ m—
OO ==
[ S G
—_ e

is invertible.

b. Determine the maximum number of 1’s that
can be added to A such that the resulting
matrix is invertible.

8. Show that if A is invertible, then A’ is invertible
and (A~ = @A

Systems of Linear Equations and Matrices

9. A matrix A is skew-symmetric provided A" = —A.
a. Let A be an n x n matrix and define

B=A+ A’ and C=A-A

Show that B is symmetric and C is
skew-symmetric.

b. Show that every n x n matrix can be written as
the sum of a symmetric and a skew-symmetric
matrix.

10. Suppose u and v are solutions to the linear system
Ax = b. Show that if scalars o and p satisfy
a+p =1, then au + Pv is also a solution to the
linear system Ax = b.

Chapter 1: Chapter Test

In Exercises 1-45, determine whether the staﬁ@t@%e matng

true or false.

1. A2x?2 hnear system hi1 @ idn, no
solutions, or tions. 0
XE@L stem has n Iﬁ 3-1

utidn, two solutl (@.\ ns, or

mﬁnltely many solu

. If A and B are n x n matrices with no zero
entries, then AB # 0.

4. Homogeneous linear systems always have at least
one solution.

5. If A is an n x n matrix, then AXx = 0 has a
nontrivial solution if and only if the matrix A has
an inverse.

6. If A and B are n x n matrices and Ax = BXx for
every n X 1 matrix x, then A = B.

7. If A, B, and C are invertible n x n matrices, then
(ABC)" ' = A-'B~ICc!.

8. If A is an invertible n x n matrix, then the linear
system Ax = b has a unique solution.

9. If A and B are n x n invertible matrices and
AB = BA, then A commutes with B~.

10. If A and B commute, then A2B = BAZ2.

@,
31 0
4 3 2
0035—2
0O 0 0 0 4
0O 0 0 0 6

does not have an inverse.

12. Interchanging two rows of a matrix changes the
sign of its determinant.

13. Multiplying a row of a matrix by a nonzero
constant results in the determinant being
multiplied by the same nonzero constant.

14. If two rows of a matrix are equal, then the
determinant of the matrix is 0.

15. Performing the operation aR; + R; — R; on a
matrix multiplies the determinant by the
constant a.

1 2 2
4 6},thenA —TA =21.

17. If A and B are invertible matrices, then A + B is
an invertible matrix.

16.IfA={

18. If A and B are invertible matrices, then AB is an
invertible matrix.

—p—
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1.8 Applications of Systems of Linear Equations 91
19. If A is an n x n matrix and A does not have an 32. The solution to the system is given by the matrix
inverse, then the linear system Ax = b is equation
inconsistent. 1 1
x| _| 3 3 3
20. The linear system — |1 1 1
Y i T2
1 2 3 X 1
6 5 4 y | =12 In Exercises 33—-36, use the linear system
0 00 z 3 X1 +2x—3x3= 1
is inconsistent. 2x1+5x —8x3= 4

—2x1 —4xy +6x3=-2
21. The inverse of the matrix ! 2 3

1 11 33. The determinant of the coefficient matrix is
[ 3001 ] ® [ -3 } 5 -8 2 -8 2 5
-4 6 -2 6 -2 —4

22. The matrix
[ 2 -1 } 34. The determinant of the, ficient matrix is O.

o
. 35. A solutio g ystem is
does not have an inverse. %@
e and x3 =

23. If the n x n matrix A is idempotent and
invertible, then A = I. e linear system has infinitely many solutions,

24. If A and B commute, then A’ eneral solution is given by x3 is free,

25.IfAlsannxnma“ ( ) 3 t 2x3, and xp = =3 — x3.
det(A’ A) W In Exercises 37—41, use the matrix

‘E@é&‘ =32, use the st 1 221 3
Z3 A= 1 0 1 -1
1 2 1

x— y=1 2
26. The coefficient matrix is 37. After the operation Ry <— R; is performed, the
2 2 matrix becomes
A= { 1 -1 } 01 -1
. . . -1 -2 1 3
27. The coefficient matrix A has determinant 2 1 2 1
det(A) =0
28. The linear system has a unique solution. 38. After the operation —2R; + R3 —> Rj is
29. The only solution to the linear system is performed on the matrix found in Exercise 37, the
x=—7/4and y = —5/4. matrix becomes
30. The inverse of the coefficient matrix A is 1 0 1 -1
» Al1 % -1 -2 1 3
AT =1 | ] 0 -2 0 -3
i T2
31. The linear system is equivalent to the matrix 39. The matrix A is row equivalent to
equation 1 0 1 —1
2 2 X 3 0o -2 2 2
1 -1 ||y ]| |1 0 0 1 4
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w

. Additive identity: The vector 0 satisfies 0 +u=u+ 0 = u.

. Additive inverse: For every vector u, the vector —u satisfies
u+(-u)=—utu=0

i~

5. c(u+v)=cu+cv
6. (c+du=cu+du
7. c(du) = (cd)u

8. DHu=u

By the associative property, the vector sum u; 4+ up + - - - 4+ u, can be computed
unambiguously, without the need for parentheses. This will be important in Sec. 2.2.

u= [ : ] [ and w\%
Verify that the associative property h;] eth& e vectors. Also verify that

for any scalars ¢ and d, c(

somsn I x\\g@e
\N £ OV} A qﬁ{
preV! Pe@e#L HEEIE m

—_
I

bR ]

Hence, (W+Vv) +w=u+ (V+ Ww).
For the second verification, we have

c(du)=c<d[ o ]):c[ _ﬂ:[_ij]:m[_}]:(cd)u

The properties given in Theorem 1 can be used to establish other useful properties
of vectors in R”. For example, if u € R” and c is a scalar, then

uq 0
un 0

Ou=0 : = . =0 and c0=0
Uy 0



1

29.V1= 0
_1_.
_2_

V3 = 1
_0_
_1_

30.V1= 1
_1_

V3 = 1
_O_.
[ 1
31.V1= 1

[ 3

V3 = 2

$ Confirming Pages

2.2 Linear Combinations 101

0 -1 1
V) = 1 32. V) = 0 V) = -2
1 | 2 | 8
1
v3=| —1
L 3 .
0 In Exercises 33—-39, verify the indicated vector
vy=| 1 property of Theorem 1 for vectors in R”.
0

33. Property 2.
34. Property 3.
35. Property 4.
36. Property 5.

=1 1 37. Property 6. K
oV
‘_e‘éa?;er& ;C

| O m NO % it the zero vector in R” is unique.
W “ © ol

In three-dimensional Euclidean space R* the coordinate vectors that define the three
axes are the vectors

1 0 0
ee=1|0 e = |1 and es= 1|0
0 0 1

Every vector in R3 can then be obtained from these three coordinate vectors, for
example, the vector

2 1 0 0
v=|3|=2{0|+3]1|+3]0
3 0 0 1

Geometrically, the vector v is obtained by adding scalar multiples of the coordi-
nate vectors, as shown in Fig. 1. The vectors e, e;, and e3; are not unique in this
respect. For example, the vector v can also be written as a combination of the

vectors
1 0 -1
vi= | 1 vo=|1 and V3 =
1 1 1

—p—



5
8.v=| —4
-7
-2
Vy = -1
—1
9. v= 1
-1
Vo = —1
3
-3
10. v= 5
5
1
Vo) = 4
1
\
(ey\s
Pl . V= 17
7
1
v, — 6
L .|
6
3
12. v= 3
7
1
| -1
Vo = 2
3

—p—
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In Exercises 13—16, find all the ways that v can be

vi=| —1 written as a linear combination of the given vectors.
0
13.V=|:8] vlz{?}
3
v3=| —1 0 -1

V) = 2

0
V3 = 1 0 0
o) 15.v=| —1 vi=| 1
-3

s eSéké‘i Os:- .

e 16. v = -3 vV = —1
2

1 0 0
V) = —1 V3 = —1
-1 —1 -2
—1 - -
V3 = ) -3
3 V4 = -1
L _2 -

2 In Exercises 17-20, determine if the matrix M is a
v 3 linear combination of the matrices My, M,, and Ms3.
1= _
4 -2 4
5 17. M = i 4 0 :|
3 1 2 | -2 3
1 M1—|:1_1]M2_|: | 4
V3 =
—3 e[ -1 3
1 3= |

Confirming Pages
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2.3 Linear Independence 111

Vi, ¢V, wWhere c¢ is a nonzero scalar. Show that 38. Suppose that Ax = b is a 3 x 3 linear system that
S =209. is consistent. If A; = A; + A,, then show that the

linear system has infinitely many solutions.
. Let Sy be the set of all linear combinations of the

vectors vy, Vo, ..., vy in R"”, and S, be the set of
all linear combinations of the vectors vy, va, ..., 2y” -3 y/ +y=0
Vi, Vi + V2. Show that §; = 55.

39. The equation

is an example of a differential equation. Show that

. Suppose that Ax = b is a 3 x 3 linear system that y=f(x)=e"and y =g(x) = 2" are solutions
is consistent. If there is a scalar ¢ such that to the equation. Then show that any linear
Az = cAj, then show that the linear system has combination of f(x) and g(x) is another solution
infinitely many solutions. to the differential equation.

2.3 » Linear Independence

s In Sec. 2.2 we saw that given a set S of vectors in ﬂ&s not always possible
to express every vector in R"” as a linear tjo vectors from S. At the

v other extreme, there are inﬁnitel i t subsets S such that the collection

of all linear combmatl om S is R". For example, the collection of all

1y linear comb1 f coor te Vectors S =1{er,...,e,} is R", but so

=2V is th ct1 n ear C = {e;,...,e,, e +ey}. In this way S

‘ ! bt gener e those mmlmal sets S that generate R", we
\l\l qu1re th, r ndependence As motivation let two vectors u and v in
e é)ngtL ine, as shown in Fig. 1. Thus, there is a nonzero scalar ¢ such
PIE P @

Figure 1 u=cv
LYy This condition can also be written as

v u—cv=20

In this case we say that the vectors u and v are linearly dependent. Evidently we
have that two vectors u and v are linearly dependent provided that the zero vector is

a nontrivial (not both scalars 0) linear combination of the vectors. On the other hand,
the vectors shown in Fig. 2 are not linearly dependent. This concept is generalized to
sets of vectors in R”.

=V

Figure 2

DEFINITION 1 Linearly Indpendent and Linearly Dependent The set of vectors S =
{vi,va,..., vy} in R" is linearly independent provided that the only solution to
the equation

civi+ova+ - Vi = 0
is the trivial solution ¢; = ¢y = --- = ¢,,, = 0. If the above linear combination has
a nontrivial solution, then the set S is called linearly dependent.

—p—
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c. Show that the matrix
0 3
M =
cannot be written as a linear combination of

M], Mz, and M3.

In Exercises 25 and 26, for the given matrix A
determine if the linear system Ax = b has a unique
solution.

2 0
25.A=| -1 0 3
i 12
(3 2 4
26.A=|1 -1 4
0 2 —4

In Exercises 27-30, determine whether the set of
polynomials is linearly independent or linearly
dependent. A set of polynomials

S = {p1(x), pa(x), ..., pu(x)} is linearly md
provided

;11)1 (x)ir Czp\iq "(Jern((g\&
(e a0

—2 4 4x?
—12x + 8x3

for all

P

27. pi1(x) =1 p2(x) =

p3(x) = 2x py(x) =

28. pi1(x) =1p2(x) =x

p3(x) =5+ 2x —x?

29. pi(x) =2 pa(x) = x p3(x) = x>

pax) =3x — 1

30. pi(x) = 3 —2x2 41 p2(x) = 5x

p3(x) = x? —4 py(x) = x7 +2x

In Exercises 31-34, show that the set of functions is
linearly independent on the interval [0, 1]. A set of
functions S = {fi(x), fo(x), ..., fu(x)} is linearly
independent on the interval [a, b] provided

cfix)+ofox)+- -+ fulx) =0

for all x € [a, b] implies that

cir=cp=---=¢, =0

—p—

31.
32.

33.
34.

35.

36.

Chapter 2 Linear Combinations and Linear Independence

fi1(x) = cos mx fr(x) = sinTx

fix) =¢€" folx) ="
frx) =¥

fix) =x H(x) =x? f3(x) = €*
fix) =x falx) =¢*

f3(x) = sinmtx

Verify that two vectors u and v in R" are linearly
dependent if and only if one is a scalar multiple
of the other.

Suppose that S = {vy, vp, v3} is linearly

independent and
W =V2+V3
CO2

V3

Wi =Vi+Vy+V;3

AN

and

{wy, wp, w3} is linearly

tegélepende
9 = {v1, V2, v3} is linearly
O endent and

38.

39.

40.

Wi =Vi+V W2 =V —V3

and

W3 =V + V3
Show that T = {wy, wz, w3} is linearly
independent.

Suppose that S = {v|, v, v3} is linearly
independent and

W1 =V W2 =V +V3

and

W3=V+V+V3
Determine whether the set 7 = {wy, Wa, w3} is
linearly independent or linearly dependent.

Suppose that the set S = {v;, v»} is linearly
independent. Show that if v3 cannot be written as
a linear combination of v; and v, then

{vi, va, v3} is linearly independent.

Let S = {vy, v, v3}, where v3 = v| + v».
a. Write v; as a linear combination of the vectors
in S in three different ways.

—p—
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132 Chapter 3 Vector Spaces

BTN itV =(@.b) |a.beR). Let v=(u1, v) and w = (w;, wp). Define

(1, v2) ® (Wi, w2) = (Vi +wy + vy +wy + 1) and
cO W, v) =(vi+c—1,co+c—1)
Verify that V is a vector space.

Solution First observe that since the result of addition or scalar multiplication is an ordered
pair, V is closed under addition and scalar multiplication. Since addition of real
numbers is commutative and associative, axioms 2 and 3 hold for the @ defined
here. Now an element w € V is the additive identity provided that for all v e V

VOW=vV or (i +wi+ 1,4+ wy+ 1) = (vy, v2)
Equating components gives
v1+w1+1_v1 and vt+wy+1=v SO
w1

This establishes the existence of an addjtive 1de®0pe&éally, 0=(-1,-1),
so axiom 4 holds.

To show that each e as an additive inverse, we must find a

vector w such th

N L, =1
"(@B{V‘} (v 0€ ﬁ@ this last equation requires that
\, e\l\l v1+w g vt+wy+1=—1 so that

P(e g =—v1—2 and wH =—v -2
a’s r any element v = (v, vp) in V, we have —v = (—v; — 2, —vp — 2). The

remalnlng axioms all follow from the similar properties of the real numbers.

A polynomial of degree n is an expression of the form
p(x) =ap+arx +ax? + -+ ap_ 1 X"+ g, x"

where ag, ..., a, are real numbers and a, # 0. The degree of the zero polynomial is
undefined since it can be written as p(x) = Ox" for any positive integer n. Polynomials
comprise one of the most basic sets of functions and have many applications in
mathematics.

m Vector Space of Polynomials Let n be a fixed positive integer. Denote by P,

the set of all polynomials of degree n or less. Define addition by adding like terms.
That is, if
p(x) =ap +arx +ax* + - +a,_ X" + a,x"

—p—
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29. Let V be the set of all real-valued functions Determine whether V is a vector space.
defined on R with the standard operations that
satisfy f(0) = 1. Determine whether V is a
vector space. V={fx+1t)|te R}

31. Let f(x) = x> defined on R and let

30. Let V be the set of all real-valued functions Define

defined on R.
fa+m)® fx+n)=f(x+n+10)

Define f @ g b
e o by cOflx+1) = flx+ecr)

(f®8x) = f(x) +8(x) a. Determine the additive identity and additive
and define ¢ ® f by inverses.

cO )= fx+c) b. Show that V is a vector space.

3.2 p Subspaces

Many interesting examples of vector spaces are s f @Qen vector space V that
are vector spaces in their own right. e %y plane in R? given by

6;‘ o
\l\l i( Qset 0 ctor space with the same standard componentwise
\e operatio Another example of a subspace of a vector space is given
m;é ec. 3 1. The determination as to whether a subset of a vector space
vector space is simplified since many of the required properties are inherited
from the parent space.

preV

DEFINITION 1 Subspace A subspace W of a vector space V is a nonempty subset that is itself
a vector space with respect to the inherited operations of vector addition and scalar
multiplication on V.

The first requirement for a subset W C V to be a subspace is that W be closed
under the operations of V. For example, let V be the vector space R? with the
standard definitions of addition and scalar multiplication. Let W < R2 be the subset

defined by
a

Observe that the sum of any two vectors in W is another vector in W, since

lelo]=1"]

—p—
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In this way we say that W is closed under addition. The subset W is also closed under
scalar multiplication since for any real number c,

a ca
co§]=]5]
which is again in W.
On the other hand, the subset

1]

is not closed under addition, since

Al HEMH Y

which is not in W. See Fig. 1. The subset W is also not closed under scalar multipli-
cation since

c ® \)K
W is not a subspace of V

Figure 1 which is not in W for all values
Now let us suppo g ty subset W is closed under both of the oper-
ations on V. i} hetheré subspace, we must show that each of the

eI Nspace axi nately, our task is simplified as most of
-‘ 6 erties a ector space V. For example, to show that the
e\N ommutatyx—ﬁg

m W, let u and v be vectors in W. Since u and v are
also the

p(e\’ Pagmy’ wev—vau

any three vectors in W satisfy the associative property, as this property is
also inherited from V. To show that W contains the zero vector, let w be any vector
in W. Since W is closed under scalar multiplication, 0 © w € W. Now, by Theorem 2
of Sec. 3.1, we have 0 © w = 0. Thus, 0 € W. Similarly, for any w € W,

-hHow=-—-w

is also in W. All the other vector space properties, axioms 7 through 10, are inherited
from V. This shows that W is a subspace of V. Conversely, if W is a subspace of
V, then it is necessarily closed under addition and scalar multiplication. This proves
Theorem 3.

THEOREM 3 Let W be a nonempty subset of the vector space V. Then W is a subspace of V if
and only if W is closed under addition and scalar multiplication.

By Theorem 3, the first of the examples above with

v={[3]|o<n}

—p—
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We now consider what happens when subspaces are combined. In particular,
let W; and W, be subspaces of a vector space V. Then the intersection W; N W, is
also a subspace of V. To show this, let u and v be elements of Wi N W, and let ¢
be a scalar. Since W and W, are both subspaces, then by Theorem 4, u @ (c © V) is
in W) and is in W,, and hence is in the intersection. Applying Theorem 4 again, we
have that W) N W, is a subspace.

The extension to an arbitrary number of subspaces is stated in Theorem 5.

THEOREM 5 The intersection of any collection of subspaces of a vector space is a subspace of
the vector space.

Example 6 shows that the union of two subspaces need not be a subspace.

m Let W, and W, be the subspaces of ith @@\B)Operations given by

W 5{@9@ 5w [5]]

> 1S not
|o‘s(The subsp % s1st of all vectors that lie on the x axis and the y axis,
e\,\ res é r union is the collection of all vectors that lie on either axis and
X
WU W, =
pad ww={ ;]

This set is not closed under addition since

oJelt]=11]

which is not in W; U W,, as shown in Fig. 2.

Py

x:Oory:O}

y
£

0] [1]emuow

Wi

} x

—
S —y

Figure 2
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spans R*. These vectors are also linearly independent. To see this, observe that the
matrix

I 1
A=1|1 0 1
2 0

whose column vectors are the vectors of S, is row equivalent to the 3 x 3 identity
matrix, as seen in the solution to Example 9. [Another way of showing that S is
linearly independent is to observe that det(A) = 1 # 0.] Consequently, by Theorem 7
of Sec. 2.3, we have that every vector in R can be written in only one way as a
linear combination of the vectors of §.

On the other hand, the span of the set of vectors

S ={v, v5, vj} = _é 41‘
=V, V2, V35 = \ :

of Example 10 is a plane passing throu g1 mc&, not every vector in R3
can be written as a hnear combln ckorS1in S'. As we expect, these vectors

are linearly depe

W £ Om “ d$ %996

P ( e\, \e pger, = vl — vj. The vectors v} and v} are linearly independent vectors
E P

an the plane shown in Fig. 4, but not R>.
ursue these notions a bit further, there are many sets of vectors which span
R3. For example, the set

1 0 0 1
B ={e;, e, e3, v} = 0 |, 11, 0 |,
0 0 1 3

spans R, but by Theorem 3 of Sec. 2.3 must necessarily be linearly dependent. The
ideal case, in terms of minimizing the number of vectors, is illustrated in Example 9
where the three linearly independent vectors of S span R3. In Sec. 3.3 we will see
that S is a basis for R3, and that every basis for R consists of exactly three linearly
independent vectors.

m Show that the set of matrices
-1 0 1 1
s={[ =2 V11 o]}

does not span M;y,. Describe span(S).

—p—
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Hence, the linear system has the unique solution ¢; = 2a — ¢, ¢, = —a + ¢, and
c3 = —4a + b+ 2c, for all a, b, and c. Therefore, span(S) =

The Null Space and Column Space of a Matrix

Two special subspaces associated with every matrix A are the null space and column
space of the matrix.

DEFINITION 4 Null Space and Column Space Let A be an m X n matrix.

1. The null space of A, denoted by N(A), is the set of all vectors in R” such
that Ax = 0.

2. The column space of A, denoted by col(A), @@ qQ linear combinations
of the column vectors of A

mam) is a su col(A) is a subset of R™. Moreover,
‘i tion 1@ of R™. Using this terminology, we give a
\, \e\l\l S atement 0 #e ec. 2.2.

THEOREM GE Let A be an m x n matrix. The linear system Ax = b is consistent if and only if
b is in the column space of A.

I =1 =2
A= —1 2 3 and b= 1
2 =2 =2 =2

a. Determine whether b is in col(A).
b. Find N(A).
Solution

a. By Theorem 6, the vector b is in col(A) if and only if there is a vector x such
that Ax = b. The corresponding augmented matrix is given by

1 -1 =2 3 1 0 0 3
—1 2 3 1 which reduces to 0 1 O 8
2 20 2|2 0O 0 1| -4

—p—
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This leads to the concept of a basis for an abstract vector space. As a first step, we
generalize the concept of linear independence to abstract vector spaces introduced in
Sec. 3.1.

DEFINITION 1 Linear Independence and Linear Dependence The set of vectors S =

preN'®

Figure 1

{vi,va,...,Vv,} in a vector space V is called linearly independent provided that
the only solution to the equation

cavit+oevo+ -+, =0

is the trivial solution ¢; = ¢ = - - - = ¢, = 0. If the equation has a nontrivial solu-
tion, then the set S is called linearly dependent.

V!
and let W = La\e 0 7

N

( qT v
\l\l c. Show’&it a v, are llnearly independent.

@IagTo solve the vector equation

1 0 -3
c1 0|+l 2 |= 4
—1 2 7
we row-reduce the corresponding augmented matrix for the linear system to
obtain
1 0| -3 1 0| -3
0 2| 4|— 101 2
-1 2| 7 0 0| O
The solution to the vector equation above is ¢; = —3 and ¢, = 2, therefore
V3 = —3v;| + 2wy

Notice that the vector v3 lies in the plane spanned by v; and v;, as shown
in Fig. 1.

b. From part (a) an element of W = {c|v] + ¢cav2 + ¢3V3 | ¢1, €2, ¢c3 € R} can be
written in the form

C1Vi + v + ¢33 = ¢1V1 + cava + c3(=3v; + 2vy)
= (c1 —3c3)vy + (2 +2¢3)V2

—p—
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Solution By using the methods presented in Chap. 2 it can be shown that the the column
vectors of the matrix A are linearly independent. Since the column vectors of B
consist of a set of five vectors in R*, by Theorem 3 of Sec. 2.3, the vectors are
linearly dependent. In addition, the first four column vectors of B are the same as
the linearly independent column vectors of A, hence by Theorem 5 of Sec. 2.3 the
fifth column vector of B must be a linear combination of the other four vectors.
Finally by Theorem 8, we know that col(A) = col(B).

As a consequence of Theorem 8, a set of vectors {vy,...,v,} such that V =
span{vy, ..., v,} is minimal, in the sense of the number of spanning vectors, when
they are linearly independent. We also saw in Chap. 2 that when a vector in R”" can
be written as a linear combination of vectors from a linearly independent set, then the
representation is unique. The same result holds for abstract vector spaces.

then every vector in span(B ﬂumquely as a linearly combination of

vectors from BN O‘.

.‘( vated by é’% 59 define what we mean by a basis of a vector
e\l\l space é
prel,

DEFINITI is for a Vector Space A subset B of a vector space V is a basis for V
provided that

THEOREM 9 If B={vy,Vva,...,V,}isalinearly i \ ndén Q)t‘vectors in a vector space V,

1. B is a linearly independent set of vectors in V
2. span(B) =

As an example, the set of coordinate vectors

={er,...,e,}

spans R” and is linearly independent, so that S is a basis for R”. This particular basis
is called the standard basis for R". In Example 3 we give a basis for R, which is
not the standard basis.

is a basis for R3.
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Dimension

We have already seen in Theorem 3 of Sec. 2.3 that any set of m vectors from R”,
with m > n, must necessarily be linearly dependent. Hence, any basis of R" contains
at most n vectors. It can also be shown that any linearly independent set of m vectors,
with m < n, does not span R". For example, as we have already seen, two linearly
independent vectors in R? span a plane. Hence, any basis of R” must contain exactly n
vectors. The number n, an invariant of R”, is called the dimension of R". Theorem 11
shows that this holds for abstract vector spaces.

THEOREM 11 If a vector space V has a basis with n vectors, then every basis has n vectors.

Proof Let B ={v|,vp,...,V,} be a basis for V, and let T = {u;, up, ..., u,}
be a subset of V with m > n. We claim that T is linearly dependent. To establish
this result, observe that since B is a basis, then every vector i can be written
as a linear combination of the vectors from B. That i 1s V

u = Avy + X“a
k ég -+ )xznv,,
N(u)m = 6@9 “+ NunVn
\l\l ‘ﬁx/ consider %
( e\, & cup +coup + -+ cpu, =0
P angie equations above, we can write this last equation in terms of the basis

Vectors After collecting like terms, we obtain

(cih1 + 2l + - -+ k1) Vi
+ i+ aakn+ -+ omhm2)va

+ (Cl)\ln + ko + 00+ Cm)\-mn)vn =0
Since B is a basis, it is linearly independent, hence

cihit e+ -+ e =0
cihizt+ehn+ -+ ke =0

Clxln + C2)\-2n +--+ Cm)\-mn =0

This last linear system is not square with n equations in the m variables cy, . .., ¢;.
Since m > n, by Theorem 3 of Sec. 2.3 the linear system has a nontrivial solution,
and hence T is linearly dependent.

—p—
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The details of these observations are made clearer by considering a specific
example. Let

1 2
= {V11V27V31 V4, VS}: 1 ) 0 B 1 i 1 s 1
1 2 1
We begin by considering the equation
1 2 2 3 0
Ccl 1 +c| 0 | +c3 1 + ¢4 1 +c5 1 = 0
0 1 2 1 3 0

To solve this system, we reduce the corresponding augmented matrix to reduced
echelon form. That is,

1 1 2 2 3]0 1 0 01 0|0
1 01 1 1|0 reduces to 0O 1 0 1 110
0O 1 2 1 3|0 110

responding to the leading ones in the while ¢4 and c5 are free. Thus,

the solution is given by
N@Sr(—s - an 5.1 €R)
Y;/asm spﬁ‘ WEJ itute these values into the original vector
e\l\l tion to o

1 2 2 3 0
Pag +(s—t)0+(t)1+s1+t1=0

0 0 J
In the general solution, the variables ¢ N2, andﬁx theSCpendent variables cor-

prev!

We claim that each of the vectors corresponding to a free variable is a linear com-
bination of the others. To establish the claim in this case, let s = 1 and r = 0. The
above vector equation now becomes

1 1 2 0
-1 |{=]10]+]|1]|=10
0 1 1 0

that is,
—Vi—Va2+vy=0
Thus, v4 is a linear combination of v; and v,. Also, to see that vs is a linear combi-
nation of vy, vo, and v3, we let s =0 and r = 1.
In light of Theorem 8 we eliminate v4 and vs from S to obtain S’ = {vy, v2, v3}.
Observe that S’ is linearly independent since each of these vectors corresponds to a
column with a leading 1. Thus, the equation

1 1 2 0
Cl 1 +c | 0|43 | 1 =10
0 1 2 0

has only the trivial solution.

—p—
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23. Let a second ordered basis B by

=1 1]}

be the standard ordered basis for R? and let

B:{{H,[_% } a. If[v]sz{fj},thenﬁnd[v]g.
3

be a second ordered basis.

a. Find [11% {SH?HH“]

b. Find the coordinates of

cosH —sin6
Uls = [ sin®  cos9 }

b. Draw the rectangle in the plane with vertices

c. Let 6 = Z. Draw the rectangle in the plane

2
[ 1 ] [ 1 ] [ 4 ] [ 4 ] with vertices the coordinates of the vectors,
2 4 2 4 given in part (b), relative to the ordered
relative to the ordered basis B. basis B. K
c. Draw the rectangle in the plane with vertices 25. S pose tGT ) u, uz} and

(1,2),(1,4), (4, 1), and (4, 4). V3, v3} are ordered bases for a vector

d. Draw the polygon in the plane w1t“ tes ace V such that u; = —v; 4+ 2v,, up =

given by the coordinates fou g: 32 —v3, and w3 = —vz + V3.
x Q " 6 the transition matrix [/ ] B

24. Fix a rr;al n 6 déffne the tra O

andard orde %@) b. Find [2u; — 3u; + u3]3,

pxeV* gage

Differential equations arise naturally in virtually every branch of science and tech-
nology. They are used extensively by scientists and engineers to solve problems
concerning growth, motion, vibrations, forces, or any problem involving the rates
of change of variable quantities. Not surprisingly, mathematicians have devoted a
great deal of effort to developing methods for solving differential equations. As it
turns out, linear algebra is highly useful to these efforts. However, linear algebra also
makes it possible to attain a deeper understanding of the theoretical foundations of
these equations and their solutions. In this section and in Sec. 5.3 we give a brief
introduction to the connection between linear algebra and differential equations.

As a first step, let y be a function of a single variable x. An equation that
involves x, y, y', y”, ..., y"™ where n is a fixed positive integer, is called an ordinary
differential equation of order ». We will henceforth drop the qualifier ordinary since
none of the equations we investigate will involve partial derivatives. Also, for obvious
reasons we will narrow the scope of our discussion and consider only equations of a
certain type.

plication: Differential Equations
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second derivatives y' = re’* and y” = r2e’*, we see that y = ¢’* is a solution of the
second-order equation if and only if

rle™ +are™ +be"™ =0
that is,
e (r? +ar+b)=0
Since ¢"* > 0 for every choice of r and x, we know ¢’ is a solution of y” + ay’ +
by = 0 if and only if
rPP4+ar+b=0

This equation is called the auxiliary equation. As this equation is quadratic there
are three possibilities for the roots r; and r,. This in turn yields three possible vari-
ations for the solution of the differential equation. The auxiliary equation can have

two distinct real roots, one real root, or two distinct complex roots. These cases are
considered in order.

In this case there are two solutions, %i b
)

Case 1 The roots r| and r, are real and dist}tﬁo \)K
\ .
%a‘ and y2(x) = €?*
Flnd two i@@mc@&the differential equation y” — 3y’ + 2y = 0.

509

Since the auxiliary equation 72> —3r +2 = (r — 1)(r —2) =0 has
dlstmct real roots r; = 1 and r, = 2, two distinct solutions for the differential
equation are

P '} e SOIP

yi(x) =¢e* and Vo (x) = e

Case 2 There is one repeated root r. Although the auxiliary equation has only one
root, there are still two distinct solutions, given by

yix) =€ and  y(x) = xe™

m Find two distinct solutions to the differential equation y” — 2y’ + y = 0.

Solution Let y =¢'*. Since the auxiliary equation r> —2r 4+ 1= (r —1)> =0 has the
repeated root r = 1, two distinct solutions of the differential equation are

yix)=¢" and  y(x) = xe*

—p—
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b. Assume there exists a particular solution to the
nonhomogeneous equation of the form

yp(x) = Acos2x + Bsin2x

Substitute y,(x) into the differential equation
to find conditions on the coefficients A and B.

c¢. Verify that y.(x) + y,(x) is a solution to the
differential equation.

9. Let w be the weight of an object attached to a
spring, g the constant acceleration due to gravity
of 32 ft/s?, k the spring constant, and d the
distance in feet that the spring is stretched by the

10.

Confirming Pages

weight. Then the mass of the object is m = %

k = %. Suppose that a 2-1b weight stretches a
spring by 6-in. Find the equation of the motion of
the weight if the object is pulled down by 3-in
and then released. Notice that this system is
undamped; that is, the damping coefficient is 0.

and

Suppose an 8-1b object is attached to a spring
with a spring constant of 4 1b/ft and that the
damping force on the system is twice the velocity.
Find the equation of the motion if the object is
pulled down 1-ft and given an upward velocity

of 2 ft/s.

Review Exercises for Chapter 3

1. Determine for which values of k the vectqQrs
}J, QLN ¥ EE

bas1s for IR“

2 For which values of a,b,c, d e, and f are the

vectors 6
a d
0 c e
0 0 f

a basis for R32

3. Let
a—>b a
S_{[b—i—c a—c}

a. Show that S is a subspace of M5».

b.Is[ 3}inS?

a,b,celR}

5
-2 3
c. Find a basis B for S.
d. Give a 2 x 2 matrix that is not in S.
4. Let S={px)=a+bx+cx’|a+b+c=0}
a. Show that S is a subspace of P,.
b. Find a basis for S. Specify the dimension of S.

[

ppose t = {vy, v, v3} is a basis for a

Qﬂlne whether the set T = {v|, v| +

V2, Vi + Vo + v3} is a basis for V.

b. Determme whether the set

={—v2+v3,3vi +2vs +v3, V| —
Vo + 2v3} is a basis for V.

. Let § = {vy, v, v3}, where

-3 _

V) = Vo =

. Explain why the set S is not a basis for R*.

b. Show that v3 is a linear combination of v; and

V).

I

. Find the dimension of the span of the set S.

d. Find a basis B for R* that contains the vectors

v and v,.

—p—
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24. If V is a vector space of dimension n and H is a

subspace of dimension n, then H = V.

25. If B and B, are bases for the vector space V,

then the transition matrix from B; to B, is the
inverse of the transition matrix from
B, to Bj.

In Exercises 26-29, use the bases of R?

n={[2}2)
ne {1} 2]

26. The coordinates of [ (1) }, relative to By, are
v t& B, are

)
27. The coordinates of &)d @
yeW 10
PZX e transition r@x@fgl to B%

29. The transition matrix from B, to Bj is

i

In Exercises 30—35, use the bases of P;,

and

15 =

By = {1,x,x% x%}

3.5 Application: Differential Equations

and
{x,x2,1,x%)
S
30. [x3+2x2—x]31= 2
-1
F o0
31. [x3+2x2—x]31= _;
L 1_
o
32, [x3 4242 —x]p, = _%
% AL A
O30 |
0 n
O 34, [0 +x)2 =32+ x— 1) +x%]p,
-1
T =2

1

35. The transition matrix from B; to B, is

0100
s _ |00 10
Ue=1100 0

000 1

Confirming Pages
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and

Later in this chapter, in Sec. 4.4, we show that every linear transformation between
finite dimensional vector spaces can be represented by a matrix. In Examples 1 and 2, we
have discussed some of the algebraic properties of linear transformations. In Example 3
we consider the action of a linear transformation from a geometric perspective.

m Define a linear transformation T: R> — R? by
(12]) =l ok
: AV

a. Discuss the action of T on a [R nd give a geometric interpretation
of the equation

'«0‘“ ‘3939 |

P ( e\, aged @, & of the set

= =

1

Si=<t]| 2 ||teR
1

c. Find the image of the set

o

Sy = y ||x,yeR
L 3 -
d. Describe the set _

5

S3 = 0 X, € R

L Z -

and find its image.

Solution a. The linear transformation 7' gives the projection, or shadow, of a vector in

3-space to its image in the xy plane. Let

1 0 1
vi=1|0 vy=| 1 and vi=vi+vy=| 1
1 1
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Operations with Linear Transformations

Linear transformations can be combined by using a natural addition and scalar mul-
tiplication to produce new linear transformations. For example, let S, T: R> — R? be
defined by

(D=1 e (D155

S+DV)=SWM+T) and  (cH(V) =c(SV)

To illustrate this definition, let v = [ _? ] ; then

samo=sosror= [ SO B ][ £
abene

For scalar multﬁmcatl
09 1|
(o\’(\ Bg o= ][ 5]
e he re %e show that these operations on linear transformations produce

ansformations.

Let V and W be vector spaces and let S, 7: V. — W be linear transformations. The
function S + T defined by

S+T)v)=SV)+T(v)

is a linear transformation from V into W. If ¢ is any scalar, the function ¢S
defined by
(€S)(v) =cS(v)

is a linear transformation from V into W.
Proof Letu,v e V and let d be any scalar. Then
S+ T)du+v)=Sdu+v)+T(dau+v)
= Sdu) + S(v) +T(du) +T(v)
=dS) + Sv) +dT () + T (v)
=d(S(u)+T@)+ SV)+T(v)
=dS+T)w) + (S+T)(V)

—p—
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Fact Summary

Let V, W, and Z be vector spaces and S and 7 functions from V into W.

1. The function 7 is a linear transformation provided that for all u, v in V and
all scalars ¢, T(cu+v) =cT(u) + T(v).

2. If A is an m x n matrix and T is defined by 7' (x) = Ax, then T is a linear
transformation from R” into R™.

3. If T is a linear transformation, then the zero vector in V is mapped to the
zero vector in W, that is, 7'(0) = 0.

4. If B ={vy, vy, ..., Vv,} is an ordered basis for V and W = R", then the
coordinate mapping 7' (v) = [v]p is a linear transformation.

5. If {vi, vy, ..., v,} is a set of vectors in V and T is a linear transformation,
then

T(civi+covo+ -+ cpVp) = ClT(Vb ﬂ%’ 4T (V)
for all scalars cy, ... ﬁ‘
6. IfSandTag 3@ sandc1sascalar then S+ T and cT
is a

are lingaryr

ipe tion and L : W — Z is a linear
_‘( O tihn formatlon t '( is a linear transformation.
1

Exercise Set

In Exercises 1-6, determine whether the function In Exercises 7—16, determine whether the function is a
T: R?> — R? is a linear transformation. linear transformation between vector spaces.
1.T< ’; ): )}c)] 7. T:R - R, T(x) = x2

8. 'R—- R, T(x) =—

2r([3]) =[]
' LY ] | x—y+2 9.T:[R2—>|R,T<[);})=x2+y2
-x- -X
3. T = . M3 2
(:1)-] 5] o
[ x ] __2x—y x X
4'T<_y_>__x+3y] e :[y}
z
X X
5-T(_y_)=_0} 11. T: R® — R?,
o [ xty x xty-z
6.T< N ): 2 T(|y|]=]| 2
L Y] 5 z x+z+1
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7
b. Letw= | —6
-9

. Determine whether there is

a vector v in R3 such that 7'(v) = w.

34. Define T: P, — P, by
T(p(x)) = p'(x) — p(0)

a. Find all vectors that are mapped to 0.

b. Find two polynomials p(x) and g (x) such that
T(p(x)) =T(q(x)) =6x — 3.
c. Is T a linear operator?

35. Suppose T1: V — R and T5: V — R are linear
transformations. Define 7: V — R? by

o= [

Show that T is a linear transformation.

that 7 is a hnea t

36. Define T: M,,», —> R b)ﬁl'
s a ﬁxed n grlee§
nxn _> Mn><n ?@g BA. Show
that 7 is a linear op&rato

38. Define T: R — R by T'(x) = mx + b. Determine
when T is a linear operator.

AN

39. Define T: C@[0, 1] — R by

1
T(f) =/0 ) dx

for each function f in C@[0, 1].
a. Show that T is a linear operator.
b. Find 7(2x% — x + 3).

40. Suppose that T: V — W is a linear transformation
and T(u) =w. If T(v) =0, then find T (u + v).

41. Suppose that T: R" — R” is a linear
transformation and {v, w} is a linearly
independent subset of R”. If {T (v), T(w)} is
linearly dependent, show that 7'(u) = 0 has a

nontrivial solution. ¥
inear operator and

42. Suppose that T
{vi,. \ dependent Show that

T(vn)} is linearly dependent.

. Let S = v, v3} be a linearly independent

% Find a linear operator T: R® — R3,
su that {T(v1), T(v2), T(v3)} is linearly
dependent.

44. Suppose that 71: V — V and T: V — V are
linear operators and {vy, ..., v,} is a basis for V.
If T (v;) = T»(v;), foreachi = 1,2, ..., n, show
that T\ (v) = T(v) for all vin V.

45. Verify that £(U, V) is a vector space.

4.2 » The Null Space and Range

In Sec. 3.2, we defined the null space of an m x n matrix to be the subspace of R" of
all vectors x with Ax = 0. We also defined the column space of A as the subspace of
R™ of all linear combinations of the column vectors of A. In this section we extend
these ideas to linear transformations.

DEFINITION 1

Null Space and Range Let V and W be vector spaces. For a linear transfor-

mation 7: V — W the null space of 7', denoted by N(T), is defined by

N(T) =

(veV |T() =0}

The range of T, denoted by R(T), is defined by

R(T)={T(v) |veV}

—p—
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The null space of a linear transformation is then the set of all vectors in V that are

mapped to the zero vector, with the range being the set of all images of the mapping,
as shown in Fig. 1.

T T
V" U

L

0 R(T)

Figure 1

In Theorem 3 we see that the null space and rz‘g)% linear transformation

are both subspaces. \ e
THEOREM 3 Let V an aces an D\(%% W a linear transformation.
_‘ ebn 11 space of 'S
. \l\l pace of W.

(e\,\ e Vi and vy be in N(T), so that T(vi) =0and T(vy) =0.If cis a
P P T, then using the linearity of 7', we have

Tevi+v)=cT(V)+TV2)=c0+0=0

Thus, c¢v) + v, is in N(T), and by Theorem 4 of Sec. 3.2, N(T) is a subspace
of V.

(2) Let wy and wy be in R(T). Then there are vectors v; and v, in V such that
T (vy) = w; and T (v2) = wy. Then for any scalar c,

T(cvi +v2) =cT(vi) +T(v2) = cwi + Wy
so that cw; 4+ wy is in R(T") and hence R(T) is a subspace of W.

m Define the linear transformation T: R* — R3 by

a
b a+b
T = b—c
o a+d
d

a. Find a basis for the null space of 7" and its dimension.

—p—
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Applying A~! to w, we obtain

0 -1 vp+v2 | | U | e
E iR I Rt

THEOREM 11 If V and W are vector spaces of dimension n, then V and W are isomorphic.

Proof By Theorem 10, there are isomorphisms 77: V —> R" and 7,: W — R",
as shown in Fig. 1. Let ¢ = T{loTl: V — W. To show that ¢ is linear, we first
note that T{l is linear by Proposition 3. Next by Theorem 2 of Sec. 4.1, the
composition T[loTl is linear. Finally, by Theorem 4 of Sec. A.2, the mapping ¢
is one-to-one and onto and is therefore a vector space isomorphism.

v o -\)\L
\\h
No‘?r ;;

PN oa0e

b=T, TV — W

Figure 1

m Find an explicit isomorphism from P, onto the vector space of 2 x 2 symmetric

matrices Srys.

Solution To use the method given in the proof of Theorem 11, first let

n-vnr o ne{[ESL[S L[]

be ordered bases for P, and S»y», respectively. Let 7 and 7, be the respective
coordinate maps from P, and S, into R*. Then

C @
Ti(ax> +bx+c¢)= | b and T2<[Z i’D: b

—p—



In Exercises 25-28, determine whether the matrix

—1

0

—p—
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4.4 Matrix Representation of a Linear Transformation

30. Show that 7: P; — P3 defined by
T(p(x)) = p""(x)+ p"(x) + p'(x) + p(x)

0 1 X is an isomorphism.
-1 -1 y
1 0 z 31. Let A be an n x n invertible matrix. Show that
oL T: Myxn, — M, x, defined by
—1 1 X
1 —1 y T(B) = ABA™!
L 0] [z] is an isomorphism.

. Find an isomorphism from M., onto R*.

mapping 7: V — V is an isomorphism.

3 1 33. Find an isomorphism from R* onto P;.
X - X
5.7 <[ y }) = { 1 -3 } { y ] 34. Find an isomorphism from M;4, onto Ps.
- 35. L
s r([3])=130]1]
y -3 1 y 2 B
T +2y—z=
x 0 -1 —17[x \ C
21. T y =12 0 2 y Sa‘l an 1s0m0rphlsm from V onto R2.
L < 1 1 -3 9
, b, R
8.7y %(@ " a]“ CE}
V\ % Find an 1som0rphlsm from P, onto V.
Pz( @’ that T: M, y 37. Suppose T: R* — R’ is an isomorphism. Show
?T 1) = that 7' takes lines through the origin to lines

is an isomorphism.

4.4

through the origin and planes through the origin
to planes through the origin.

Matrix Representation of a Linear Transformation

Matrices have played an important role in our study of linear algebra. In this section
we establish the connection between matrices and linear transformations. To illustrate
the idea, recall from Sec. 4.1 that given any m x n matrix A, we can define a linear
transformation 7: R” — R™ by

T(v) = Av
In Example 8 of Sec. 4.1, we showed how a linear transformation T: R} — R? is
completely determined by the images of the coordinate vectors ej, e;, and e3 of R>.

U1
V2
U3

The key was to recognize that a vector v = can be written as

VvV =vie; + e + vies so that T(v)=vT(e;)+ v2T(e2) + v3T (e3)

—p—

Confirming Pages



$ Confirming Pages

236 Chapter 4 Linear Transformations

In that example, T was defined so that

T(e) = { | ]T(ea: { ‘é] T(e3>=[?]

Now let A be the 2 x 3 matrix whose column vectors are 7 (e;), T(ey), and T (e3).
Then

1 -1 0
T(v):{1 > 1:|V=AV

That is, the linear transformation 7 is given by a matrix product. In general, if
T: R" — R™ is a linear transformation, then it is possible to write

T(v) = Av

where A is the m x n matrix whose jth column vector is T'(e;) for j =1,2,...,n.
The matrix A is called the matrix representation of 7 relative to the standard
bases of R” and R™.

In this section we show that every linear transfoqjm'zn% finite dimensional

vector spaces can be written as a matri. iplikat] Pecifically, let V and W be
finite dimensional vector spaces lah dered bases B and B’, respectively. If
T:V— Wis alﬁ @% en there exists a matrix A such that
509
\l\l ﬁ‘n‘ste for 5 = [R™, and B and B’ are, respectively, the standard
\, bases, t éas@l ] equivalent to
PIeY pad o=

as above. We now present the details.

Let V and W be vector spaces with ordered bases B = {v|, V2, ...,V,} and B’ =
{wi,wa, ..., wy}, respectively, and let 7: V — W be a linear transformation. Now
let v be any vector in V and let

c
Ve =
Cn
be the coordinate vector of v relative to the basis B. Thus,
V=ciVi+cVa+ -+ ¢y Vp

Applying T to both sides of this last equation gives

T(v) =T(c1vi +cava+ -+ +cyVy)
=c1T(vi) + 2T (v2) +---+ ¢, T(vy,)

Note that for each i = 1,2, ..., n the vector 7 (v;) is in W. Thus, there are unique
scalars a;; with 1 <i <m and 1 < j < n such that

—p—
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o G e
? : T(ax2+bx+c):ax2+bx+c
V=[_2} B={l,1—x,(1—x)?%
B/: 11 9 2
6. - R - R, (1 x. 22
V:x2_3x+3
X 2x — 2
r y ={—x+y+z 10. T: P, — Ps,
Z r “ T(px) = p'(x)+ px)
—1 1 1 ) i
B={l-x—x"11
B = O s 2 s 2 { X X +x}
1 0 1 B/={—1+X,—1+X+x2,x}
: ! 0 0 v=1—x
B = o, 11|10 1 Let
S WY
_ {oIAS\
! 1
T { _} \&5 ‘tlgfinear operator on all 2 x 2

Otegaa'es with trace 0, defined by

B,_%UHS]} T Mo o

—1
V=1 3 T(A)=2A"+A
8. TR — R B and B’ the standard basis on M>,,
i 1 3
X X+z V=1 _| 5
T y =| 2y—x
< y+z | 13. Let T: R?> — R? be the linear operator defined by
[ —1 -1 0 ]
2
SR ((3)-[
1 1 1] Y 4
[0 1 17 Let B be the standard ordered basis for R? and B’
B — { 0 ]7 0l | -1 the ordered basis for R? defined by
SR r={ ]3]
-2 2 —1
v=| 1 a. Find [T15.
3 b. Find [T]s.

—p—
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to show directly that the matrices [T']p, and [T]p, 18. Show that if A and B are similar matrices, then
are similar. det(A) = det(B).

16. Let T: P, —> P, be the linear operator defined 19. Show that if A and B are similar matrices, then
by T(p(x)) = xp’(x) + p”(x). Find the matrix tr(A) = tr(B).
representation [7']p, relative to the basis
B; = {1, x, x?} and the matrix representation 20. Show that if A and B are similar matrices, then
[T]p, relative to B, = {1, x, 1 + x?}. Find the A" and B’ are similar matrices.

transition matrix P = [/ ]f;;, and use Theorem 15
to show directly that the matrices [T]p, and [T]p,
are similar.

21. Show that if A and B are similar matrices, then
A" and B" are similar matrices for each positive

integer n.
17. Show that if A and B are similar matrices and B
and C are similar matrices, then A and C are 22. Show that if A and B are similar matrices and A
similar matrices. is any scalar, then det(A — \1) = det(B — \1).

4.6 > Application: Computer GraphB \)\L

The rapid development of incr \ erful computers has led to the explo-
ga‘ler generated visual content is ubiquitous, found

sive growth of dj gltal
in almost evk&l adverti entertamment to science and medicine.
puter sci 5@ omputer graphics is devoted to the study
" eb g neratlo r@ digital images. Computer graphics are based
\l\l on dlspla (E e-dimensional objects in two-dimensional space. Images
\e omputer screen are stored in memory using data items called pixels,
%%s short for picture elements. A single picture can be comprised of millions
ixels, which collectively determine the image. Each pixel contains informa-
tion on how to color the corresponding point on a computer screen, as shown in
Fig. 1. If an image contains curves or lines, the pixels which describe the object

may be connected by a mathematical formula. The saddle shown in Fig. 1 is an
example.

preV
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Figure 1
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preN'e N

Solutlon

Reflection

Confirming Pages

The reflection of a geometric object through a line produces the mirror image of the
object across the line. The linear operator that reflects a vector through the x axis is

given by

(3 ])=15]

A reflection through the y axis is given by

»([3)=15]

and a reflection through the line y = x is given by

o ([ )-[:]

The matrix representations, relative to the standard basis B, for

y [R]p = { ! ] g
’(_e
@ﬁ%ﬁ

a. Reﬂectlo ro ggxe X axis.
a@ fough the y axis.
ection through the line y = x.

a. The vertices of the triangle in Fig. 4 are given by

(1] e[t

Applying the matrix [R,]p to the vertices of the original triangle, we obtain

<[ 3] e[ ]

The image of the triangle is shown in Fig. 9(a).

b. Applying the matrix [R,]p to the vertices of the original triangle, we obtain

q=[v] =[]

The image of the triangle with this reflection is shown in Fig. 9(b).
c. Finally, applying the matrix [R,—,]p to the vertices of the original triangle,

[

we obtain

i=lo] w=|a]

The image of the triangle is shown in Fig. 9(c).

—p—
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s X | xcosH — ysin6
0 y " | xsinB+ ycos

The matrix of Sy relative to the standard basis B = {e;, e,} for R? is given by

given by

cosf® —sinb
[Sels = [ sinf  cos6 ]
When using homogeneous coordinates, we apply the matrix

cos® —sinb O

sin6 cosf® O

0 0 1
m Find the image of the triangle of Fig. 4 under a translation by the vector b =
[ _} ], followed by a rotation of 30°, or m/6 rad, J e counterclockwise

direction. gﬂo .
Solution The matrix for the combined éeai\@ gl by
0

[ 3 1
cos ¥ ﬂ@t = — O 1 0 1
i ty = V) 0 1 -1
e D as0d | g
-‘( 0 A 0 0 1]l00 1
[ V3 il B ]
e 2% Pl T
P ag =| 1 ¥ 1_
2 2 27 72
| 0 0 1
The vertices of the triangle in homogeneous coordinates are given by
0 2 1
vi=| 1 vy=| 1 and v3=| 3
1 1 1
After applying the above matrix to each of these vectors, we obtain
3 3.3
< = V3-1
V)= % vy = % and vi=| J/3+1
1 1 1
Figure 13 The resulting triangle is shown in Fig. 13.
Projection

Rendering a picture of a three-dimensional object on a flat computer screen requires
projecting points in 3-space to points in 2-space. We discuss only one of many methods
to project points in R? to points in R? that preserve the natural appearance of an object.

—p—
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=V

Figure 15
b. Find a 3 x 3 matrix that will rotate the (projected) vertices of the cube by 30°

and another that will translate the cube by the vector %

Solution  a. We can arbitrarily set z; = —1. Then 0 \-)

tan» = tan30° ~ 0. Sé% 6(1’an $)? = (tan26.6°)> ~ (0.5)> = xd aF yd

so that NO 9]
m Yd :{5%0 d  x+y;=;
"( OSolvin ﬁ tions gives x4 &~ 0.433 and y; ~ 0.25, so that the
e\N dlrecﬁé%

\ 0.433
P ( e\, P ag Va = _(1).25

Using the formulas for a projected point given above, we can project each
vertex of the cube into R%. Connecting the images by line segments gives the
picture shown in Fig. 16. The projected points are given in Table 1.

Table 1

Vertex | Projected Point
0,0,1) | (0.433,0.25)
(1,0,1) | (1.433,0.25)
(1,00) | (1,0)

0,00 | (0,0)

(0,1,1) | (0.433,1.25)
(1,1,1) | (1.433,1.25)
(1,10 | (1, 1)

0,1,0) | (0, 1)

—p—
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Alternatively, the set
Vi={veR'|Av=av}={veR"|(A—AN)v=0} =N(A —\I])

Since V; is the null space of the matrix A — A/, by Theorem 3 of Sec. 4.2 it is a
subspace of R".

m Find the eigenvalues and corresponding eigenvectors of
2 —12
Sl |
Give a description of the eigenspace corresponding to each eigenvalue.

Solution By Theorem 1 to find the eigenvalues, we solve the characterigtic equation

2-%  -12 u
\855(;‘3(—:{)(1)( 12)

t 3x +2
NOZ (39 -
-i @@values ‘1 a 2 = —2. To find the eigenvectors, we need
e\l\l nd all no?@@ e null spaces of A — ;I and A — \,/. First, for

\
YN a8 T b e

det(A —\I) =

I =5 0 1 1 -4

The null space of A 4 I is found by row-reducing the augmented matrix
3 —-12|0 ; 1 —410
0 © 0 00

1 —4
: - . 4t
The solution set for this linear system is given by S = ;

t e [R} . Choosing

. . 4 . .
t = 1, we obtain the eigenvector v| = [ | } Hence, the eigenspace corresponding

wm(1

tohy =—11is

t is any real number}

For Ay = -2,
4 —12
VA o)
In a similar way we find that the vector v, = ? } is an eigenvector corresponding
to A, = —2. The corresponding eigenspace is

—p—
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THEOREM 3

Let A be an n x n matrix, and let Ay, Ay, ..., N\, be distinct eigenvalues with
corresponding eigenvectors Vi, Vo, ..., V,. Then the set {v|, vo, ..., v,} is linearly
independent.

Proof The proof is by contradiction. Assume that A, A2, ..., \, are distinct
eigenvalues of A with corresponding eigenvectors vy, v, ..., V,, and assume that
the set of eigenvectors is linearly dependent. Then by Theorem 5 of Sec. 2.3,
at least one of the vectors can be written as a linear combination of the others.
Moreover, the eigenvectors can be reordered so that vy, v, ..., V,, with m < n,
are linearly independent, but vi, vo, ..., v, are linearly dependent with v,, | a
nontrivial linear combination of the first m vectors. Therefore, there are scalars
Cl,...,Cnm,not all 0, such that

V4l = C1VL + -+ CuVi

This is the statement that will result in a contradiction. We multi%he last equation

by A to obtain u
AVpy = A(Q"\E
+ CmA(Vm)

Further, since v; x%r corre g to the eigenvalue \;, then Av; =
\iVi, el sulist1 t10n in tl‘ tlon, we have
=ciMVi+ -+ el Vi

e\ A\ 3 o
e Now ly% sides of v;;41 = c1vi + -+ + ¢ Vi BY Npt1, wWe also have
P a@ )\-m+lvm+l == Cl)\-m+lV1 +---+ Cm)\-m+lvm

By equating the last two expressions for \,,41V,,+1 we obtain
CINV+ -+ N Vi = CLNpp 1V + -+ Cn N 1 Vi
or equivalently,
M = M DVE+ -+ O — Mt 1) Vi = 0

Since the vectors vy, va, ..., v, are linearly independent, the only solution to the
previous equation is the trivial solution, that is,

Cl()‘-l _)‘-m+l) =0 C2()‘-2_)\m+1) =0 Cm()‘-m _)\-m+1) =0

Since all the eigenvalues are distinct, we have

M= N1 #0 A= N1 #0 M = Nug1 0

and consequently

c1 =0 =0 cn =0
This contradicts the assumption that the nonzero vector v,,; is a nontrivial linear
combination of v, v, ..., V,,.

—p—
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COROLLARY 1 If A is an n x n matrix with n distinct eigenvalues, then A is diagonalizable.

m Show that every 2 x 2 real symmetric matrix is diagonalizable.

Solution Recall that the matrix A is symmetric if and only if A = A’. Every 2 x 2 symmetric
matrix has the form

a b
=[5 4]
See Example 5 of Sec. 1.3. The eigenvalues are found by solving the characteristic
equation
_ a— \ b a2 2 _
det(A —\I) = b d_ )\‘—)\—(a—i—d ad —b= =0

By the quadratic formula, the eigenvalu arco

ai (—d)2+4b2
@5 ;

jsc rnlnant (a — #the characteristic equation has either one
0 real 1o =0, then (a — d)? = 0 and b = 0, which holds
\e\l\l 1f and S’ and b 0. Hence, the matrix A is diagonal. If

preV

0, then A has two distinct eigenvalues; so by Corollary 1, the
a A is diagonalizable.

By Theorem 2, if A is diagonalizable, then A is similar to a diagonal matrix
whose eigenvalues are the same as the eigenvalues of A. In Theorem 4 we show that
the same can be said about any two similar matrices.

THEOREM 4 Let A and B be similar n x n matrices. Then A and B have the same eigenvalues.

Proof Since A and B are similar matrices, there is an invertible matrix P such
that B = P~'AP. Now
det(B —\I) = det(P~'AP — 1)
=det(P~Y(AP — P(N])))
=det(P"'(AP — M P))
=det(P~'(A = \D)P)
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m Define the linear operator 7: R* — R? by

X1 3x1 — x2 + 2x3
T X2 = 2x1 + 2x3
X3 X1 + 3x7

Show that T' is diagonalizable.

Solution Let B = {e;, e, e3} be the standard basis for R3. Then the matrix for T relative to
B is

[Tl =

il NS JRUN]

-1 2
0 2
30

Observe that the eigenvalues of [T']p are A = —2, hp = 4, and A3 = 1 with cor-

responding eigenvectors, respectively,

[4] -l co V[
Now let B’_{vl,vZ,‘iega\

O 1 -5
\eWN “Tgm ?6 ol %@?} |

\ e 2%, . DI
PICY 0@ s 03] 1 )
—1 1 3 0 0

S~ O
- O O

Fact Summary

Let A be an n X n matrix.

1. If A is diagonalizable, then A = PDP~! or equivalently D = P~'AP. The
matrix D is a diagonal matrix with diagonal entries the eigenvalues of A.
The matrix P is invertible whose column vectors are the corresponding
eigenvectors.

2. If A is diagonalizable, then the diagonalizing matrix P is not unique. If the
columns of P are permuted, then the diagonal entries of D are permuted in
the same way.

3. The matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

4. If A has n distinct eigenvalues, then A is diagonalizable.

—p—
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b. Find the matrix B for T relative to the basis Show that T is not diagonalizable.

{x,x — l,xz}.

38. Define a linear operator 7: R — R? by

c. Show the eigenvalues of A and B are the same.

d. Explain why T is not diagonalizable. - 2 _ iii igii iiﬁi
36. Define a vector space V = span{sinx, cosx} and X3 4x3

a linear operator T: V. — V by T(f(x)) = f’(x).

Show that T is diagonalizable.

Show that T is diagonalizable.

37. Define a linear operator 7: R} — R? by

X1

T X2 =

P(e\"e\N

39. Let T be a linear operator on a finite dimensional
vector space, A the matrix for T relative to a

2x1 4 2x + 2x3 basis Bj, and B the matrix for T relative to a
—x1 +2x + x3 basis B;. Show that A is diagonalizable if and
x| — X2 only if B is diagonalizable.

Application: Systems of Linear lefew
Equations

In Sec. 3.5 we considere @g @fferentlal equation where the solution
er,

involved a smgl i in y modeling applications, an equation
that invo es 0 rdgon is not sufficient. It is more likely

@mchange of a will be linked to other functions outside
'ﬁsgf is is nda en a behlnd the notion of a dynamical system. One of
the most % ples of this is the predator-prey model. For example, suppose

gw a model to predict the number of foxes and rabbits in some habitat.
a th rate of the foxes is dependent on not only the number of foxes but also the
number of rabbits in their territory. Likewise, the growth rate of the rabbit population
in part is dependent on their current number, but is obviously mitigated by the number
of foxes in their midst. The mathematical model required to describe this relationship
is a system of differential equations of the form

yi@) = f@, yi,y)
(1) =gt y1,y2)

In this section we consider systems of linear differential equations. Problems such as
predator-prey problems involve systems of nonlinear differential equations.

Uncoupled Systems
At the beginning of Sec. 3.5 we saw that the differential equation given by

y =ay

has the solution y(r) = Ce®, where C = y(0). An extension of this to two dimensions
is the system of differential equations

Y =ay
y; =by

—p—
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In Example 2 we describe the solution for a system when the eigenvalues have
the same sign.

m Find the general solution to the system of differential equations

yI =y1+3»
y, = 2y,

Solution The system of differential equations is given in matrix form by

.o [13
y_Ay_{o 2}

The eigenvalues of A are Ay =1 and A, =2 Wltb r&W\ng eigenvectors
é‘é\a‘dc -7

“( 6“‘ tMgonallz %}@9

22808 o)

\e\|\l a@% led syst b
oupled system is given by

preV

with general solution
e 0
w(t) = [ 0 o ]wm)

Hence, the solution to the original system is given by

o=l 1][9 &0 7|0

el —3e¢' + 3e%
0 e2t

The general solution can also be written in the form

} y(©0)

Y1) = [y1(0) = 3y2(0)] " +3y2(0)e*  and  y2 (1) = y2(0)e*

—p—
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Hence, the solution to the original system is given by

3 2
o= 5] % 0

L= ] —

3
1
3

1| 2ew 41 —ew 41 |8
T3] e w42 e w42 |0
8 2e=W" 41
T3 2@ 42

c. The solution to the system in equation form is given by

yi(®) = g (267%’ + 1) and (1) = g (—Ze*TSO’ + 2)

limits

Jim 3 (26 %1)6@*\’\— !
amm @%Ze zo@ —(0+2) 136

We
gieW Vi
preV age
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To find the amount of salt in each tank as ¢ goes to i%y, we compute the

we expect that the 8 1b of salt should

ake sen rﬁ
ually b @&m and divided proportionally between the two

Exercise Set 5.3 B

In Exercises 1-6, find the general solution to the

system of differential equations. yi = —4y1 =3y, — 3y
1 { i =-n+ » 5.9 ¥ = 243242y
: yé = —2y2 yé = 4y1 +2)’2+3y3
2. {J’i ==y +2y yio==3y— 4n— 4y
o= n 6. ¢ ¥y = Tyi+ 1y 413y
) y3 = —=5y1— 8y, —10y3
3 { Vi yi—3y
Yo ==3y4+ »m In Exercises 7 and 8, solve the initial-value problem.
. { W= n-n . {y{ =-n nO=1  »pO=-
Y2 =-t» Y2 = 2i+»
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For reasons that will soon be clear, we scale v; (by the reciprocal of the sum of its
components) so that it becomes a probability vector. Observe that this new vector

<[}

is also an eigenvector since it is in the eigenspace V;,. Since the 2 x 2 transition
matrix has two distinct eigenvalues, by Corollary 1 of Sec. 5.2, T is diagonalizable
and, by Theorem 2 of Sec. 5.2, can be written as

o0lWw ooln

BRI

By Exercise 27 of Sec. 5.2, the powers of T are given by

_ PDna\é C,Q_i \'?

As mentlone ' @ s glves 2; 1er way to compute the state vector for

W ool
0] —
0l —
—_

) \N“J 5y 20 .
P(e\,\e Pa,ge 3 {o o]

as n gets large. This suggests that the eigenvector corresponding to h = 1 is useful in
determining the limiting proportion of sunny days to cloudy days far into the future.

Steady-State Vector

Given an initial state vector v, of interest is the long-run behavior of this vector in a
Markov chain, that is, the tendency of the vector 7"v for large n. If for any initial
state vector v there is some vector s such that 7"v approaches s, then s is called a
steady-state vector for the Markov process.

In our weather model we saw that the transition matrix 7 has an eigenvalue A = 1
and a corresponding probability eigenvector given by

SN

0| oola
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We claim that this vector is a steady-state vector for the weather model. As verification,
06 |° We then compute
0.6249999954 0.6250000002
10, 200, —
rHu= [ 0.3750000046 } and - T7u = [ 0.3750000002 }

let u be an initial probability vector, say, u = [

which suggests that 7"u approaches vi. That this is in fact the case is stated in
Theorem 6. Before doing so, we note that a regular transition matrix 7 is a transition
matrix such that for some n, all the entries of 7" are positive.

THEOREM 6 If a Markov chain has a regular stochastic transition matrix 7, then there is a
unique probability vector s with T's = s. Moreover, s is the steady-state vector for
any initial probability vector.

m A group insurance plan allows three different optio‘gor @Mﬁnts, plan A, B,

or C. Suppose that the percentages of tl of participants enrolled in
each plan are 25 percent, 30 per g etcent, respectively. Also, from past
ng

experience assum@t e plans as shown in the table.

P ( e\,\ g percent of participants enrolled in each plan after 5 years.
d

the steady-state vector for the system.

Solution Let 7 be the matrix given by

0.75 025 0.2
T=1] 015 045 04
0.1 03 04

a. The number of participants enrolled in each plan after 5 years is approximated
by the vector

0.49776 0.46048 0.45608 0.25 0.47
Tov = | 0.28464 0.30432 0.30664 0.30 | = | 0.30
0.21760 0.23520 0.23728 0.45 0.22

so approximately 47 percent will be enrolled in plan A, 30 percent in plan B,
and 22 percent in plan C.

b. The steady-state vector for the system is the probability eigenvector corre-
sponding to the eigenvalue N = 1, that is,

0.48
s= 0.30
0.22

—p—
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a. Let D be the diagonal matrix

N0 0 0
0O N O 0
D = . . .
0 An
and find €?.

b. Suppose A is diagonalizable and D = P~'AP.
Show that e = PeP P!,

c. Use parts (a) and (b) to compute e for the
matrix

Chapter 5: Chapter Test

In Exercises 1-40, determine whether the statement is

true or false.
1 1
r=[o 1]

diagonalizes the matrix

-

1. The matrix

—1 1_
0

R Q“‘
P ( @\,[o the ma? age

3. The matrix

NO‘
23T ©

2. The matrix

A=

is diagonalizable.

4. The eigenvalues of

—1 0
HEx
are .y = —3 and Ay = —1.
5. The characteristic polynomial of
-1 -1 -1
A= 0o 0 -1
2 =2 -1

is M4+ 2024+ —4.

6. The eigenvectors of

s
e [0 Twe L UK
7 h@[&é .éd’{' N

|

alue A1 =1 and V;, has

8. If
_1 B
A= 2 2
VAR
2 2
then AA" = 1.
9. If A is a2 x 2 matrix with det(A) < 0, then A

has two real eigenvalues.

10. If A is a 2 x 2 matrix that has two distinct

eigenvalues N and A\, then tr(A) = A; + \.

a
b

NM=a+band Ay =b —a.

11. If A= { 2 } , then the eigenvalues of A are

1 k

12. 11

For all integers k the matrix A = [ ] has

only one eigenvalue.

13. If A is a 2 x 2 invertible matrix, then A and A™!

have the same eigenvalues.

14. If A is similar to B, then tr(A) = tr(B).

15. The matrix A = [ (1) } ] is diagonalizable.

—p—
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PROPOSITION 2 Two nonzero vectors u and v in R” are orthogonal if and only if u-v =0. The
zero vector is orthogonal to every vector in R”.

One consequence of Proposition 2 is that if u and v are orthogonal, then
lu+vIP=@+v)-@+v) =lul’+2u-v+ v
= lul®+ v

This is a generalization of the Pythagorean theorem to R”.
Theorem 3 gives several useful properties of the norm in R”".

THEOREM 3 Properties of the Norm in R” Let v be a vector in R” and ¢ a scalar.

vl 0 \)\L

. ||v]l =0 if and only if v=10

IICVII—ICIIIVII \

(Trlangle in q ga I+l
Proo rt& follow i ‘h@om Definition 1 and Theorem 1. Part 3

_‘v@ d 1n Exampé 2‘% part 4, we have
?) AvP=u+v)-u+v)
=@-u) +2u-v) + (v-v)

= lul®+2@-v) + [ v]?
< lul+2u- v+ [ v

by Now, by the Cauchy-Schwartz inequality, [u-v| < |[u] || v]|, so that
lu+ v
la+vI? < llul®+ 20l Ivi+Iv?
NI )
' =(lall+1vID)
v Il After taking square roots of both sides of this equation, we obtain
! la+vi <[uall+Iv]
Figure 4 Geometrically, part 4 of Theorem 3 confirms our intuition that the shortest distance

between two points is a straight line, as seen in Fig. 4.
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PROPOSITION 3 Let u and v be vectors in R”. Then ||[u+v| = |lul|+ | v] if and only if the
vectors have the same direction.

Proof First suppose that the vectors have the same direction. Then the angle
between the vectors is 0, so that cos6 = 1 and u-v = ||u|| || v||. Therefore,

lu4+v|*=@+v)-(u+v)
=lul?+2@-v)+[v]?
= lal®+2(ullvil+vI?

= (lull+vI)?
Taking square roots of both sides of the previous equation gives ||[u+ V| =
lall+1vl.
Conversely, suppose that |[u+v| = |u]||+ | v|. After squaring both sides,
we obtain

la+vi? = ||u||2+2||u|| |IV6 II\)\L

However, we also have

||u+v||2a§§ >—||u||2+2u v+ v?
Equatmg&\ u @
S lla? ||w ||$v “ul?+2u-v+[v|?

1mp11fy1ng tie guon we obtain u-v = ||u|| || v | and hence

u-v
INSNIAA

Therefore, cos = 1, so that 6 = 0 and the vectors have the same direction.

P(e\"‘e\N

Fact Summary

All vectors are in R”.

1. The length of a vector and the distance between two vectors are natural
extensions of the same geometric notions in R? and R3.

2. The dot product of a vector with itself gives the square of its length and is
0 only when the vector is the zero vector. The dot product of two vectors is
commutative and distributes through vector addition.

3. By using the Cauchy-Schwartz inequality |u-v| < [[u|| || v ||, the angle
between vectors is defined by

cosf = oV
Tw (vl

4. Two vectors are orthogonal if and only if the dot product of the vectors is 0.

—p—
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In Exercises 19-22, let 2 0
28. u = 3 (v=| 2
(1] [ 6 -1 3
V1 = 2 V) = -2
1 2 29. Let S = {uj,uy,...,u,} and suppose v-u; =0
) - - for each i =1, ..., n. Show that v is orthogonal
-1 —1/4/3 to every vector in span(S).
vi=| =2 V4 = 1//3
1 1/V/3 30. Let v be a fixed vector in R"” and define
_ : ) S ={u|u-v=0}. Show that S is a subspace of
3 R".
V5 = -1
1] 31. Let S = {v{, V2, ..., Vv,} be a set of nonzero
19. Determine which of the vectors are orthogonal. vectors which are pairwise orthogonal. That is, if

i # j,then v; -v; = 0. Show that S is linearly
20. Determine which of the vectors are in the same

independent.
direction.
32. Let Abeann er atrix. Show that if
21. Determine which of the vectors are in the ; l of A and column vector
opposite direction. a\ e orthogonal.

22. Determine which of the vectors are unit N ‘_@ Show @gr all vectors u and v in R”,

In Exercises 2328, find the proje ém
given by
\N % B’L lutvIP+lu—v|P
\e ==Yy =2ful?+2]v|?

Evecter w is called tBr@‘gl projection of u

onto v. Sketch the three vectors u, v, and w.

©

4. a. Find a vector that is orthogonal to every vector
in the plane P: x +2y —z =0.
b. Find a matrix A such that the null space N(A)

23. u = g]vz{g} is the plane x + 2y — z = 0.
_ 35. Suppose that the column vectors of an n X n
24. u = _§ } V= [ g ] matrix A are pairwise orthogonal. Find A’A.
- 36. Let A be an n x n matrix and u and v vectors in
25. u= i}v:{?} R". Show that
'_5_ o u-(Av) = (A'u) -v
26u=|2 |v=1(0 37. Let A be an n x n matrix. Show that A is
L1 [ 0] symmetric if and only if
1 5 (Au)-v=u-(Av)
27. u= | 0 |v=| 2
0 1 for all u and v in R". Hint: See Exercise 36.




$ Confirming Pages

6.2 Inner Product Spaces 339

and linearly independent. Theorem 5 relates the notions of orthogonality and linear
independence in an inner product space.

THEOREM 5 If S ={vy, vy, ..., v,} is an orthogonal set of nonzero vectors in an inner product
space V, then S is linearly independent.

Proof Since the set S is an orthogonal set of nonzero vectors,
(vi,v;)=0  fori#j and (viovi)=1llvi|?#0  foralli

Now suppose that

avi+eova+ o +cepv, =0
The vectors are linearly independent if and only if the only solution to the previous
equation is the trivial solution ¢y = ¢ = --- = ¢, = 0. Now let v; be an element
of S. Take the inner product on both sides of the previous equation with v; so that

(vj,(civi+cava+ -+ + ¢V +¢jv; +Cj+1V] c+eavn)) =(v;,0)

By the linearity of the inner product \nd the E@ rthogonal, this equation

reduces to Q
es& (v.0

Now N 4 and % # 0, we have
L e oo e

e\,\e ceels ® oreach j =1,...,n,thenc; =c; = --- = ¢, = 0 and therefore
P ( P a‘@ arly independent.

COROLLARY 1 If V is an inner product space of dimension 7, then any orthogonal set of n nonzero
vectors is a basis for V.

The proof of this corollary is a direct result of Theorem 12 of Sec. 3.3. Theorem
6 provides us with an easy way to find the coordinates of a vector relative to
an orthonormal basis. This property underscores the usefulness and desirability of
orthonormal bases.

THEOREM 6 If B={vy,vy,...,v,} is an ordered orthonormal basis for an inner product space
Vand v =cvy + v + - + ¢,V,, then the coordinates of v relative to B are
given by ¢; = (v;,v) foreachi =1,2,...,n.

Proof Let v; be a vector in B. Taking the inner product on both sides of

vV=ciVi+ Vot oo +Cio1Viet 6V + Cip1Vigr + -+ CiVp

—p—
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To justify this substitution, note that w; - wp = 0; that is, multiplying w, by a
scalar does not change the fact that it is orthogonal to w;. To find w3, we use the

computation
u3 - Wp uz-w
W3 =u3 — W — Wo
Wi W Wp - Wo
1 -1 1 1
o] (1 1| 1] 2| _1/o
10 3 1 6| =1 2|1
1 0 0 2

As before we replace w3 with

W3 =

N = O =

An orthogonal basis for U is then given by

\l\l {W e ch of the vec f | es t:le Orthlonornllal basis

—
(@)
|
—_
S
N = O

Fact Summary

1. Every finite dimensional inner product space has an orthonormal basis.

2. The Gram-Schmidt process is an algorithm to construct an orthonormal
basis from any basis of the vector space.

Exercise Set 6.3 B

In Exercises 1-8, use the standard inner product on —1 -1
R". 1. u= ) | V= |
a. Find proj, u
b. Find the vector u — proj,u and verify this 2. u= [ 3 } vV = { 1 }
vector is orthogonal to v. —2 —2



—p—

1 1
3.ll=-_2:|V=|:2:|
1 -2
4. u= _1:|V=[_2]
[ —1 1
S.u= 3 |lv=| —1
| 0 —1
m 3
6.u=|0 |v= 2
._1 _1_
1 0
T.u=| -1 |[v=1] 0
__1 1_
- =
8.11: 2 V=
0 —1

defined by

P ( E :ind the vec a‘@p and verify that this
onal to g.

vector is orth
9. px) =x>—x+1,qx)=3x—1
10. p(x) =x2—x +1,g(x) =2x — 1
11. p(x) =2x2+1,qg(x) =x> -1
12. p(x) = —4x+1,9(x) =x
In Exercises 13—16, use the standard inner product on

R". Use the basis B and the Gram-Schmidt process to
find an orthonormal basis for R”.

wo- {4} 4]
wo-{[5}2])

1 0 0
15. B = o1, —-11,]| —1
1 1 -1

0 span(}{) ‘Q a
In Exercises 9—12, use the inner product NO‘e§a é@i : —i
o 9)55)\ 2 ol ‘
N L T
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1 0 1
16. B - 0 ) l ’
-1 1

In Exercises 17 and 18, use the inner product on P,
defined by

1
(p.q) = /O p(x)g(x)dx

Use the given basis B and the Gram-Schmidt process
to find an orthonormal basis for Ps.

17. B={x — 1, x+2,x%

18. B={x>—x,x,2x+ 1}

In Exercises 19-22, use the §tgndard inner product on

R" to find an orthopqgm or the subspace
.

1 —1

T [ =1
20. W = L], -1
_1_ . 1_
=17 =17 [ 17
-2 3 -2
21. W = ol 1 1 0
1] -1 ] 1
1] =17 [ o]
-2 3 -1
22. W= L L 0
- O— —_ - __1_

In Exercises 23 and 24, use the inner product on P;
defined by

1
(p.q) = /0 p(x)q(x)dx

to find an orthonormal basis for the subspace
span(W).

23. W ={x,2x + 1}

24. W={l,x+2,x>—1}

—p—
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Solution a. Let |
0
W = 1 and W) = 1

—1

Notice that w; and w; are orthogonal and hence by Theorem 5 of Sec. 6.2 are
linearly independent. Thus, {w;, w,} is a basis for W.

b. Now by Proposition 5, the vector

N2 =

w

is in W if and only if v.w; =0 and v-w, = 0. T}unirement leads to

the linear system
\e Tw= O
The two %@5&% for Is linear system is

\N “( O O" ?? s,teR
eN\e 37
P ( g e solution to this system, in vector form, provides a description of the

orthogonal complement of W and is given by

1 1
W = span 0
=Sp 1] o
0 1
Let
1
v = } and V) = B
0 1

Since v; and v, are orthogonal, by Theorem 5 of Sec. 6.2 they are linearly
independent and hence a basis for W+.

c. Let B be the set of vectors B = {w, Wa, Vi, V2}. Since B is an orthogonal
set of four vectors in R*, then by Corollary 1 of Sec. 6.2, B is a basis for
R*. Dividing each of these vectors by its length, we obtain the (ordered)
orthonormal basis for R* given by

—p—
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22.W=span{[1]}V={l} c. Verify that W N W+ = {0}.
2 ! d. Let g(x) = 5[f(x) + f(~x)] and
3 0 h(x) = 31 f(x) — f(=x)]. Verify
23. W = span { [ 1 } }V = [ 1 } g(—x) = g(x) and h(—x) = —h(x), so every

f can be written as the sum of a function in W
and a function in W+.
24. W = span 1
29. Let V = M, with the inner product
(A, B) = tr(B'A)

Let W ={A € V | A is symmetric}.

vV =
a. Show that
1 —1 WL ={A eV |Ais skew symmetric}
25. W = span o Z b. Show that every A in V be written as the

L sum of matrlceﬁo

2

ve | 1 30. In R2 d inner product, the
1 on that sends a vector to the

- t ogon rojection onto a subspace W is a
26. Show that if V' is an inner product space ﬁo 2
= {0} and {0}* = d\ 11%@1 rmation. Let W = span{ [ ] } .
X 1
. Show that tf W “r finite di 5 O a. Find the matrix representation P relative to the
sub n er produ ZL?; standard basis for the orthogonal projection of

? then W2 d@ R? onto W.

1 . . .
Let V =CO[-1, 1 with the finer product b. Letv= [ | } Find projy, v and verify the

result is the same by applying the matrix P
found in part (a).

(f.g) = / @ ds

and W={feV|f(—x)=f()} c. Show P> = P.
a. Show that W is a subspace of V. 31. If W is a finite dimensional subspace of an inner
b. Show W+ ={f e V| f(—x) = —f(x)}. product space, show that (W)t = W

6.5 > Application: Least Squares Approximation

There are many applications in mathematics and science where an exact solution to
a problem cannot be found, but an approximate solution exists that is sufficient to
satisfy the demands of the application. Consider the problem of finding the equation
of a line going through the points (1, 2), (2, 1), and (3, 3). Observe from Fig. 1 that
this problem has no solution as the three points are noncollinear.

This leads to the problem of finding the line that is the best fit for these three
points based on some criteria for measuring goodness of fit. There are different ways
of solving this new problem. One way, which uses calculus, is based on the idea

—p—
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Inner Product Spaces

1. Find the eigenvalues and corresponding eigenvectors of A.

Confirming Pages

2. Since A is diagonalizable, there are n linearly independent eigenvectors. If nec-

essary, use the Gram-Schmidt process to find an orthonorm

al set of eigenvectors.

3. Form the orthogonal matrix P with column vectors determined in Step 2.

4. The matrix P~'AP = P'AP = D is a diagonal matrix.

Let
0 1 1
A=1|1 0 1
1 1 0

Find an orthogonal matrix P such that P~'AP is a diagonal matrix.

The characteristic equation for A is given by

det(A—AD) =2 4+30+2=-A-2)(0
—1 and )\2 = 2 Q

Thus, the eigenvalues are \; =

M = spa

—1
{V1,V2,V3}— L, 1 , 0

pa@e Ll

)—0

ing eigenspaces are

1

= span 1

Since B is a linearly independent set of three vectors, by Theorem 2 of Sec. 5.2,
A is diagonalizable. To find an orthogonal matrix P which diagonalizes A, we use
the Gram-Schmidt process on B. This was done in Example 3 of Sec. 6.3, yielding

the orthonormal basis

pod Ll LTIl
V3L V2| o VB 2

o “|§ “‘&

Observe that P is an orthogonal matrix with P~! = P’. Morev
2 0 0
P'AP=|0 -1 0
0 0 -1

—p—
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Since the eigenvalues have opposite sign, the conic section C is a hyperbola. To
describe the hyperbola, we first diagonalize A. Using the unit eigenvectors, the
orthogonal matrix that diagonalizes A is

1 [1 —2 . 2 0 )

Making the substitution x = PX’ in the equation x’Ax + b’x + f = 0 gives

=2
[x’y/]{ y 2“ }+[ 4—8][

—= /
)15
7= y
After simplification of this equation we obtain
—2(x)? —4av5x +3(y)*+14=0

5
—2[(x")? + 2v/5(x)] +3(y)? + 14 \&\L

After completing the square on x’, we obtain

2[(x)? + 2@@% I = —14

that is, NO

\l\l }&Q equatj %} erbola with x” as the major axis. An additional

e\, \e transform 10& the x” axis allows us to simplify the result even further.
P( % ¥=x'45 and oy =y

then the equation now becomes

S

that is,

(x//)Z N (y//)Z

12 8

=1

The graph is shown in Fig. 3.

Figure 3
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AY

r Y Multiplication by

ol

Figure 1

For certain matrices, some of the singular values may be . As an illustration,

1 1
consider the matrix A = { 3 6 } Forgthj ma@@ have col(A) = span [ 3 ]

The reduced row eche ﬁfk ,a the matrix [ 2 }, which has only one
pivot col ank of A § % The elgenvalues of A’A are Ny = 50
“ h corres ond ﬁ

e[ 3]

PV oa0e & ol
%’ ular values of A are given by o = 5+/2 and o, = 0. Now, multiplying v,

and v, by A gives
NE] 0
Av) = [ 35 and Avy = 0

Observe that Av; spans the one dimensional column space of A. In this case, the
linear transformation 7: R?> — R? defined by T'(x) = AxX maps the unit circle to the

line segment
V5
t —1<tr<1
{ { 35 - -

Singular Value Decomposition (SVD)

as shown in Fig. 2.

We now turn our attention to the problem of finding a singular value decomposition
of an m x n matrix A.

THEOREM 18 SVD Let A be an m x n matrix of rank r, with r nonzero singular values
01,02, ...,0,. Then there exists an m X n matrix ¥, an m x m orthogonal matrix

—p—
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Y A

=V
=YV

1N
NI

Figure 2
U, and an n x n orthogonal matrix V such that K
Proof Since A’A is ‘ rﬁatrix, by Theorem 14 of Sec. 6.6 there
is an orthono ; ,,} of onsisting of eigenvectors of A’ A. Now

by T } 5 - onal basis for col(A). Let {uy, ..., u,}
_‘m normal bas1ﬁ|% en by
e\l\l Vi— for i=1,...,r
e\, || AV |
P ( P a@ extend {ul, ...,u,} to the orthonormal basis {uy,...,u,} of R”. We can
n

ow define the orthogonal matrices V and U, using the Vectors {vi,...,v,} and
{uy, ..., u,}, respectively, as column vectors, so that
V=[v vy - v, ] and U=[u u - uy ]
Moreover, since Av; = o;u;, fori =1,...,r, then
AV=| Avy -+~ Av, 0 -+ 0 |=]|0owg - ouw 0 --- 0

Now let ¥ be the m x n matrix given by

opr 0 ... O0]0 ... O
0O oo ... 00 ... O
E: 0 Oy 0 0
0 010 0
0 00 0 |
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Then
U¥X=|uy uwm - uw, |2
=|owy - ou 0 --- 0
= AV

Since V is orthogonal, then V' = V~! and hence, A =UXV'.

m Find a singular value decomposition of the matrix

1 ok

Solution A procedure for finding an SVD éd in the proof of Theorem 18. We

atrix V

'ﬁl% n alues 0 t at@"
e\N 6 —6}

prevonge A il i
a’ asing order are given by \; = 12 and \, = 0. The corresponding orthonor-

mal eigenvectors are

o[ YE] e[

Since the column vectors of V are given by the orthonormal eigenvectors of A’A,
the matrix V is given by

present the solution @s eps
Step 1. Fmd,ihe?&v@ and cor, ﬂ@g orthonormal eigenvectors of A' A

1/v2 1/¥2

Step 2. Find the singular values of A and define the matrix .
The singular values of A are the square roots of the eigenvalues of A’A, so that

0’12\/)\122\/5 and 0’2:«/'}\ =0
Since ¥ has the same dimensions as A, then X is 3 x 2. In this case,
zf 0
W) = 0
0 0

vz{—l/ﬁ 1/ﬁ]
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singular values) has the SVD A = UXV'. That is,
A=UxV'=| o -+ ou 0 .. 0 [V

! t t
=oju vy + oowv, + -+ + 0,0V,

1 t 1 t 1 t
=01 | —Avi |Vi+o | —Ava | v+ - +0, | —AV, |V,
o1 07 o,

= (AV)V}| + (AV)Vh + -+ + (Av,)V.

Observe that each of the terms Av;v! is a matrix of rank 1. Consequently, the sum
of the first k terms of the last equation is a matrix of rank & <r, which gives an
approximation to the matrix A. This factorization of a matrix has application in many
areas.

As an illustration of the utility of such an approximation, suppose that A is the
356 x 500 matrix, where each entry is a numeric value for a jixgl, of the gray scale
image of the surface of Mars shown in Flg 4 A s1 i using the method
above for approximating the image stort An 17given by the following:

1. Find the eigenvectors é$ etrlc matrix A’A.
2. Compute Avﬁ' { with_k rank(A).
3. ’I‘@ V| (sz‘ﬁ' 6 gvk)vk is an approximation of the orig-
VRS
\e\l\l To tranSnﬁ prox1mat10n of the image and reproduce it back on earth
e

( e\, igehvectors vy, ..., v; of A’A and the vectors Avy, ..., Avy.
P P 1mages in Fig. 5 are produced using matrices of ranks 1, 4 10, 40, 80, and

100, respectively.

Figure 4

Figure 5

The storage requirements for each of the images are given in Table 1.

—p—
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read as “Q implies P” or “P is necessary for Q.” For example, let P be the statement
Mary lives in lowa and Q the statement that Mary lives in the United States. Then
certainly P — ( is a theorem since every resident of Iowa is a resident of the
United States. But 0 = P is not a theorem since, for example, if Mary is a
resident of California, then she is a resident of the United States but not a resident of
Iowa. So the statement Q = P is not always true given that Q is true. In terms
of sets, if A is the set of residents of Iowa and B is the set of residents of the United
States, then the statement P is Mary is in A and Q is Mary is in B. Then Mary is in A
implies Mary is in B. It is also clear that if Mary is in B\ A, then Mary is in B does
not imply that Mary is in A.

A statement that is equivalent to the theorem P = ( is the contrapositive
statement ~Q = ~ P, thatis, not Q implies not P. In the example above, if Mary is
not a resident of the United States, then Mary is not a resident of lowa. An equivalent
formulation of the statement, in the terminology of sets, is that if Mary ¢ B, then it
implies Mary ¢ A.

There are other statements in mathematics that re %)of Lemmas are pre-
liminary results used to prove theorems, pro ts not as important as
theorems, and corollaries are spema\cﬁs ﬁ brem. A statement that is not yet

most famous conjectures is the celebrated

proven is called a conjec
Riemann hy Q& ountere mple is enough to refute a false conjec-
ture F S atemen Mave green eyes is rendered invalid by the

f a single bl
e\N n this_seqqio 1ntr0duce three main types of proof. A fourth type,
!% n

called mat ductlon is discussed in Sec. A 4.

\
P ( e\, P a—gect Argument

In a direct argument, a sequence of logical steps links the hypotheses P to the
conclusion Q. Example 1 provides an illustration of this technique.

m Prove that if p and ¢ are odd integers, then p + ¢ is an even integer.

Solution To prove this statement with a direct argument, we assume that p and ¢ are odd
integers. Then there are integers m and n such that

p=2m+1 and q=2n+1
Adding p and g gives

p+qg=2m+1+4+2n+1
=2(m+n)+2
=2(m+n+1)

Since p + ¢ is a multiple of 2, it is an even integer.

—p—
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Since for every natural number n > 1 it is also the case that n + 1 > 2, we have
m+D!'>m+ D2 =220 =2

Consequently, the statement n! > 2"~! is true for every natural number 7.

m For any natural number n, find the sum of the odd natural numbers from 1 to

2n — 1.
Solution The first five cases are given in Table 3.

Table 3

n | 201 143+ £q-Y¥N
1 “o U el

P L= T143=4

O > 75, Oy +3+5=9
\l\l _‘(Om 22 \ b<3r’+3+5+7=16

\e Ac 9 14345+74+9=25

P ( P agThe data in Table 3 suggest that for each n > 1,

1434547+ -+Q@n-1)=n’

Starting with the case for n = 1, we see that the left-hand side is 1 and the
expression on the right is 12 = 1. Hence, the statement holds when n = 1. Next,
we assume that 1 +3 +5 + - - 4+ (2n — 1) = n?. For the next case when the index
is n + 1, we consider the sum

143454+ Q2n— D+ + 1)—1] =1+ 3£ 54 au0 SR

Using the inductive hypothesis, we get
1+34+5+--+@n—D+2n+1)—11=n*+Q2n+1)

nz
=n2+2n+1
=m+1)>

Therefore, by induction the statement holds for all natural numbers.

—p—
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d. 7. Since v; can be written as
v = (_62) vy + ( c;) V34t (—c,,) Vi
C1 C1 C1
then
V =span{vy,vs,...,v,}

9. a. The set B = {u,v} is a basis for R? since it is
linearly independent. To see this, consider

au+bv=0
-1 -1 0
25. a. | I]Bz _ 2 2 1 Now take the dot product of both sides with first u,
B 0 —1 1 then v, to show that a = b = 0.
o
’ | b. If [w]p = { 8 },then
b. [2u; —2u; +u3lp, = [I]B1 -3 | =] -3
1 4 o
XV — YV
Section 3.5 Uivs — Vit
1. a. y; = ¥,y = ¥ CQ uy V2 ’
er
b. Wy, ylx) = 202t 3e3x = ﬁx ll“es ’ wox ‘
6 uy -y yuyp — Xup
_ 3x = = .
¢ y(x) = C1e + Cae 60 e I e,
3.a.y =‘e V2 = O U V2
éﬂl@) e ee_ Aj = Chapter Test: Chapter 3
P ( e~ > 0 for a ag L F 2. T
C. y(x) — Cle—lv sze—Zx 3. F 4. F
5. y(x) = ¥ + 2xe* 5. T 6. F
7. a. yo(x) = C1e** + Cre* 7. F 8. F
b.a=1,b=3,c=4 9. T 10. T
9. y(x) = %cos (8x) 11. T 12. T
Review Exercises Chapter 3 3. T 4. T
1. k # 69 15. T 16. F
3. a. Since S is closed under vector addition and scalar 17. F 18. F
multiplication, S is a subspace of M)y». 19. T 20. T
b. Yes,leta =3,b = —-2,c =0. 2. T 2. T
R (CRIT I - SAR-5.
01 roppt -l 25. T 26. F
27. T 28. T
d. The matrix { o1 } is not in S. 8
21 29. T 30. F
5. a. The set T is a basis since it is a linearly independent
. . ; 31. T 32. F
set of three vectors in the three-dimensional vector
space V. 33. T 34. F
b. The set W is not a basis for V since it is not linearly 35. T
independent.

—p—
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1 0o 017" d. =2 20 L]_[o)_,[1]
e.[T"lzp=]0 0 1 3 3|1 |~ lo|~"]1]
0 1 0
R e I ey
9. Since T> —T +1 =0,T —T?> =1. Then 3 -3 3 —15 3
(Tol —=THV)=T(I —T)V) =T —T(¥V)) 9.a. . —1)>=0
b. M =1

=TW)=T*v)=I(V)=v

e

=

Il |
—
O =
[E—1

Chapter Test: Chapter 4

1. F 2. F d 1 =2 1 1 ! 1
3.7 4. T [0 1}{0}_{0}_ {0}
5. T 6. F 11. a. L+ D2 —1)=0
7. F 8. F boh=—1,0m=1
9. T 10. F 1 1
1. T 12. F vy = [ 0 ,szh*
13T 4. T 0 Q,
15. T 16. T é- Q. 1 —1 1
7. T 8. T S oo og=] op=-1o
2 -1 0 0 0
19. T 20. T
10 1 1 1 1
21. F gkpm -‘6 01 0 2 | = =1 2
23. T \l\l 8‘2 O 0 2 -1 2 2 2
25. e 2. F A.
é\,\ e 13.a. =2 — 12 =0
PIeY pag S
29. F : ) 3
31. F 32. F evi=|0|.v=
3.7 34. F 0
35. F 36. T d. 2 1 2 1 2 1
37. T 38. T 0 2 -1 ol=]0]=2]0
3. F 40. T o1 0JLo 0 0
21 2 -3 -3 -3
Chapter 5 0 2 -1 1| = 1| =1 1
01 0 1 1 1
Section 5.1
15. 2. 04+ DO = 2)A +2)(L —4) =0
LA=3 b k=1, 0 =2, 0 = —2, hy = 4
3.0=0 (1] 0 0
0 1 0
5. =1 C. Vi = 0 , V2 = 0 , V3 = E
s 0 0 0
7.a. A" +50v=0 -
0
b. M =0,0 = —5 0
1 ) Va= 19
C. VI = 1 , Vo = 3 1
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39. Since A and B are matrix representations for the same
linear operator, they are similar. Let A = Q~'BQ. The
matrix A is diagonalizable if and only if D = P~'AP
for some invertible matrix P and diagonal matrix D.
Then

D =P '(Q7'BO)P = (QP)"'B(QP)

so B is diagonalizable. The proof of the converse is
identical.

Section 5.3 ~ Y
1. Y1) = 10) + y2(0)]e™ — y2(0)e

y2(t) = y2(0)e ™

1 4t
3. @) = 5[y1(0) —»n(0)]e

1 —2t
+ E[yl(O) +2(0)]e
1 4
»(t) = 5[—y1(0) +y2(0)]e

1
+ 510 + y2(0)]e ™

5. (0 =200 + (gpﬂ\
)f O y50)] 286

e
e\@\& 3(0) — y>(0) (@A—
P X +2 a@ ¥0)1e*
y3(1) = [—2y1%0) — y2(0) — y3(0)]e™’
+ [2y1(0) 4 y2(0) + 2y3(0)]e’
7. 1) =e " yt) = —e™’
9. a. y{(1) = —g5)1 + )2
Y5(6) = goy1 — )2
y1(0) =12, y2(0) =0
b. yi(t) = 4+ 8¢~ T yy() = 8 — 8¢~ B

¢ lim o0 y1 (1) = 4,1im; 00 y2(t) = 8
The 12 1b of salt will be evenly distributed in a ratio
of 1:2 between the two tanks.

Section 5.4

laT= { 0.15 0.92

0.7 0.37
10 ~
b T {O.3]N{0.63]

c 0.35
“ ] 0.65

0.85 0.08 ]

hence the disease wi otﬂ ted.

33(}@0‘.1 0.25
; a ézi 33025 0.17
e% 0.17 025 033 025
NO‘_ 5 017 025 033
ol.z

0.5 04 0.1
3.T=| 04 04 02

0.1 02 0.7
0 0.36
731 1 |~ 035
0 0.29
0 0.33
T 1 |~ | 033
0 0.33
05 0 0
5.T=]05 075 0
0 025 1
[0
The steady-state probability vectoris | O |, and
1

0.5(0.16)" +0.25

0.25
—0.5(0.16)" 4+ 0.25
0.25
0.25
¢ 0.25
1025
0.25

9. Eigenvalues of T: Ny = —qg +p+ 1,h =1, with
. . -1
corresponding eigenvectors 1 and 1

The steady-state probability vector is
1 { q/p } _| |
I+q/p | 1 e
Review Exercises Chapter 5
l.a. | a b 1| | a+b
b a 1| | a+b
1
=(a+b) { 1 }

b. \i=a+b,y=a—-b

cue[ o[ ]

—p—

q/p }

Confirming Pages



476 Answers to Odd-Numbered Exercises
17. y
L
] 21.
51 +——— ———— »
]
23.
19. y
L
H
74 +——+—+ +——+—+ % >
_s]

21. ANB)NC ={5}=ANBNC)
23. AN(BUC)={1,2,5,7}=(ANB)UANC)
25. A\(BUC) = {3,9,11} = (A\B) N (A\C)

Section A.2

1. Since for each first coordlrﬂ\@sﬁr}que sec%

coordinate, ﬁl W
Smcm1 ch that f(x) = 5.
e range o, 1,3,9 11}.
? {—2})) ={1,4} @Sa@
7. Smce f is not one-to-one, f does not have an inverse. 7.
9. {(1,-2),(2,-1),(3,3),(4,5),(5,9),(6,11)}
11. f(AUB) =f((—3,7)) = [0,49) 9.
fA)Uf(B) =10,25]U[0,49] = [0,49] 1L
13. f(ANB) =f({0}) = {0}
fFAYNf(B)=10,41N[0,4] = [0,4] 13.
Therefore, f(ANB) C f(A)Nf(B), but
JANB) #f(A)Nf(B). 15.
15. f~'(x) = =2
17. If n is odd, then f®(x) = —x + ¢. If n is even, then 17.
FM @) =x.
19. a. To show that f is one-to-one, we have 19.
o211 — 201
S 20 —1=2x—1
<X =X
21.

b. Since the exponential function is always positive,
f is not onto R.

Confirming Pages

c. Define g : R — (0,00) by g(x) = >~

g7'(x) = 3(1 +Inx).

a. To show that f is one-to-one, we have 2n; = 2n; if
and only if n; = ny.

b. Since every image is an even number, the range of f
is a proper subset of N.

e fUE)=N; f7{0)=9¢

a. fA={2k+1]| keZ}

b. fB)={2k+1| k € Z}

c. f71{0) = {(m,n) | n = —2m}

d. f~YE) = {(m,n)| n is even}

e. /790) = {(m,n)| nis odd}

f. Since f((1,—2)) = 0 = £((0,0)), then f is not

one-to-one.

g. IfzeZ, letm_Oand\SW)thatf(m ) =2Z.

Section A Qx then h2 —x2 4 x2 =202,
NO{G% a

9 then the height is & = ?x, so the area
2 T V3, = «/— 2
_ sx 5y =

If a divides b, there is some k such that ak = b; and if
b divides c, there is some ¢ such that b¢ = ¢. Then
¢ = bl = (ak)t = (k€)a, so a divides c.

If n is odd, there is some k such that n = 2k + 1. Then
n? = 2k +1)> =2k*> + k) + 1, so n? is odd.

Ifb=a+1,then (a +b)> = Qa+ 1) =

2(2a* 4 2a) +1, so (a + b)? is odd.

Let m =2 and n = 3. Then m? + n? = 13, which is
not divisible by 4.

Contrapositive: Suppose 7 is even, so there is some k
such that n = 2k. Then n% = 4k2, so n? is even.

Contrapositive: Suppose p = ¢g. Then

VPI = \/pr=p =@ +9)/2.

Contrapositive: Suppose x > 0. If €e = x/2 > 0, then

X > €.

Contradiction: Suppose V2= p/q such that p and ¢
have no common factors. Then 2¢3 = p3, so p? is even
and hence p is even. This gives that ¢ is also even,
which contradicts the assumption that p and ¢ have no
common factors.

If 7xy < 3x2 4 2y2, then 3x% — Txy +2y% =

(Bx —y)(x —2y) > 0. There are two cases: either both
factors are greater than or equal to O, or both are less

—p—
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13.

15.

17.

p‘"{“@\ﬁrwp

—p—

Answers to Odd-Numbered Exercises

Base case: n =1:2 =1(2)

Inductive hypothesis: Assume the summation formula
holds for the natural number 7.

Consider

24446+ +2n+2(n+1)
nn+1)+2n+1)
=@+ Dh+2)

Base case: n =5:32 =2 > 25 =52

Inductive hypothesis: Assume 2" > n? holds for the
natural number n.

Consider 2"+ = 2(2") > 2n2. But since 2n%—
m+1)2=n>-2n—1=m—-1>%—-2>0, for all

n > 5, we have 2"t > (n + 1)%.

Base case: n = 1 : 12 4 1 = 2, which is divisible by 2.
Inductive hypothesis: Assume 1% + n is divisible by 2.
Consider (n 4+ 1)> + (n + 1) = n? 4+ n 4 2n + 2. By the
inductive hypothesis, n> + n is divisible by 2, so since
both terms on the right are divisible by 2, then
n+1D*+@ + 1) is divisible by 2. Altematively,
observe that n2 4+ n = n(n + 1), which is the

consecutive integers and is therefore eve
Basecase:n=1:1= QX{\
Inductive hypothe51s %@ ula hold
natural nu A
0%
—1
+r"

rn
- r—1
_r”—1+r”(r—l)
- r—1
rn+l_1
- r—1

Confirming Pages

19. Base case: n =2: ANB1UB) =(ANB)UANB,),

by Theorem 1 of Sec. A.

1

Inductive hypothesis: Assume the formula holds for the

natural number 7.
Consider

ANBiUBU---UB, U

=AN[BIUBU---
=[ANBUBU---

=(ANB))U(ANB,

Byt1)
UB,)UB,1]
UB)IU(ANBy41)
YU---UANB,)UANB,41)

n!

21. ny !
(r) T rln—r)!

n!

T ="l — =)

23. By the(momla ‘\

ST £

0‘5 09

DK

k=0
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Gram-Schmidt process
examples of, 349-352
explanation of, 344, 347-348, 394
geometric interpretation of,

348-349

Graphics operations in R?
reflection, 260, 261
reversing, 261-262
rotation, 264-265
scaling and shearing, 256-259
translation, 262—-264

Graphs
of conic sections, 61
of functions, 416

H

Hamming, Richard, 127

Hamming’s code, 127, 129

Homogeneous coordinates, 262-264

Homogeneous linear systems,
49-51, 113

Horizontal line tes

Horlzontam wg
z@ n¥ar, 258
ot esis E Q
expla
43

Identlty matrix, 39
Images
explanation of, 415, 418
inverse, 416, 418
Imaginary part, complex
numbers, 134
Inconsistent linear systems
explanation of, 2, 10
reduced matrix for, 21-22
Independence, linear. See Linear
independence

Inequality, Cauchy-Schwartz, 326-327

Infinite dimensional vector space, 165
Initial point, vector, 95
Initial probability vectors, 275
Initial-value problems,

186, 192-193

Injective mapping. See One-to-one mapping

Injective functions, 419
Inner product
examples of, 334-336

—p—

t€5

explanation of, 333
that is not dot product, 335
Inner product spaces

diagonalization of symmetric matrices

and, 377-383

explanation of, 333-334

facts about, 340

least squares approximation and,
366-375

orthogonal complements and, 355-364

orthogonal sets and, 338—-340
orthonormal bases and, 342-352
properties of norm in, 336-337
quadratic forms and, 385-391
singular value decomposition and,
392-403
subspaces of, 355
Input out M¥
teg
emand 83
ntersectlon of sets, 410, 411
erse functions
gplanation of, 418—420
unique nature of, 421
Inverse images, 416, 418
Inverse of elementary matrix, 71-72
Inverse of square matrix
definition of, 40
explanation of, 40—45
facts about, 45
Inverse transformations, 230—231
Invertible functions, 418-420
Invertible matrix
elementary matrices and, 72
explanation of, 41, 54
inverse of product of, 44—45
square, 60—61
Isomorphisms
definition of, 229
explanation of, 226
inverse and, 230-231
linear transformations as,
229-231
one-to-one and onto mappings
and, 226-230
vector space, 232-233

K

Kepler, Johannes, 61
Kirchhoff’s laws, 88
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Markov chains
applications of, 310-314
explanation of, 275-276

Markov process, 310

Mathematical induction
base case, 430
binomial coefficients and binomial

theorem and, 435-438
examples of, 431-435
inductive hypothesis, 430
introduction to, 429-430
principle of, 430—431

Matrices
addition of, 27-29
augmented, 15-17, 22, 23
check, 128
coefficient, 15
condition number of, 403
definition of, 14
determinants of, 54—65
diagonal, 56

discussion of, 1 O‘_
echelo
y! 6 72

‘ smg
of 398 4%

u put 83

inverse of product of invertible, 44—45
inverse of square, 39-45
linear independence of, 114
linear transformations and, 202-203,

221-222,235-245
LU factorization of, 69, 72-75
minors and cofactors of, 56
nullity of, 221-223
null space of, 152—153
orthogonal, 381-382
permutation, 76—77
positive definite, 354
positive semidefinite, 354
rank of, 222
scalar multiplication, 27
singular values of, 393-396
stochastic, 275, 311, 314
subspaces and, 362
symmetric, 36
that commute, 32, 33
transition, 177-182, 275, 276,

311-313

—p—

esd\©
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transpose of, 35-36
triangular, 15, 56-57, 283
vector spaces of, 130
Matrix addition, 27-29
Matrix algebra
addition and scalar multiplication,
27-29
explanation of, 26-27
facts about, 36-37
matrix multiplication, 29-35
symmetric matrix, 36
transpose of matrix, 35-36
Matrix equations, 48—51
Matrix form, of linear systems, 48
Matrix multiplication
definition of, 32

explanation o 210
linear ¢ mx; , 107
lmﬁ tions between finite
ensional vector spaces and,
236-237

roperties of, 35
g write linear systems in terms of

matrices and vectors, 48—51
Members, of sets, 409
Minors, of matrices, 56
Multiplication. See Matrix multiplication;
Scalar multiplication,
Multiplicative identity, 39
Multivariate calculus, 322

Natural numbers. See also Mathematical
induction,
set of, 409
statements involving,
429-434
Network flow application,
79-81
Newton, Isaac, 61
Nilpotent, 299
Noninvertible matrix, 41
Normal equation, least squares solution
to, 369-370
Nullity, of matrices, 221-223
Null sets, 410
Null space,
of linear transformations, 214—-221
of matrices, 152—153, 221
Nutrition application, 81—-82



Confirming Pages

—p—

Index 487

matrix representation relative to, 235-237 Tower of Hanoi puzzle,

polynomials of, 163 429-430
Standard position, of vectors, 95 Trace, of square matrices,
State vectors, Markov chains and, 311-312 142-143

Steady-state vectors

explanation of, 276

Markov chain and, 313-314
Stochastic matrix, 275, 311, 314
Subsets, 410, 412
Subspaces

Trajectories, 301-302
Transformation, 199-200. See also Linear
transformations
Transition matrix
diagonalizing the, 312-313
example of, 275, 276

oo,

closure criteria for, 144

definition of, 140

examples of, 142—-143

explanation of, 140—142

facts about, 153

four fundamental, 401

of inner product spaces, 355-360,
362

null space and column space of matri
and, 152153 \

span of set of vectors

1tn

ck 4
forward \6R
1t1 rmcrple 188—-189

e functions, 420

E %CUVC mapping. See Onto mapping,

Symmetric matrix

diagonalization of,
377-383
explanation of, 36

Syndrome vectors , 128
Systems of linear differential equations

diagonalization and, 302-309

explanation of, 300

to model concentration of salt in
interconnected tanks,
307-309

phase plane and, 301-302

uncoupled, 300-301

Systems of linear equations. See

Linear systems

Terminal point, vector, 95
Theorems

converse of, 424-425
explanation of, 424

—p—

tr1V1a1 142 NQMS % 609

explanation of, 177-180

inverse of, 181—-182

Markov chains and,

311-312

Translation, 262-264
Transpose, of matrices, 35-36
Triangular form

of 1j N, 6-7, 10

,’[@gular matrix

determinant of, 57, 58
eigenvalues of, 283
explanation of, 56-57
Trigonometric polynomials, 373—-374
Trivial solution, to homogeneous systems,
49, 50
Trivial subspaces, 142

V)

Uncoupled systems, 300-301

Uniform scaling, 257

Union, of sets, 410

Unit vectors, 325

Universal quantifiers, 427

Universal set, 410

Upper triangular matrix
examples of, 57
explanation of, 56, 68, 74

\"/

Vector addition, 95-99, 129
Vector form
of linear systems, 106—107
of solution to linear systems, 48—50
Vectors
addition and scalar multiplication of,
95-99
algebraic properties of, 97—-98
angle between, 327-330
applications for, 94



