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To The Student

You are probably taking this course early in your undergraduate studies after two or
three semesters of calculus, and most likely in your second year. Like calculus, linear
algebra is a subject with elegant theory and many diverse applications. However,
in this course you will be exposed to abstraction at a much higher level. To help
with this transition, some colleges and universities offer a Bridge Course to Higher
Mathematics. If you have not already taken such a course, this may likely be the
first mathematics course where you will be expected to read and understand proofs of
theorems, provide proofs of results as part of the exercise sets, and apply the concepts
presented. All this is in the context of a specific body of knowledge. If you approach
this task with an open mind and a willingness to read the text, some parts perhaps
more than once, it will be an exciting and rewarding experience. Whether you are
taking this course as part of a mathematics major or because linear algebra is applied
in your specific area of study, a clear understanding of the theory is essential for
applying the concepts of linear algebra to mathematics or other fields of science. The
solved examples and exercises in the text are designed to prepare you for the types
of problems you can expect to see in this course and other more advanced courses in
mathematics. The organization of the material is based on our philosophy that each
topic should be fully developed before readers move onto the next. The image of a tree
on the front cover of the text is a metaphor for this learning strategy. It is particularly
applicable to the study of mathematics. The trunk of the tree represents the material
that forms the basis for everything that comes afterward. In our text, this material is
contained in Chaps. 1 through 4. All other branches of the tree, representing more
advanced topics and applications, extend from the foundational material of the trunk or
from the ancillary material of the intervening branches. We have specifically designed
our text so that you can read it and learn the concepts of linear algebra in a sequential
and thorough manner. If you remain committed to learning this beautiful subject, the
rewards will be significant in other courses you may take, and in your professional
career. Good luck!

Jim DeFranza
jdefranza@stlawu.edu

Dan Gagliardi
gagliardid@canton.edu

xvi
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1.2 Matrices and Elementary Row Operations 19

DEFINITION 2 Echelon Form An m × n matrix is in row echelon form if
1. Every row with all 0 entries is below every row with nonzero entries.
2. If rows 1, 2, . . . , k are the rows with nonzero entries and if the leading

nonzero entry (pivot) in row i occurs in column ci , for 1, 2, . . . , k, then
c1 < c2 < · · · < ck .

The matrix is in reduced row echelon form if, in addition,
3. The first nonzero entry of each row is a 1.
4. Each column that contains a pivot has all other entries 0.

The process of transforming a matrix to reduced row echelon form is called
Gauss-Jordan elimination.

EXAMPLE 3 Solve the linear system by transforming the augmented matrix to reduced row
echelon form. ⎧

⎪⎪⎨

⎪⎪⎩

x1 − x2 − 2x3 + x4 = 0
2x1 − x2 − 3x3 + 2x4 = −6
−x1 + 2x2 + x3 + 3x4 = 2

x1 + x2 − x3 + 2x4 = 1
Solution The augmented matrix of the linear system is

⎡

⎢⎢⎣

1 −1 −2 1 0
2 −1 −3 2 −6

−1 2 1 3 2
1 1 −1 2 1

⎤

⎥⎥⎦

To transform the matrix into reduced row echelon form, we first use the leading 1
in row 1 as a pivot to eliminate the terms in column 1 of rows 2, 3, and 4. To do
this, we use the three row operations

−2R1 + R2 → R2
R1 + R3 → R3

−R1 + R4 → R4

in succession, transforming the matrix
⎡

⎢⎢⎣

1 −1 −2 1 0
2 −1 −3 2 −6

−1 2 1 3 2
1 1 −1 2 1

⎤

⎥⎥⎦ to

⎡

⎢⎢⎣

1 −1 −2 1 0
0 1 1 0 −6
0 1 −1 4 2
0 2 1 1 1

⎤

⎥⎥⎦

For the second step we use the leftmost 1 in row 2 as the pivot and eliminate
the term in column 2 above the pivot, and the two terms below the pivot. The
required row operations are

R2 + R1 → R1
−R2 + R3 → R3

−2R2 + R4 → R4
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1.3 Matrix Algebra 27

then

a11 = −2 a12 = 1 a13 = 4
a21 = 5 a22 = 7 a23 = 11
a31 = 2 a32 = 3 a33 = 22

A vector is an n × 1 matrix. The entries of a vector are called its components.
For a given matrix A, it is convenient to refer to its row vectors and its column
vectors. For example, let

A =

⎡

⎣
1 2 −1
3 0 1
4 −1 2

⎤

⎦

Then the column vectors of A are
⎡

⎣
1
3
4

⎤

⎦

⎡

⎣
2
0

−1

⎤

⎦ and

⎡

⎣
−1

1
2

⎤

⎦

while the row vectors of A, written vertically, are

⎡

⎣
1
2

−1

⎤

⎦

⎡

⎣
3
0
1

⎤

⎦ and

⎡

⎣
4

−1
2

⎤

⎦

Two m × n matrices A and B are equal if they have the same number of rows
and columns and their corresponding entries are equal. Thus, A = B if and only if
aij = bij , for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Addition and scalar multiplication of matrices
are also defined componentwise.

DEFINITION 1 Addition and Scalar Multiplication If A and B are two m × n matrices,
then the sum of the matrices A + B is the m × n matrix with the ij term given by
aij + bij . The scalar product of the matrix A with the real number c, denoted by
cA, is the m × n matrix with the ij term given by caij .

EXAMPLE 1 Perform the operations on the matrices

A =

⎡

⎣
2 0 1
4 3 −1

−3 6 5

⎤

⎦ and B =

⎡

⎣
−2 3 −1

3 5 6
4 2 1

⎤

⎦

a. A + B b. 2A − 3B
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28 Chapter 1 Systems of Linear Equations and Matrices

Solution a. We add the two matrices by adding their corresponding entries, so that

A + B =

⎡

⎣
2 0 1
4 3 −1

−3 6 5

⎤

⎦ +

⎡

⎣
−2 3 −1

3 5 6
4 2 1

⎤

⎦

=

⎡

⎣
2 + (−2) 0 + 3 1 + (−1)

4 + 3 3 + 5 −1 + 6
−3 + 4 6 + 2 5 + 1

⎤

⎦

=

⎡

⎣
0 3 0
7 8 5
1 8 6

⎤

⎦

b. To evaluate this expression, we first multiply each entry of the matrix A by 2
and each entry of the matrix B by −3. Then we add the resulting matrices.
This gives

2A + (−3B) = 2

⎡

⎣
2 0 1
4 3 −1

−3 6 5

⎤

⎦ + (−3)

⎡

⎣
−2 3 −1

3 5 6
4 2 1

⎤

⎦

=

⎡

⎣
4 0 2
8 6 −2

−6 12 10

⎤

⎦ +

⎡

⎣
6 −9 3

−9 −15 −18
−12 −6 −3

⎤

⎦

=

⎡

⎣
10 −9 5
−1 −9 −20

−18 6 7

⎤

⎦

In Example 1(a) reversing the order of the addition of the matrices gives the
same result. That is, A + B = B + A. This is so because addition of real numbers
is commutative. This result holds in general, giving us that matrix addition is also a
commutative operation. Some other familiar properties that hold for real numbers also
hold for matrices and scalars. These properties are given in Theorem 4.

THEOREM 4 Properties of Matrix Addition and Scalar Multiplication Let A, B, and
C be m × n matrices and c and d be real numbers.
1. A + B = B + A

2. A + (B + C) = (A + B) + C

3. c(A + B) = cA + cB

4. (c + d)A = cA + dA

5. c(dA) = (cd)A

6. The m × n matrix with all zero entries, denoted by 0, is such that A + 0 =
0+ A = A.

7. For any matrix A, the matrix −A, whose components are the negative of each
component of A, is such that A + (−A) = (−A) + A = 0.
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30 Chapter 1 Systems of Linear Equations and Matrices

Observe that the dot product of two vectors is a scalar. For example,
⎡

⎣
2

−3
−1

⎤

⎦ ·

⎡

⎣
−5

1
4

⎤

⎦ = (2)(−5) + (−3)(1) + (−1)(4) = −17

Now to motivate the concept and need for matrix multiplication we first introduce
the operation of multiplying a vector by a matrix. As an illustration let

B =
[

1 −1
−2 1

]
and v =

[
1
3

]

The product of B and v, denoted by Bv, is a vector, in this case with two components.
The first component of Bv is the dot product of the first row vector of B with v,
while the second component is the dot product of the second row vector of B with v,
so that

Bv =
[

1 −1
−2 1

] [
1
3

]
=

[
(1)(1) + (−1)(3)

(−2)(1) + (1)(3)

]
=

[
−2

1

]

Using this operation, the matrix B transforms the vector v =
[

1
3

]
to the vector

Bv =
[

−2
1

]
. If A =

[
−1 2

0 1

]
is another matrix, then the product of A and Bv

is given by

A(Bv) =
[

−1 2
0 1

] [
−2

1

]
=

[
4
1

]

The question then arises, is there a single matrix which can be used to transform
the original vector

[
1
3

]
to

[
4
1

]
? To answer this question, let

v =
[

x

y

]
A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]

The product of B and v is

Bv =
[

b11x + b12y
b21x + b22y

]

Now, the product of A and Bv is

A(Bv) =
[

a11 a12
a21 a22

] [
b11x + b12y
b21x + b22y

]

=
[

a11(b11x + b12y) + a12(b21x + b22y)

a21(b11x + b12y) + a22(b21x + b22y)

]

=
[

(a11b11 + a12b21)x + (a11b12 + a12b22)y
(a21b11 + a22b21)x + (a21b12 + a22b22)y

]

=
[

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

] [
x

y

]
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1.4 The Inverse of a Square Matrix 39

37. Suppose that A is an n × n matrix. Show that if
for each vector x in !n, Ax = 0, then A is the
zero matrix.

38. For each positive integer n, let

An =
[

1 − n −n

n 1 + n

]

Show that AnAm = An+m.

39. Find all 2 × 2 matrices that satisfy AAt = 0.

40. Suppose that A and B are symmetric matrices.
Show that if AB = BA, then AB is symmetric.

41. If A is an m × n matrix, show that AAt and AtA

are both defined and are both symmetric.

42. An n × n matrix A is called idempotent provided
that A2 = AA = A. Suppose that A and B are
n × n idempotent matrices. Show that if
AB = BA, then the matrix AB is idempotent.

43. An n × n matrix A is skew-symmetric provided
At = −A. Show that if a matrix is
skew-symmetric, then the diagonal entries are 0.

44. The trace of an n × n matrix A is the sum of the
diagonal terms, denoted tr(A).

a. If A and B are n × n matrices, show that
tr(A + B) = tr(A) + tr(B).

b. If A is an n × n matrix and c is a scalar, show
that tr(cA) = c tr(A).

1.4 ßThe Inverse of a SquareMatrix

In the real number system, the number 1 is the multiplicative identity. That is, for any
real number a,

a · 1 = 1 · a = a

We also know that for every number x with x ̸= 0, there exists the number 1
x
, also

written x−1, such that

x · 1
x

= 1

We seek a similar relationship for square matrices. For an n × n matrix A, we can
check that the n × n matrix

I =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎦

is the multiplicative identity. That is, if A is any n × n matrix, then

AI = IA = A

This special matrix is called the identity matrix. For example, the 2 × 2, 3 × 3, and
4 × 4 identity matrices are, respectively,

[
1 0
0 1

] ⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ and

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦
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40 Chapter 1 Systems of Linear Equations and Matrices

DEFINITION 1 Inverse of a SquareMatrix Let A be an n × n matrix. If there exists an n × n

matrix B such that
AB = I = BA

then the matrix B is a (multiplicative) inverse of the matrix A.

EXAMPLE 1 Find an inverse of the matrix
A =

[
1 1
1 2

]

Solution In order for a 2 × 2 matrix B =
[

x1 x2
x3 x4

]
to be an inverse of A, matrix B must

satisfy
[

1 1
1 2

] [
x1 x2
x3 x4

]
=

[
x1 + x3 x2 + x4
x1 + 2x3 x2 + 2x4

]
=

[
1 0
0 1

]

This matrix equation is equivalent to the linear system
⎧
⎪⎪⎨

⎪⎪⎩

x1 + x3 = 1
x2 + x4 = 0

x1 + 2x3 = 0
x2 + 2x4 = 1

The augmented matrix and the reduced row echelon form are given by
⎡

⎢⎢⎣

1 0 1 0 1
0 1 0 1 0
1 0 2 0 0
0 1 0 2 1

⎤

⎥⎥⎦ →

⎡

⎢⎢⎣

1 0 0 0 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 1

⎤

⎥⎥⎦

Thus, the solution is x1 = 2, x2 = −1, x3 = −1, x4 = 1, and an inverse matrix is

B =
[

2 −1
−1 1

]

The reader should verify that AB = BA = I .

Theorem 7 establishes the uniqueness, when it exists, of the multiplicative inverse.

THEOREM 7 The inverse of a matrix, if it exists, is unique.

Proof Assume that the square matrix A has an inverse and that B and C are
both inverse matrices of A. That is, AB = BA = I and AC = CA = I. We show
that B = C. Indeed,

B = BI = B(AC) = (BA)C = (I )C = C
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42 Chapter 1 Systems of Linear Equations and Matrices

To illustrate the use of the formula, let

A =
[

2 −1
1 3

]

then

A−1 = 1
6 − (−1)

[
3 1

−1 2

]
=

[
3
7

1
7

− 1
7

2
7

]

For an example which underscores the necessity of the condition that ad − bc ̸= 0,

we consider the matrix
A =

[
1 1
1 1

]

Observe that in this case ad − bc = 1 − 1 = 0. Now, the matrix A is invertible if
there is a B =

[
x1 x2
x3 x4

]
such that

[
1 1
1 1

] [
x1 x2
x3 x4

]
=

[
1 0
0 1

]

This matrix equation yields the inconsistent system
⎧
⎪⎪⎨

⎪⎪⎩

x1 + x3 = 1
x2 + x4 = 0

x1 + x3 = 0
x2 + x4 = 1

Hence, A is not invertible.
To find the inverse of larger square matrices, we extend the method of aug-

mented matrices. Let A be an n × n matrix. Let B be another n × n matrix, and let
B1,B2, . . . ,Bn denote the n column vectors of B. Since AB1, AB2, . . . , ABn are the
column vectors of AB, in order for B to be the inverse of A, we must have

AB1 =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦
AB2 =

⎡

⎢⎢⎢⎣

0
1
...

0

⎤

⎥⎥⎥⎦
. . . ABn =

⎡

⎢⎢⎢⎣

0
0
...

1

⎤

⎥⎥⎥⎦

That is, the matrix equations

Ax =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦
Ax =

⎡

⎢⎢⎢⎣

0
1
...

0

⎤

⎥⎥⎥⎦
. . . Ax =

⎡

⎢⎢⎢⎣

0
0
...

1

⎤

⎥⎥⎥⎦

must all have unique solutions. But all n linear systems can be solved simultaneously
by row-reducing the n × 2n augmented matrix

⎡

⎢⎢⎢⎣

a11 a12 . . . a1n 1 0 . . . 0
a21 a22 . . . a2n 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

an1 an2 . . . ann 0 0 . . . 1

⎤

⎥⎥⎥⎦
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1.4 The Inverse of a Square Matrix 43

On the left is the matrix A, and on the right is the matrix I. Then A will have an
inverse if and only if it is row equivalent to the identity matrix. In this case, each
of the linear systems can be solved. If the matrix A does not have an inverse, then
the row-reduced matrix on the left will have a row of zeros, indicating at least one of
the linear systems does not have a solution.

Example 2 illustrates the procedure.

EXAMPLE 2 Find the inverse of the matrix

A =

⎡

⎣
1 1 −2

−1 2 0
0 −1 1

⎤

⎦

Solution To find the inverse of this matrix, place the identity on the right to form the 3 × 6
matrix ⎡

⎣
1 1 −2 1 0 0

−1 2 0 0 1 0
0 −1 1 0 0 1

⎤

⎦

Now use row operations to reduce the matrix on the left to the identity, while
applying the same operations to the matrix on the right. The final result is

⎡

⎣
1 0 0 2 1 4
0 1 0 1 1 2
0 0 1 1 1 3

⎤

⎦

so the inverse matrix is

A−1 =

⎡

⎣
2 1 4
1 1 2
1 1 3

⎤

⎦

The reader should check that AA−1 = A−1A = I.

EXAMPLE 3 Use the method of Example 2 to determine whether the matrix

A =

⎡

⎣
1 −1 2
3 −3 1
3 −3 1

⎤

⎦

is invertible.

Solution Following the procedure described above, we start with the matrix
⎡

⎣
1 −1 2 1 0 0
3 −3 1 0 1 0
3 −3 1 0 0 1

⎤

⎦
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1.6 Determinants 57

Some examples of upper triangular matrices are
[
1 1
0 2

] ⎡

⎣
2 −1 0
0 0 3
0 0 2

⎤

⎦ and

⎡

⎣
1 1 0 1
0 0 0 1
0 0 1 1

⎤

⎦

and some examples of lower triangular matrices are

[
1 0
1 1

] ⎡

⎣
2 0 0
0 1 0
1 0 2

⎤

⎦ and

⎡

⎢⎢⎣

1 0 0 0
0 0 0 0
1 3 1 0
0 1 2 1

⎤

⎥⎥⎦

THEOREM 13 If A is an n × n triangular matrix, then the determinant of A is the product of the
terms on the diagonal. That is,

det(A) = a11 · a22 · · · ann

Proof We present the proof for an upper triangular matrix. The proof for a
lower triangular matrix is identical. The proof is by induction on n. If n = 2, then
det(A) = a11a22 − 0 and hence is the product of the diagonal terms.

Assume that the result holds for an n × n triangular matrix. We need to show
that the same is true for an (n + 1) × (n + 1) triangular matrix A. To this end let

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n a1,n+1
0 a22 a23 · · · a2n a2,n+1
0 0 a33 · · · a3n a3,n+1
...

...
...

. . .
...

...

0 0 0 · · · ann an,n+1
0 0 0 · · · 0 an+1,n+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Using the cofactor expansion along row n + 1, we have

det(A) = (−1)(n+1)+(n+1)an+1,n+1

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣

Since the determinant on the right is n × n and upper triangular, by the inductive
hypothesis

det(A) = (−1)2n+2(an+1,n+1)(a11a22 · · · ann)

= a11a22 · · · annan+1,n+1

Properties of Determinants
Determinants for large matrices can be time-consuming to compute, so any properties
of determinants that reduce the number of computations are useful. Theorem 14 shows
how row operations affect the determinant.
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1.6 Determinants 63

EXAMPLE 6 Use Cramer’s rule to solve the linear system.
{

2x + 3y = 2
−5x + 7y = 3

Solution The determinant of the coefficient matrix is given by
∣∣∣∣

2 3
−5 7

∣∣∣∣ = 14 − (−15) = 29

and since the determinant is not zero, the system has a unique solution. The solution
is given by

x =

∣∣∣∣
2 3
3 7

∣∣∣∣
29

= 14 − 9
29

= 5
29

and y =

∣∣∣∣
2 2

−5 3

∣∣∣∣
29

= 6 − (−10)

29
= 16

29

THEOREM 18 Cramer’sRule Let A be an n × n invertible matrix, and let b be a column vector
with n components. Let Ai be the matrix obtained by replacing the ith column of A

with b. If x =

⎡

⎢⎢⎢⎣

x1
x2
...

xn

⎤

⎥⎥⎥⎦
is the unique solution to the linear system Ax = b, then

xi = det(Ai)

det(A)
for i = 1, 2, . . . , n

Proof Let Ii be the matrix obtained by replacing the ith column of the identity
matrix with x. Then the linear system is equivalent to the matrix equation

AIi = Ai so det(AIi) = det(Ai)

By Theorem 15, part 1, we have

det(A) det(Ii) = det(AIi) = det(Ai)

Since A is invertible, det(A) ̸= 0 and hence

det(Ii) = det(Ai)

det(A)

Expanding along the ith row to find the determinant of Ii gives

det(Ii) = xi det(I ) = xi

where I is the (n − 1) × (n − 1) identity. Therefore,

xi = det(Ai)

det(A)
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39. a. Find the equation of the parabola in the form

Cy2 + Dx + Ey + F = 0

that passes through the points (−2, −2), (3, 2),
and (4, −3).

b. Sketch the graph of the parabola.

40. a. Find the equation of the circle in the form

A(x2 + y2) + Dx + Ey + F = 0

that passes through the points (−3, −3), (−1, 2),

and (3, 0).

b. Sketch the graph of the circle.

41. a. Find the equation of the hyperbola in the form

Ax2 + Cy2 + Dx + Ey + F = 0

that passes through the points (0, −4), (0, 4),

(1, −2), and (2, 3).

b. Sketch the graph of the hyperbola.

42. a. Find the equation of the ellipse in the form

Ax2 + Cy2 + Dx + Ey + F = 0

that passes through the points (−3, 2), (−1, 3),

(1, −1), and (4, 2).

b. Sketch the graph of the ellipse.

43. a. Find the equation of the ellipse in the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

that passes through the points (−1, 0), (0, 1),

(1, 0), (2, 2), and (3, 1).

b. Sketch the graph of the ellipse.

In Exercises 44–51, use Cramer’s rule to solve the
linear system.

44.
{

2x + 3y = 4
2x + 2y = 4

45.
{

5x − 5y = 7
2x − 3y = 6

46.
{

2x + 5y = 4
4x + y = 3

47.
{

−9x − 4y = 3
−7x + 5y = −10

48.
{

−10x − 7y = −12
12x + 11y = 5

49.
{

−x − 3y = 4
−8x + 4y = 3

50.

⎧
⎨

⎩

−2x + y − 4z = −8
− 4y + z = 3

4x − z = −8

51.

⎧
⎨

⎩

2x + 3y + 2z = −2
−x − 3y − 8z = −2

−3x + 2y − 7z = 2
52. An n × n matrix is skew-symmetric provided

At = −A. Show that if A is skew-symmetric and
n is an odd positive integer, then A is not
invertible.

53. If A is a 3 × 3 matrix, show that det(A) = det(At ).

54. If A is an n × n upper triangular matrix, show
that det(A) = det(At ).

1.7 ßElementaryMatrices and LU Factorization

In Sec. 1.2 we saw how the linear system Ax = b can be solved by using Gaussian
elimination on the corresponding augmented matrix. Recall that the idea there was
to use row operations to transform the coefficient matrix to row echelon form. The
upper triangular form of the resulting matrix made it easy to find the solution by using
back substitution. (See Example 1 of Sec. 1.2.) In a similar manner, if an augmented
matrix is reduced to lower triangular form, then forward substitution can be used to
find the solution of the corresponding linear system. For example, starting from the

Preview from Notesale.co.uk

Page 87 of 509



Confirming Pages

76 Chapter 1 Systems of Linear Equations and Matrices

Using forward substitution, we solve the system Ly = b for y, obtaining y1 = 1,
y2 = 5, and y3 = 10. Next we solve the linear system Ux = y. That is,

⎡

⎣
1 2 −1
0 3 1
0 0 5

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =

⎡

⎣
1
5

10

⎤

⎦

Using back substitution, we obtain x3 = 2, x2 = 1, and x1 = 1.
The following steps summarize the procedure for solving the linear system

Ax = b when A admits an LU factorization.

1. Use Theorem 23 to write the linear system Ax = b as L(Ux) = b.
2. Define the vector y by means of the equation Ux = y.
3. Use forward substitution to solve the system Ly = b for y.
4. Use back substitution to solve the system Ux = y for x. Note that x is the solution

to the original linear system.

PLU Factorization
We have seen that a matrix A has an LU factorization provided that it can be row-
reduced without interchanging rows. We conclude this section by noting that when
row interchanges are required to reduce A, a factorization is still possible. In this
case the matrix A can be factored as A = PLU, where P is a permutation matrix,
that is, a matrix that results from interchanging rows of the identity matrix. As an
illustration, let

A =

⎡

⎣
0 2 −2
1 4 3
1 2 0

⎤

⎦

The matrix A can be reduced to

U =

⎡

⎣
1 2 0
0 2 3
0 0 −5

⎤

⎦

by means of the row operations R1 : R1 ↔ R3, R2 : −R1 + R2 −→ R2, and
R3 : −R2 + R3 −→ R3. The corresponding elementary matrices are given by

E1 =

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ E2 =

⎡

⎣
1 0 0

−1 1 0
0 0 1

⎤

⎦ and E3 =

⎡

⎣
1 0 0
0 1 0
0 −1 1

⎤

⎦
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Observe that the elementary matrix E1 is a permutation matrix while E2 and E3 are
lower triangular. Hence,

A = E−1
1

(
E−1

2 E−1
3

)
U

=

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦

⎡

⎣
1 0 0
1 1 0
0 1 1

⎤

⎦

⎡

⎣
1 2 0
0 2 3
0 0 −5

⎤

⎦

= PLU

Fact Summary

1. A row operation on a matrix A can be performed by multiplying A by an
elementary matrix.

2. An elementary matrix is invertible, and the inverse is an elementary matrix.
3. An n × n matrix A is invertible if and only if it is the product of

elementary matrices.
4. An m × n matrix A has an LU factorization if it can be reduced to an

upper triangular matrix with no row interchanges.
5. If A = LU, then L is invertible.
6. An LU factorization of A provides an efficient method for solving Ax = b.

Exercise Set 1.7

In Exercises 1–4:

a. Find the 3 × 3 elementary matrix E that performs
the row operation.

b. Compute EA, where

A =

⎡

⎣
1 2 1
3 1 2
1 1 −4

⎤

⎦

1. 2R1 + R2 −→ R2

2. R1 ↔ R2

3. −3R2 + R3 −→ R3

4. −R1 + R3 −→ R3

In Exercises 5–10:
a. Find the elementary matrices required to

reduce A to the identity.

b. Write A as the product of elementary matrices.

5. A =
[

1 3
−2 4

]

6. A =
[

−2 5
2 5

]

7. A =

⎡

⎣
1 2 −1
2 5 3
1 2 0

⎤

⎦

8. A =

⎡

⎣
−1 1 1

3 1 0
−2 1 1

⎤

⎦

9. A =

⎡

⎣
0 1 1
1 2 3
0 1 0

⎤

⎦

Preview from Notesale.co.uk

Page 96 of 509



Confirming Pages

1.8 Applications of Systems of Linear Equations 85

300

800

700

500

300

6. Find the traffic flow pattern for the network in the
figure. Flow rates are in cars per hour. Give one
specific solution.

100

300

400

400

500

500

500

300

200

7. Find the traffic flow pattern for the network in the
figure. Flow rates are in cars per half-hour. What
is the current status of the road labeled x5?

150

100

100

50

x1

x2 x3

x4

x5

8. Find the traffic flow pattern for the network in the
figure. Flow rates are in cars per half-hour. What
is the smallest possible value for x8?

150

300

100

250

200

200

300

100

x1

x2

x3x4x5

x6

x7 x8

9. The table lists the number of milligrams of
vitamin A, vitamin B, vitamin C, and niacin
contained in 1 g of four different foods. A
dietician wants to prepare a meal that provides
250 mg of vitamin A, 300 mg of vitamin B, 400
mg of vitamin C, and 70 mg of niacin. Determine
how many grams of each food must be included,
and describe any limitations on the quantities of
each food that can be used.

Group 1 Group 2 Group 3 Group 4

Vitamin A 20 30 40 10

Vitamin B 40 20 35 20

Vitamin C 50 40 10 30

Niacin 5 5 10 5

10. The table lists the amounts of sodium, potassium,
carbohydrates, and fiber in a single serving of
three food groups. Also listed are the daily
recommended amounts based on a 2000-calorie
diet. Is it possible to prepare a diet using the three
food groups alone that meets the recommended
amounts?
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7. a. Explain why the matrix

A =

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

is invertible.
b. Determine the maximum number of 1’s that

can be added to A such that the resulting
matrix is invertible.

8. Show that if A is invertible, then At is invertible
and (At )−1 = (A−1)t .

9. A matrix A is skew-symmetric provided At = −A.

a. Let A be an n × n matrix and define

B = A + At and C = A − At

Show that B is symmetric and C is
skew-symmetric.

b. Show that every n × n matrix can be written as
the sum of a symmetric and a skew-symmetric
matrix.

10. Suppose u and v are solutions to the linear system
Ax = b. Show that if scalars α and β satisfy
α + β = 1, then αu+ βv is also a solution to the
linear system Ax = b.

Chapter 1: Chapter Test

In Exercises 1–45, determine whether the statement is
true or false.
1. A 2 × 2 linear system has one solution, no

solutions, or infinitely many solutions.
2. A 3 × 3 linear system has no solutions, one

solution, two solutions, three solutions, or
infinitely many solutions.

3. If A and B are n × n matrices with no zero
entries, then AB ̸= 0.

4. Homogeneous linear systems always have at least
one solution.

5. If A is an n × n matrix, then Ax = 0 has a
nontrivial solution if and only if the matrix A has
an inverse.

6. If A and B are n × n matrices and Ax = Bx for
every n × 1 matrix x, then A = B.

7. If A, B, and C are invertible n × n matrices, then
(ABC)−1 = A−1B−1C−1.

8. If A is an invertible n × n matrix, then the linear
system Ax = b has a unique solution.

9. If A and B are n × n invertible matrices and
AB = BA, then A commutes with B−1.

10. If A and B commute, then A2B = BA2.

11. The matrix ⎡

⎢⎢⎢⎢⎣

1 −2 3 1 0
0 −1 4 3 2
0 0 3 5 −2
0 0 0 0 4
0 0 0 0 6

⎤

⎥⎥⎥⎥⎦

does not have an inverse.

12. Interchanging two rows of a matrix changes the
sign of its determinant.

13. Multiplying a row of a matrix by a nonzero
constant results in the determinant being
multiplied by the same nonzero constant.

14. If two rows of a matrix are equal, then the
determinant of the matrix is 0.

15. Performing the operation aRi + Rj → Rj on a
matrix multiplies the determinant by the
constant a.

16. If A =
[

1 2
4 6

]
, then A2 − 7A = 2I.

17. If A and B are invertible matrices, then A + B is
an invertible matrix.

18. If A and B are invertible matrices, then AB is an
invertible matrix.
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19. If A is an n × n matrix and A does not have an
inverse, then the linear system Ax = b is
inconsistent.

20. The linear system
⎡

⎣
1 2 3
6 5 4
0 0 0

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ =

⎡

⎣
1
2
3

⎤

⎦

is inconsistent.

21. The inverse of the matrix[
2 −1
3 1

]
is

[
1 1

−3 2

]

22. The matrix [
2 −1
4 −2

]

does not have an inverse.
23. If the n × n matrix A is idempotent and

invertible, then A = I.

24. If A and B commute, then At and Bt commute.
25. If A is an n × n matrix and det(A) = 3, then

det(AtA) = 9.

In Exercises 26–32, use the linear system
{

2x + 2y = 3
x − y = 1

26. The coefficient matrix is

A =
[

2 2
1 −1

]

27. The coefficient matrix A has determinant

det(A) = 0
28. The linear system has a unique solution.
29. The only solution to the linear system is

x = −7/4 and y = −5/4.
30. The inverse of the coefficient matrix A is

A−1 =
[

1
4

1
2

1
4 − 1

2

]

31. The linear system is equivalent to the matrix
equation

[
2 2
1 −1

] [
x

y

]
=

[
3
1

]

32. The solution to the system is given by the matrix
equation

[
x

y

]
=

[
1
4

1
2

1
4 − 1

2

] [
3
1

]

In Exercises 33–36, use the linear system
⎧
⎨

⎩

x1 + 2x2 − 3x3 = 1
2x1 + 5x2 − 8x3 = 4

−2x1 − 4x2 + 6x3 = −2

33. The determinant of the coefficient matrix is
∣∣∣∣

5 −8
−4 6

∣∣∣∣ +
∣∣∣∣

2 −8
−2 6

∣∣∣∣ +
∣∣∣∣

2 5
−2 −4

∣∣∣∣

34. The determinant of the coefficient matrix is 0.

35. A solution to the linear system is
x1 = −4, x2 = 0, and x3 = −1.

36. The linear system has infinitely many solutions,
and the general solution is given by x3 is free,
x2 = 2 + 2x3, and x1 = −3 − x3.

In Exercises 37–41, use the matrix

A =

⎡

⎣
−1 −2 1 3

1 0 1 −1
2 1 2 1

⎤

⎦

37. After the operation R1 ←→ R2 is performed, the
matrix becomes

⎡

⎣
1 0 1 −1

−1 −2 1 3
2 1 2 1

⎤

⎦

38. After the operation −2R1 + R3 −→ R3 is
performed on the matrix found in Exercise 37, the
matrix becomes

⎡

⎣
1 0 1 −1

−1 −2 1 3
0 −2 0 −3

⎤

⎦

39. The matrix A is row equivalent to
⎡

⎣
1 0 1 −1
0 −2 2 2
0 0 1 4

⎤

⎦
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3. Additive identity: The vector 0 satisfies 0+ u = u+ 0 = u.
4. Additive inverse: For every vector u, the vector −u satisfies
u+ (−u) =−u+ u = 0.

5. c(u+ v) = cu+ cv
6. (c + d)u = cu+ du
7. c(du) = (cd)u
8. (1)u = u

By the associative property, the vector sum u1 + u2 + · · · + un can be computed
unambiguously, without the need for parentheses. This will be important in Sec. 2.2.

EXAMPLE 3 Let
u =

[
1

−1

]
v =

[
2
3

]
and w =

[
4

−3

]

Verify that the associative property holds for these three vectors. Also verify that
for any scalars c and d, c(du) = (cd)u.

Solution To verify the associative property, we have

(u+ v) + w =
([

1
−1

]
+

[
2
3

])
+

[
4

−3

]
=

[
1 + 2

−1 + 3

]
+

[
4

−3

]

=
[

3
2

]
+

[
4

−3

]
=

[
7

−1

]

and

u+ (v+ w) =
[

1
−1

]
+

([
2
3

]
+

[
4

−3

])

=
[

1
−1

]
+

[
6
0

]
=

[
7

−1

]

Hence, (u+ v) + w = u+ (v+ w).
For the second verification, we have

c(du) = c

(
d

[
1

−1

])
= c

[
d

−d

]
=

[
cd

−cd

]
= cd

[
1

−1

]
= (cd)u

The properties given in Theorem 1 can be used to establish other useful properties
of vectors in !n. For example, if u ∈ !n and c is a scalar, then

0u = 0

⎡

⎢⎢⎣

u1
u2
...

un

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
0
...

0

⎤

⎥⎥⎦ = 0 and c0 = 0
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29. v1 =

⎡

⎣
1
0
1

⎤

⎦ v2 =

⎡

⎣
0
1
1

⎤

⎦

v3 =

⎡

⎣
2
1
0

⎤

⎦

30. v1 =

⎡

⎣
1
1
1

⎤

⎦ v2 =

⎡

⎣
0
1
0

⎤

⎦

v3 =

⎡

⎣
1
1
0

⎤

⎦

31. v1 =

⎡

⎣
1
1

−1

⎤

⎦ v2 =

⎡

⎣
2
1
1

⎤

⎦

v3 =

⎡

⎣
3
2
0

⎤

⎦

32. v1 =

⎡

⎣
−1

0
2

⎤

⎦ v2 =

⎡

⎣
1

−2
8

⎤

⎦

v3 =

⎡

⎣
1

−1
3

⎤

⎦

In Exercises 33–39, verify the indicated vector
property of Theorem 1 for vectors in !n.

33. Property 2.

34. Property 3.

35. Property 4.

36. Property 5.

37. Property 6.

38. Property 7.

39. Property 8.

40. Prove that the zero vector in !n is unique.

2.2 ßLinear Combinations

In three-dimensional Euclidean space !3 the coordinate vectors that define the three
axes are the vectors

e1 =

⎡

⎣
1
0
0

⎤

⎦ e2 =

⎡

⎣
0
1
0

⎤

⎦ and e3 =

⎡

⎣
0
0
1

⎤

⎦

Every vector in !3 can then be obtained from these three coordinate vectors, for
example, the vector

v =

⎡

⎣
2
3
3

⎤

⎦ = 2

⎡

⎣
1
0
0

⎤

⎦ + 3

⎡

⎣
0
1
0

⎤

⎦ + 3

⎡

⎣
0
0
1

⎤

⎦

Geometrically, the vector v is obtained by adding scalar multiples of the coordi-
nate vectors, as shown in Fig. 1. The vectors e1, e2, and e3 are not unique in this
respect. For example, the vector v can also be written as a combination of the
vectors

v1 =

⎡

⎣
1
1
1

⎤

⎦ v2 =

⎡

⎣
0
1
1

⎤

⎦ and v3 =

⎡

⎣
−1

1
1

⎤

⎦
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8. v =

⎡

⎣
5

−4
−7

⎤

⎦ v1 =

⎡

⎣
1

−1
0

⎤

⎦

v2 =

⎡

⎣
−2
−1
−1

⎤

⎦ v3 =

⎡

⎣
3

−1
−3

⎤

⎦

9. v =

⎡

⎣
−1

1
5

⎤

⎦ v1 =

⎡

⎣
1
2

−1

⎤

⎦

v2 =

⎡

⎣
−1
−1

3

⎤

⎦ v3 =

⎡

⎣
0
1
2

⎤

⎦

10. v =

⎡

⎣
−3

5
5

⎤

⎦ v1 =

⎡

⎣
−3

2
1

⎤

⎦

v2 =

⎡

⎣
1
4
1

⎤

⎦ v3 =

⎡

⎣
−1
10

3

⎤

⎦

11. v =

⎡

⎢⎢⎣

3
−17

17
7

⎤

⎥⎥⎦ v1 =

⎡

⎢⎢⎣

2
−3

4
1

⎤

⎥⎥⎦

v2 =

⎡

⎢⎢⎣

1
6

−1
2

⎤

⎥⎥⎦ v3 =

⎡

⎢⎢⎣

−1
−1

2
3

⎤

⎥⎥⎦

12. v =

⎡

⎢⎢⎣

6
3
3
7

⎤

⎥⎥⎦ v1 =

⎡

⎢⎢⎣

2
3
4
5

⎤

⎥⎥⎦

v2 =

⎡

⎢⎢⎣

1
−1

2
3

⎤

⎥⎥⎦ v3 =

⎡

⎢⎢⎣

3
1

−3
1

⎤

⎥⎥⎦

In Exercises 13–16, find all the ways that v can be
written as a linear combination of the given vectors.

13. v =
[

3
0

]
v1 =

[
3
1

]

v2 =
[

0
−1

]
v3 =

[
−1

2

]

14. v =
[

−1
−1

]
v1 =

[
1

−1

]

v2 =
[

−2
−1

]
v3 =

[
3
0

]

15. v =

⎡

⎣
0

−1
−3

⎤

⎦ v1 =

⎡

⎣
0
1
1

⎤

⎦

v2 =

⎡

⎣
−2
−1

2

⎤

⎦ v3 =

⎡

⎣
−2
−3
−1

⎤

⎦

v4 =

⎡

⎣
2

−1
−2

⎤

⎦

16. v =

⎡

⎣
−3
−3

1

⎤

⎦ v1 =

⎡

⎣
−1
−1

2

⎤

⎦

v2 =

⎡

⎣
0

−1
−1

⎤

⎦ v3 =

⎡

⎣
0

−1
−2

⎤

⎦

v4 =

⎡

⎣
−3
−1
−2

⎤

⎦

In Exercises 17–20, determine if the matrix M is a
linear combination of the matrices M1, M2, and M3.

17. M =
[

−2 4
4 0

]

M1 =
[

1 2
1 −1

]
M2 =

[
−2 3

1 4

]

M3 =
[

−1 3
2 1

]
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vk, cvk, where c is a nonzero scalar. Show that
S1 = S2.

36. Let S1 be the set of all linear combinations of the
vectors v1, v2, . . . , vk in !n, and S2 be the set of
all linear combinations of the vectors v1, v2, . . . ,

vk, v1 + v2. Show that S1 = S2.

37. Suppose that Ax = b is a 3 × 3 linear system that
is consistent. If there is a scalar c such that
A3 = cA1, then show that the linear system has
infinitely many solutions.

38. Suppose that Ax = b is a 3 × 3 linear system that
is consistent. If A3 = A1 + A2, then show that the
linear system has infinitely many solutions.

39. The equation

2y ′′ − 3y ′ + y = 0

is an example of a differential equation. Show that
y = f (x) = ex and y = g(x) = e

1
2 x are solutions

to the equation. Then show that any linear
combination of f (x) and g(x) is another solution
to the differential equation.

2.3 ßLinear Independence

In Sec. 2.2 we saw that given a set S of vectors in !n, it is not always possible
to express every vector in !n as a linear combination of vectors from S. At the
other extreme, there are infinitely many different subsets S such that the collection
of all linear combinations of vectors from S is !n. For example, the collection of all
linear combinations of the set of coordinate vectors S = {e1, . . . , en} is !n, but so
is the collection of linear combinations of T = {e1, . . . , en, e1 + e2}. In this way S

and T both generate !n. To characterize those minimal sets S that generate !n, we
require the concept of linear independence. As motivation let two vectors u and v in
!2 lie on the same line, as shown in Fig. 1. Thus, there is a nonzero scalar c such
that

x 

y 

v

u = 1
2v

−v
Figure 1 u = cv

This condition can also be written as

u− cv = 0

In this case we say that the vectors u and v are linearly dependent. Evidently we
have that two vectors u and v are linearly dependent provided that the zero vector is
a nontrivial (not both scalars 0) linear combination of the vectors. On the other hand,
the vectors shown in Fig. 2 are not linearly dependent. This concept is generalized to
sets of vectors in !n.

x 

y 

v

u

Figure 2

DEFINITION 1 Linearly Indpendent and Linearly Dependent The set of vectors S =
{v1, v2, . . . , vm} in !n is linearly independent provided that the only solution to
the equation

c1v1 + c2v2 + · · · + cmvm = 0
is the trivial solution c1 = c2 = · · · = cm = 0. If the above linear combination has
a nontrivial solution, then the set S is called linearly dependent.
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c. Show that the matrix

M =
[

0 3
3 1

]

cannot be written as a linear combination of
M1, M2, and M3.

In Exercises 25 and 26, for the given matrix A

determine if the linear system Ax = b has a unique
solution.

25. A =

⎡

⎣
1 2 0

−1 0 3
2 1 2

⎤

⎦

26. A =

⎡

⎣
3 2 4
1 −1 4
0 2 −4

⎤

⎦

In Exercises 27–30, determine whether the set of
polynomials is linearly independent or linearly
dependent. A set of polynomials
S = {p1(x), p2(x), . . . , pn(x)} is linearly independent
provided

c1p1(x) + c2p2(x) + · · · + cnpn(x) = 0

for all x implies that

c1 = c2 = · · · = cn = 0

27. p1(x) = 1 p2(x) = −2 + 4x2

p3(x) = 2x p4(x) = −12x + 8x3

28. p1(x) = 1 p2(x) = x

p3(x) = 5 + 2x − x2

29. p1(x) = 2 p2(x) = x p3(x) = x2

p4(x) = 3x − 1

30. p1(x) = x3 − 2x2 + 1 p2(x) = 5x

p3(x) = x2 − 4 p4(x) = x3 + 2x

In Exercises 31–34, show that the set of functions is
linearly independent on the interval [0, 1]. A set of
functions S = {f1(x), f2(x), . . . , fn(x)} is linearly
independent on the interval [a, b] provided

c1f1(x) + c2f2(x) + · · · + cnfn(x) = 0

for all x ∈ [a, b] implies that

c1 = c2 = · · · = cn = 0

31. f1(x) = cos πx f2(x) = sin πx

32. f1(x) = ex f2(x) = e−x

f3(x) = e2x

33. f1(x) = x f2(x) = x2 f3(x) = ex

34. f1(x) = x f2(x) = ex

f3(x) = sin πx

35. Verify that two vectors u and v in !n are linearly
dependent if and only if one is a scalar multiple
of the other.

36. Suppose that S = {v1, v2, v3} is linearly
independent and

w1 = v1 + v2 + v3 w2 = v2 + v3

and
w3 = v3

Show that T = {w1,w2,w3} is linearly
independent.

37. Suppose that S = {v1, v2, v3} is linearly
independent and

w1 = v1 + v2 w2 = v2 − v3

and
w3 = v2 + v3

Show that T = {w1,w2,w3} is linearly
independent.

38. Suppose that S = {v1, v2, v3} is linearly
independent and

w1 = v2 w2 = v1 + v3

and
w3 = v1 + v2 + v3

Determine whether the set T = {w1,w2,w3} is
linearly independent or linearly dependent.

39. Suppose that the set S = {v1, v2} is linearly
independent. Show that if v3 cannot be written as
a linear combination of v1 and v2, then
{v1, v2, v3} is linearly independent.

40. Let S = {v1, v2, v3}, where v3 = v1 + v2.
a. Write v1 as a linear combination of the vectors

in S in three different ways.
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EXAMPLE 5 Let V = {(a, b) | a, b ∈ !}. Let v = (v1, v2) and w = (w1, w2). Define

(v1, v2) ⊕ (w1, w2) = (v1 + w1 + 1, v2 + w2 + 1) and
c ⊙ (v1, v2) = (cv1 + c − 1, cv2 + c − 1)

Verify that V is a vector space.

Solution First observe that since the result of addition or scalar multiplication is an ordered
pair, V is closed under addition and scalar multiplication. Since addition of real
numbers is commutative and associative, axioms 2 and 3 hold for the ⊕ defined
here. Now an element w ∈ V is the additive identity provided that for all v ∈ V

v⊕ w = v or (v1 + w1 + 1, v2 + w2 + 1) = (v1, v2)

Equating components gives
v1 + w1 + 1 = v1 and v2 + w2 + 1 = v2 so

w1 = −1 and w2 = −1
This establishes the existence of an additive identity. Specifically, 0 = (−1, −1),
so axiom 4 holds.

To show that each element v in V has an additive inverse, we must find a
vector w such that

v⊕ w = 0 = (−1, −1)

Since v⊕ w = (v1 + w1 + 1, v2 + w2 + 1), this last equation requires that
v1 + w1 + 1 = −1 and v2 + w2 + 1= −1 so that

w1 = −v1 − 2 and w2 = −v2 − 2
Thus, for any element v = (v1, v2) in V, we have −v = (−v1 − 2, −v2 − 2). The
remaining axioms all follow from the similar properties of the real numbers.

A polynomial of degree n is an expression of the form

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n

where a0, . . . , an are real numbers and an ̸= 0. The degree of the zero polynomial is
undefined since it can be written as p(x) = 0xn for any positive integer n. Polynomials
comprise one of the most basic sets of functions and have many applications in
mathematics.

EXAMPLE 6 Vector Space of Polynomials Let n be a fixed positive integer. Denote by Pn

the set of all polynomials of degree n or less. Define addition by adding like terms.
That is, if

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n
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29. Let V be the set of all real-valued functions
defined on ! with the standard operations that
satisfy f (0) = 1. Determine whether V is a
vector space.

30. Let V be the set of all real-valued functions
defined on !.

Define f ⊕ g by

(f ⊕ g)(x) = f (x) + g(x)

and define c ⊙ f by

(c ⊙ f )(x) = f (x + c)

Determine whether V is a vector space.

31. Let f (x) = x3 defined on ! and let

V = {f (x + t) | t ∈ !}

Define

f (x + t1) ⊕ f (x + t2) = f (x + t1 + t2)

c ⊙ f (x + t) = f (x + ct)

a. Determine the additive identity and additive
inverses.

b. Show that V is a vector space.

3.2 ßSubspaces

Many interesting examples of vector spaces are subsets of a given vector space V that
are vector spaces in their own right. For example, the xy plane in !3 given by

⎧
⎨

⎩

⎡

⎣
x

y

0

⎤

⎦

∣∣∣∣∣∣
x, y ∈ !

⎫
⎬

⎭

is a subset of !3. It is also a vector space with the same standard componentwise
operations defined on !3. Another example of a subspace of a vector space is given
in Example 9 of Sec. 3.1. The determination as to whether a subset of a vector space
is itself a vector space is simplified since many of the required properties are inherited
from the parent space.

DEFINITION 1 Subspace A subspace W of a vector space V is a nonempty subset that is itself
a vector space with respect to the inherited operations of vector addition and scalar
multiplication on V .

The first requirement for a subset W ⊆ V to be a subspace is that W be closed
under the operations of V . For example, let V be the vector space !2 with the
standard definitions of addition and scalar multiplication. Let W ⊆ !2 be the subset
defined by

W =
{[

a

0

] ∣∣∣∣ a ∈ !

}

Observe that the sum of any two vectors in W is another vector in W , since
[

a

0

]
⊕

[
b

0

]
=

[
a + b

0

]
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In this way we say that W is closed under addition. The subset W is also closed under
scalar multiplication since for any real number c,

c ⊙
[

a

0

]
=

[
ca

0

]

which is again in W.
On the other hand, the subset

W =
{[

a

1

]∣∣∣∣ a ∈ !

}

is not closed under addition, since
[

a

1

]
⊕

[
b

1

]
=

[
a + b

2

]

which is not in W. See Fig. 1. The subset W is also not closed under scalar multipli-
cation since

c ⊙
[

a

1

]
=

[
ca

c

]

x 

y 

1

W is not a subspace of V

W
u

v

u⊕ v

Figure 1 which is not in W for all values of c ̸= 1.

Now let us suppose that a nonempty subset W is closed under both of the oper-
ations on V. To determine whether W is a subspace, we must show that each of the
remaining vector space axioms hold. Fortunately, our task is simplified as most of
these properties are inherited from the vector space V. For example, to show that the
commutative property holds in W , let u and v be vectors in W. Since u and v are
also in V , then

u⊕ v = v⊕ u
Similarly, any three vectors in W satisfy the associative property, as this property is
also inherited from V. To show that W contains the zero vector, let w be any vector
in W. Since W is closed under scalar multiplication, 0 ⊙ w ∈ W. Now, by Theorem 2
of Sec. 3.1, we have 0 ⊙ w = 0. Thus, 0 ∈ W. Similarly, for any w ∈ W ,

(−1) ⊙ w = −w

is also in W. All the other vector space properties, axioms 7 through 10, are inherited
from V. This shows that W is a subspace of V. Conversely, if W is a subspace of
V , then it is necessarily closed under addition and scalar multiplication. This proves
Theorem 3.

THEOREM 3 Let W be a nonempty subset of the vector space V. Then W is a subspace of V if
and only if W is closed under addition and scalar multiplication.

By Theorem 3, the first of the examples above with

W =
{[

a

0

]∣∣∣∣ a ∈ !

}
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We now consider what happens when subspaces are combined. In particular,
let W1 and W2 be subspaces of a vector space V. Then the intersection W1 ∩ W2 is
also a subspace of V. To show this, let u and v be elements of W1 ∩ W2 and let c

be a scalar. Since W1 and W2 are both subspaces, then by Theorem 4, u⊕ (c ⊙ v) is
in W1 and is in W2, and hence is in the intersection. Applying Theorem 4 again, we
have that W1 ∩ W2 is a subspace.

The extension to an arbitrary number of subspaces is stated in Theorem 5.

THEOREM 5 The intersection of any collection of subspaces of a vector space is a subspace of
the vector space.

Example 6 shows that the union of two subspaces need not be a subspace.

EXAMPLE 6 Let W1 and W2 be the subspaces of !2 with the standard operations given by

W1 =
{[

x

0

] ∣∣∣∣ x ∈ !

}
and W2 =

{[
0
y

] ∣∣∣∣ y ∈ !

}

Show that W1 ∪ W2 is not a subspace.

Solution The subspaces W1 and W2 consist of all vectors that lie on the x axis and the y axis,
respectively. Their union is the collection of all vectors that lie on either axis and
is given by

W1 ∪ W2 =
{[

x

y

] ∣∣∣∣ x = 0 or y = 0
}

This set is not closed under addition since
[

1
0

]
⊕

[
0
1

]
=

[
1
1

]

which is not in W1 ∪ W2, as shown in Fig. 2.

x 

y 

W2

W1

[
0
1

]

[
1
0

]

[
1
1

]
/∈ W1 ∪ W2

Figure 2

Preview from Notesale.co.uk

Page 164 of 509



Confirming Pages

150 Chapter 3 Vector Spaces

spans !3. These vectors are also linearly independent. To see this, observe that the
matrix

A =

⎡

⎣
1 1 1
1 0 1
1 2 0

⎤

⎦

whose column vectors are the vectors of S, is row equivalent to the 3 × 3 identity
matrix, as seen in the solution to Example 9. [Another way of showing that S is
linearly independent is to observe that det(A) = 1 ̸= 0.] Consequently, by Theorem 7
of Sec. 2.3, we have that every vector in !3 can be written in only one way as a
linear combination of the vectors of S.

On the other hand, the span of the set of vectors

S ′ =
{
v′

1, v′
2, v′

3
}

=

⎧
⎨

⎩

⎡

⎣
−1

2
1

⎤

⎦,

⎡

⎣
4
1

−3

⎤

⎦,

⎡

⎣
−6

3
5

⎤

⎦

⎫
⎬

⎭

of Example 10 is a plane passing through the origin. Hence, not every vector in !3

can be written as a linear combination of the vectors in S ′. As we expect, these vectors
are linearly dependent since

det

⎛

⎝

⎡

⎣
−1 4 −6

2 1 3
1 −3 5

⎤

⎦

⎞

⎠ = 0

In particular, v′
3 = 2v′

1 − v′
2. The vectors v′

1 and v′
2 are linearly independent vectors

which span the plane shown in Fig. 4, but not !3.
To pursue these notions a bit further, there are many sets of vectors which span

!3. For example, the set

B = {e1, e2, e3, v} =

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦,

⎡

⎣
0
0
1

⎤

⎦,

⎡

⎣
1
2
3

⎤

⎦

⎫
⎬

⎭

spans !3, but by Theorem 3 of Sec. 2.3 must necessarily be linearly dependent. The
ideal case, in terms of minimizing the number of vectors, is illustrated in Example 9
where the three linearly independent vectors of S span !3. In Sec. 3.3 we will see
that S is a basis for !3, and that every basis for !3 consists of exactly three linearly
independent vectors.

EXAMPLE 11 Show that the set of matrices

S =
{[

−1 0
2 1

]
,

[
1 1
1 0

]}

does not span M2×2. Describe span(S).
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Hence, the linear system has the unique solution c1 = 2a − c, c2 = −a + c, and
c3 = −4a + b + 2c, for all a, b, and c. Therefore, span(S) = P2.

The Null Space and Column Space of aMatrix
Two special subspaces associated with every matrix A are the null space and column
space of the matrix.

DEFINITION 4 Null Space and Column Space Let A be an m × n matrix.

1. The null space of A, denoted by N(A), is the set of all vectors in !n such
that Ax = 0.

2. The column space of A, denoted by col(A), is the set of all linear combinations
of the column vectors of A.

Observe that N(A) is a subset of !n and col(A) is a subset of !m. Moreover,
by Proposition 1, col(A) is a subspace of !m. Using this terminology, we give a
restatement of Theorem 2 of Sec. 2.2.

THEOREM 6 Let A be an m × n matrix. The linear system Ax = b is consistent if and only if
b is in the column space of A.

EXAMPLE 13 Let

A =

⎡

⎣
1 −1 −2

−1 2 3
2 −2 −2

⎤

⎦ and b =

⎡

⎣
3
1

−2

⎤

⎦

a. Determine whether b is in col(A).
b. Find N(A).

Solution a. By Theorem 6, the vector b is in col(A) if and only if there is a vector x such
that Ax = b. The corresponding augmented matrix is given by

⎡

⎣
1 −1 −2 3

−1 2 3 1
2 −2 −2 −2

⎤

⎦ which reduces to

⎡

⎣
1 0 0 3
0 1 0 8
0 0 1 −4

⎤

⎦
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This leads to the concept of a basis for an abstract vector space. As a first step, we
generalize the concept of linear independence to abstract vector spaces introduced in
Sec. 3.1.

DEFINITION 1 Linear Independence and Linear Dependence The set of vectors S =
{v1, v2, . . . , vm} in a vector space V is called linearly independent provided that
the only solution to the equation

c1v1 + c2v2 + · · · + cmvm = 0

is the trivial solution c1 = c2 = · · · = cm = 0. If the equation has a nontrivial solu-
tion, then the set S is called linearly dependent.

EXAMPLE 1 Let

v1 =

⎡

⎣
1
0

−1

⎤

⎦ v2 =

⎡

⎣
0
2
2

⎤

⎦ v3 =

⎡

⎣
−3

4
7

⎤

⎦

and let W = span{v1, v2, v3}.

a. Show that v3 is a linear combination of v1 and v2.

b. Show that span{v1, v2} = W.

c. Show that v1 and v2 are linearly independent.

Solution a. To solve the vector equation

c1

⎡

⎣
1
0

−1

⎤

⎦ + c2

⎡

⎣
0
2
2

⎤

⎦ =

⎡

⎣
−3

4
7

⎤

⎦

we row-reduce the corresponding augmented matrix for the linear system to
obtain ⎡

⎣
1 0 −3
0 2 4

−1 2 7

⎤

⎦ −→

⎡

⎣
1 0 −3
0 1 2
0 0 0

⎤

⎦

The solution to the vector equation above is c1 = −3 and c2 = 2, therefore

v3 = −3v1 + 2v2

Notice that the vector v3 lies in the plane spanned by v1 and v2, as shown
in Fig. 1.

Figure 1 b. From part (a) an element of W = {c1v1 + c2v2 + c3v3 | c1, c2, c3 ∈ !} can be
written in the form

c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3(−3v1 + 2v2)

= (c1 − 3c3)v1 + (c2 + 2c3)v2
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Solution By using the methods presented in Chap. 2 it can be shown that the the column
vectors of the matrix A are linearly independent. Since the column vectors of B

consist of a set of five vectors in !4, by Theorem 3 of Sec. 2.3, the vectors are
linearly dependent. In addition, the first four column vectors of B are the same as
the linearly independent column vectors of A, hence by Theorem 5 of Sec. 2.3 the
fifth column vector of B must be a linear combination of the other four vectors.
Finally by Theorem 8, we know that col(A) = col(B).

As a consequence of Theorem 8, a set of vectors {v1, . . . , vn} such that V =
span{v1, . . . , vn} is minimal, in the sense of the number of spanning vectors, when
they are linearly independent. We also saw in Chap. 2 that when a vector in !n can
be written as a linear combination of vectors from a linearly independent set, then the
representation is unique. The same result holds for abstract vector spaces.

THEOREM 9 If B = {v1, v2, . . . , vm} is a linearly independent set of vectors in a vector space V,

then every vector in span(B) can be written uniquely as a linearly combination of
vectors from B.

Motivated by these ideas, we now define what we mean by a basis of a vector
space.

DEFINITION 2 Basis for a Vector Space A subset B of a vector space V is a basis for V

provided that

1. B is a linearly independent set of vectors in V

2. span(B) = V

As an example, the set of coordinate vectors

S = {e1, . . . , en}

spans !n and is linearly independent, so that S is a basis for !n. This particular basis
is called the standard basis for !n. In Example 3 we give a basis for !3, which is
not the standard basis.

EXAMPLE 3 Show that the set

B =

⎧
⎨

⎩

⎡

⎣
1
1
0

⎤

⎦,

⎡

⎣
1
1
1

⎤

⎦,

⎡

⎣
0
1

−1

⎤

⎦

⎫
⎬

⎭

is a basis for !3.
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Dimension
We have already seen in Theorem 3 of Sec. 2.3 that any set of m vectors from !n,

with m > n, must necessarily be linearly dependent. Hence, any basis of !n contains
at most n vectors. It can also be shown that any linearly independent set of m vectors,
with m < n, does not span !n. For example, as we have already seen, two linearly
independent vectors in !3 span a plane. Hence, any basis of !n must contain exactly n

vectors. The number n, an invariant of !n, is called the dimension of !n. Theorem 11
shows that this holds for abstract vector spaces.

THEOREM 11 If a vector space V has a basis with n vectors, then every basis has n vectors.

Proof Let B = {v1, v2, . . . , vn} be a basis for V , and let T = {u1, u2, . . . , um}
be a subset of V with m > n. We claim that T is linearly dependent. To establish
this result, observe that since B is a basis, then every vector in T can be written
as a linear combination of the vectors from B. That is,

u1 = λ11v1 + λ12v2 + · · · + λ1nvn

u2 = λ21v1 + λ22v2 + · · · + λ2nvn

...

um = λm1v1 + λm2v2 + · · · + λmnvn

Now consider the equation

c1u1 + c2u2 + · · · + cmum = 0

Using the equations above, we can write this last equation in terms of the basis
vectors. After collecting like terms, we obtain

(c1λ11 + c2λ21 + · · · + cmλm1)v1

+ (c1λ12 + c2λ22 + · · · + cmλm2)v2
...

+ (c1λ1n + c2λ2n + · · · + cmλmn)vn = 0

Since B is a basis, it is linearly independent, hence

c1λ11 + c2λ21 + · · · + cmλm1 = 0
c1λ12 + c2λ22 + · · · + cmλm2 = 0

...

c1λ1n + c2λ2n + · · · + cmλmn = 0

This last linear system is not square with n equations in the m variables c1, . . . , cm.

Since m > n, by Theorem 3 of Sec. 2.3 the linear system has a nontrivial solution,
and hence T is linearly dependent.
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The details of these observations are made clearer by considering a specific
example. Let

S = {v1, v2, v3, v4, v5} =

⎧
⎨

⎩

⎡

⎣
1
1
0

⎤

⎦,

⎡

⎣
1
0
1

⎤

⎦,

⎡

⎣
2
1
2

⎤

⎦,

⎡

⎣
2
1
1

⎤

⎦,

⎡

⎣
3
1
3

⎤

⎦

⎫
⎬

⎭

We begin by considering the equation

c1

⎡

⎣
1
1
0

⎤

⎦ + c2

⎡

⎣
1
0
1

⎤

⎦ + c3

⎡

⎣
2
1
2

⎤

⎦ + c4

⎡

⎣
2
1
1

⎤

⎦ + c5

⎡

⎣
3
1
3

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦

To solve this system, we reduce the corresponding augmented matrix to reduced
echelon form. That is,

⎡

⎣
1 1 2 2 3 0
1 0 1 1 1 0
0 1 2 1 3 0

⎤

⎦ reduces to

⎡

⎣
1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 0 1 0

⎤

⎦

In the general solution, the variables c1, c2, and c3 are the dependent variables cor-
responding to the leading ones in the reduced matrix, while c4 and c5 are free. Thus,
the solution is given by

S = {(−s, −s − t, −t, s, t) | s, t ∈ !}

Now to find a basis for span(S), we substitute these values into the original vector
equation to obtain

−s

⎡

⎣
1
1
0

⎤

⎦ + (−s − t)

⎡

⎣
1
0
1

⎤

⎦ + (−t)

⎡

⎣
2
1
2

⎤

⎦ + s

⎡

⎣
2
1
1

⎤

⎦ + t

⎡

⎣
3
1
3

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦

We claim that each of the vectors corresponding to a free variable is a linear com-
bination of the others. To establish the claim in this case, let s = 1 and t = 0. The
above vector equation now becomes

−

⎡

⎣
1
1
0

⎤

⎦ −

⎡

⎣
1
0
1

⎤

⎦ +

⎡

⎣
2
1
1

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦

that is,
−v1 − v2 + v4 = 0

Thus, v4 is a linear combination of v1 and v2. Also, to see that v5 is a linear combi-
nation of v1, v2, and v3, we let s = 0 and t = 1.

In light of Theorem 8 we eliminate v4 and v5 from S to obtain S ′ = {v1, v2, v3}.
Observe that S ′ is linearly independent since each of these vectors corresponds to a
column with a leading 1. Thus, the equation

c1

⎡

⎣
1
1
0

⎤

⎦ + c2

⎡

⎣
1
0
1

⎤

⎦ + c3

⎡

⎣
2
1
2

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦

has only the trivial solution.
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23. Let

S =
{[

1
0

]
,

[
0
1

]}

be the standard ordered basis for !2 and let

B =
{[

1
0

]
,

[
− 1

2
1
2

]}

be a second ordered basis.

a. Find [I ]BS
b. Find the coordinates of

[
1
2

] [
1
4

] [
4
2

] [
4
4

]

relative to the ordered basis B.

c. Draw the rectangle in the plane with vertices
(1, 2), (1, 4), (4, 1), and (4, 4).

d. Draw the polygon in the plane with vertices
given by the coordinates found in part (b).

24. Fix a real number θ and define the transition
matrix from the standard ordered basis S on !2 to

a second ordered basis B by

[I ]BS =
[

cos θ − sin θ

sin θ cos θ

]

a. If [v]S =
[

x

y

]
, then find [v]B.

b. Draw the rectangle in the plane with vertices
[

0
0

] [
0
1

] [
1
0

] [
1
1

]

c. Let θ = π
2 . Draw the rectangle in the plane

with vertices the coordinates of the vectors,
given in part (b), relative to the ordered
basis B.

25. Suppose that B1 = {u1, u2, u3} and
B2 = {v1, v2, v3} are ordered bases for a vector
space V such that u1 = −v1 + 2v2, u2 =
−v1 + 2v2 − v3, and u3 = −v2 + v3.

a. Find the transition matrix [I ]B2
B1

b. Find [2u1 − 3u2 + u3]B2

3.5 ßApplication: Differential Equations

Differential equations arise naturally in virtually every branch of science and tech-
nology. They are used extensively by scientists and engineers to solve problems
concerning growth, motion, vibrations, forces, or any problem involving the rates
of change of variable quantities. Not surprisingly, mathematicians have devoted a
great deal of effort to developing methods for solving differential equations. As it
turns out, linear algebra is highly useful to these efforts. However, linear algebra also
makes it possible to attain a deeper understanding of the theoretical foundations of
these equations and their solutions. In this section and in Sec. 5.3 we give a brief
introduction to the connection between linear algebra and differential equations.

As a first step, let y be a function of a single variable x. An equation that
involves x, y, y ′, y ′′, . . . , y(n), where n is a fixed positive integer, is called an ordinary
differential equation of order n. We will henceforth drop the qualifier ordinary since
none of the equations we investigate will involve partial derivatives. Also, for obvious
reasons we will narrow the scope of our discussion and consider only equations of a
certain type.
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3.5 Application: Differential Equations 187

second derivatives y ′ = rerx and y ′′ = r2erx, we see that y = erx is a solution of the
second-order equation if and only if

r2erx + arerx + berx = 0

that is,
erx(r2 + ar + b) = 0

Since erx > 0 for every choice of r and x, we know erx is a solution of y ′′ + ay ′ +
by = 0 if and only if

r2 + ar + b = 0
This equation is called the auxiliary equation. As this equation is quadratic there
are three possibilities for the roots r1 and r2. This in turn yields three possible vari-
ations for the solution of the differential equation. The auxiliary equation can have
two distinct real roots, one real root, or two distinct complex roots. These cases are
considered in order.

Case 1 The roots r1 and r2 are real and distinct.
In this case there are two solutions, given by

y1(x) = er1x and y2(x) = er2x

EXAMPLE 1 Find two distinct solutions to the differential equation y ′′ − 3y ′ + 2y = 0.

Solution Let y = erx. Since the auxiliary equation r2 − 3r + 2 = (r − 1)(r − 2) = 0 has
the distinct real roots r1 = 1 and r2 = 2, two distinct solutions for the differential
equation are

y1(x) = ex and y2(x) = e2x

Case 2 There is one repeated root r . Although the auxiliary equation has only one
root, there are still two distinct solutions, given by

y1(x) = erx and y2(x) = xerx

EXAMPLE 2 Find two distinct solutions to the differential equation y ′′ − 2y ′ + y = 0.

Solution Let y = erx. Since the auxiliary equation r2 − 2r + 1 = (r − 1)2 = 0 has the
repeated root r = 1, two distinct solutions of the differential equation are

y1(x) = ex and y2(x) = xex
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b. Assume there exists a particular solution to the
nonhomogeneous equation of the form

yp(x) = A cos 2x + B sin 2x

Substitute yp(x) into the differential equation
to find conditions on the coefficients A and B.

c. Verify that yc(x) + yp(x) is a solution to the
differential equation.

9. Let w be the weight of an object attached to a
spring, g the constant acceleration due to gravity
of 32 ft/s2, k the spring constant, and d the
distance in feet that the spring is stretched by the

weight. Then the mass of the object is m = w
g

and
k = w

d
. Suppose that a 2-lb weight stretches a

spring by 6-in. Find the equation of the motion of
the weight if the object is pulled down by 3-in
and then released. Notice that this system is
undamped ; that is, the damping coefficient is 0.

10. Suppose an 8-lb object is attached to a spring
with a spring constant of 4 lb/ft and that the
damping force on the system is twice the velocity.
Find the equation of the motion if the object is
pulled down 1-ft and given an upward velocity
of 2 ft/s.

Review Exercises for Chapter 3

1. Determine for which values of k the vectors⎡

⎢⎢⎣

1
−2

0
2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
1

−1
3

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0
0
1
4

⎤

⎥⎥⎦

⎡

⎢⎢⎣

2
3
4
k

⎤

⎥⎥⎦

form a basis for !4.

2. For which values of a, b, c, d, e, and f are the
vectors ⎡

⎣
a

0
0

⎤

⎦

⎡

⎣
b

c

0

⎤

⎦

⎡

⎣
d

e

f

⎤

⎦

a basis for !3?

3. Let

S =
{[

a − b a

b + c a − c

]∣∣∣∣ a, b, c ∈ !

}

a. Show that S is a subspace of M2×2.

b. Is
[

5 3
−2 3

]
in S?

c. Find a basis B for S.

d. Give a 2 × 2 matrix that is not in S.

4. Let S = {p(x) = a + bx + cx2 | a + b + c = 0}.
a. Show that S is a subspace of P2.

b. Find a basis for S. Specify the dimension of S.

5. Suppose that S = {v1, v2, v3} is a basis for a
vector space V.

a. Determine whether the set T = {v1, v1 +
v2, v1 + v2 + v3} is a basis for V.

b. Determine whether the set
W = {−v2 + v3, 3v1 + 2v2 + v3, v1 −
v2 + 2v3} is a basis for V.

6. Let S = {v1, v2, v3}, where

v1 =

⎡

⎢⎢⎣

1
−3

1
1

⎤

⎥⎥⎦ v2 =

⎡

⎢⎢⎣

2
−1

1
1

⎤

⎥⎥⎦

v3 =

⎡

⎢⎢⎣

4
−7

3
3

⎤

⎥⎥⎦

a. Explain why the set S is not a basis for !4.

b. Show that v3 is a linear combination of v1 and
v2.

c. Find the dimension of the span of the set S.

d. Find a basis B for !4 that contains the vectors
v1 and v2.
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24. If V is a vector space of dimension n and H is a
subspace of dimension n, then H = V.

25. If B1 and B2 are bases for the vector space V,

then the transition matrix from B1 to B2 is the
inverse of the transition matrix from
B2 to B1.

In Exercises 26–29, use the bases of !2

B1 =
{[

1
−1

]
,

[
0
2

]}

and

B2 =
{[

1
1

]
,

[
3

−1

]}

26. The coordinates of
[

1
0

]
, relative to B1, are

[
1
1

]
.

27. The coordinates of
[

1
0

]
relative to B2 are

1
4

[
1
1

]
.

28. The transition matrix from B1 to B2 is

[I ]B2
B1

= 1
2

[
−1 3

1 −1

]

29. The transition matrix from B2 to B1 is

[I ]B1
B2

=
[

1 3
1 1

]

In Exercises 30–35, use the bases of P3,

B1 = {1, x, x2, x3}

and

B2 = {x, x2, 1, x3}

30. [x3 + 2x2 − x]B1 =

⎡

⎣
1
2

−1

⎤

⎦

31. [x3 + 2x2 − x]B1 =

⎡

⎢⎢⎣

0
−1

2
1

⎤

⎥⎥⎦

32. [x3 + 2x2 − x]B2 =

⎡

⎢⎢⎣

0
−1

2
1

⎤

⎥⎥⎦

33. [x3 + 2x2 − x]B2 =

⎡

⎢⎢⎣

−1
2
0
1

⎤

⎥⎥⎦

34. [(1 + x)2 − 3(x2 + x − 1) + x3]B2

=

⎡

⎢⎢⎣

4
−1
−2

1

⎤

⎥⎥⎦

35. The transition matrix from B1 to B2 is

[I ]B2
B1

=

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤

⎥⎥⎦
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and

T

⎛

⎝

⎡

⎣
7

−1
5

⎤

⎦

⎞

⎠ =
[

1 2 −1
−1 3 2

] ⎡

⎣
7

−1
5

⎤

⎦ =
[

0
0

]

Later in this chapter, in Sec. 4.4, we show that every linear transformation between
finite dimensional vector spaces can be represented by a matrix. In Examples 1 and 2, we
have discussed some of the algebraic properties of linear transformations. In Example 3
we consider the action of a linear transformation from a geometric perspective.

EXAMPLE 3 Define a linear transformation T: !3 −→ !2 by

T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =
[

x

y

]

a. Discuss the action of T on a vector in !3, and give a geometric interpretation
of the equation

T

⎛

⎝

⎡

⎣
1
0
1

⎤

⎦ +

⎡

⎣
0
1
1

⎤

⎦

⎞

⎠ = T

⎛

⎝

⎡

⎣
1
0
1

⎤

⎦

⎞

⎠ + T

⎛

⎝

⎡

⎣
0
1
1

⎤

⎦

⎞

⎠

b. Find the image of the set

S1 =

⎧
⎨

⎩ t

⎡

⎣
1
2
1

⎤

⎦

∣∣∣∣∣∣
t ∈ !

⎫
⎬

⎭

c. Find the image of the set

S2 =

⎧
⎨

⎩

⎡

⎣
x

y

3

⎤

⎦

∣∣∣∣∣∣
x, y ∈ !

⎫
⎬

⎭

d. Describe the set

S3 =

⎧
⎨

⎩

⎡

⎣
x

0
z

⎤

⎦

∣∣∣∣∣∣
x, z ∈ !

⎫
⎬

⎭
and find its image.

Solution a. The linear transformation T gives the projection, or shadow, of a vector in
3-space to its image in the xy plane. Let

v1 =

⎡

⎣
1
0
1

⎤

⎦ v2 =

⎡

⎣
0
1
1

⎤

⎦ and v3 = v1 + v2 =

⎡

⎣
1
1
2

⎤

⎦
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Operations with Linear Transformations
Linear transformations can be combined by using a natural addition and scalar mul-
tiplication to produce new linear transformations. For example, let S, T: !2 → !2 be
defined by

S

([
x

y

])
=

[
x + y

−x

]
and T

([
x

y

])
=

[
2x − y

x + 3y

]

We then define

(S + T )(v) = S(v) + T (v) and (cS)(v) = c(S(v))

To illustrate this definition, let v =
[

2
−1

]
; then

(S + T )(v) = S(v) + T (v) =
[

2 + (−1)

−2

]
+

[
2(2) − (−1)

2 + 3(−1)

]
=

[
6

−3

]

For scalar multiplication let c = 3. Then

(3T )(v) = 3T (v) = 3
[

5
−1

]
=

[
15
−3

]

In Theorem 1 we show that these operations on linear transformations produce
linear transformations.

THEOREM 1 Let V and W be vector spaces and let S, T: V → W be linear transformations. The
function S + T defined by

(S + T )(v) = S(v) + T (v)

is a linear transformation from V into W . If c is any scalar, the function cS

defined by
(cS)(v) = cS(v)

is a linear transformation from V into W .

Proof Let u, v ∈ V and let d be any scalar. Then

(S + T )(du+ v) = S(du+ v) + T (du+ v)
= S(du) + S(v) + T (du) + T (v)
= dS(u) + S(v) + dT (u) + T (v)
= d(S(u) + T (u)) + S(v) + T (v)
= d(S + T )(u) + (S + T )(v)
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Fact Summary

Let V, W , and Z be vector spaces and S and T functions from V into W .

1. The function T is a linear transformation provided that for all u, v in V and
all scalars c, T (cu+ v) = cT (u) + T (v).

2. If A is an m × n matrix and T is defined by T (x) = Ax, then T is a linear
transformation from !n into !m.

3. If T is a linear transformation, then the zero vector in V is mapped to the
zero vector in W , that is, T (0) = 0.

4. If B = {v1, v2, . . . , vn} is an ordered basis for V and W = !n, then the
coordinate mapping T (v) = [v]B is a linear transformation.

5. If {v1, v2, . . . , vn} is a set of vectors in V and T is a linear transformation,
then

T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1) + c2T (v2) + · · · + cnT (vn)

for all scalars c1, . . . , cn.
6. If S and T are linear transformations and c is a scalar, then S + T and cT

are linear transformations.
7. If T: V −→ W is a linear transformation and L : W −→ Z is a linear

transformation, then L◦T: V −→ Z is a linear transformation.

Exercise Set 4.1

In Exercises 1–6, determine whether the function
T: !2 → !2 is a linear transformation.

1. T

([
x

y

])
=

[
y

x

]

2. T

([
x

y

])
=

[
x + y

x − y + 2

]

3. T

([
x

y

])
=

[
x

y2

]

4. T

([
x

y

])
=

[
2x − y

x + 3y

]

5. T

([
x

y

])
=

[
x

0

]

6. T

([
x

y

])
=

[
x+y

2
x+y

2

]

In Exercises 7–16, determine whether the function is a
linear transformation between vector spaces.

7. T: ! → !, T (x) = x2

8. T: ! → !, T (x) = −2x

9. T: !2 → !, T

([
x

y

])
= x2 + y2

10. T: !3 → !2,

T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =
[

x

y

]

11. T: !3 → !3,

T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =

⎡

⎣
x + y − z

2xy

x + z + 1

⎤

⎦
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b. Let w =

⎡

⎣
7

−6
−9

⎤

⎦. Determine whether there is

a vector v in !3 such that T (v) = w.

34. Define T: P2 → P2 by

T (p(x)) = p′(x) − p(0)

a. Find all vectors that are mapped to 0.
b. Find two polynomials p(x) and q(x) such that

T (p(x)) = T (q(x)) = 6x − 3.
c. Is T a linear operator?

35. Suppose T1: V → ! and T2: V → ! are linear
transformations. Define T: V → !2 by

T (v) =
[

T1(v)
T2(v)

]

Show that T is a linear transformation.

36. Define T: Mn×n → ! by T (A) = tr(A). Show
that T is a linear transformation.

37. Suppose that B is a fixed n × n matrix. Define
T: Mn×n → Mn×n by T (A) = AB − BA. Show
that T is a linear operator.

38. Define T: ! → ! by T (x) = mx + b. Determine
when T is a linear operator.

39. Define T: C(0)[0, 1] → ! by

T (f ) =
∫ 1

0
f (x) dx

for each function f in C(0)[0, 1].
a. Show that T is a linear operator.
b. Find T (2x2 − x + 3).

40. Suppose that T: V → W is a linear transformation
and T (u) = w. If T (v) = 0, then find T (u+ v).

41. Suppose that T: !n → !m is a linear
transformation and {v,w} is a linearly
independent subset of !n. If {T (v), T (w)} is
linearly dependent, show that T (u) = 0 has a
nontrivial solution.

42. Suppose that T: V → V is a linear operator and
{v1, . . . , vn} is linearly dependent. Show that
{T (v1), . . . , T (vn)} is linearly dependent.

43. Let S = {v1, v2, v3} be a linearly independent
subset of !3. Find a linear operator T: !3 → !3,
such that {T (v1), T (v2), T (v3)} is linearly
dependent.

44. Suppose that T1: V → V and T2: V → V are
linear operators and {v1, . . . , vn} is a basis for V .
If T1(vi ) = T2(vi ), for each i = 1, 2, . . . , n, show
that T1(v) = T2(v) for all v in V .

45. Verify that £(U, V ) is a vector space.

4.2 ßThe Null Space and Range

In Sec. 3.2, we defined the null space of an m × n matrix to be the subspace of !n of
all vectors x with Ax = 0. We also defined the column space of A as the subspace of
!m of all linear combinations of the column vectors of A. In this section we extend
these ideas to linear transformations.

DEFINITION 1 Null Space and Range Let V and W be vector spaces. For a linear transfor-
mation T: V −→ W the null space of T , denoted by N(T ), is defined by

N(T ) = {v ∈ V | T (v) = 0}

The range of T, denoted by R(T ), is defined by

R(T ) = {T (v) | v ∈ V }
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The null space of a linear transformation is then the set of all vectors in V that are
mapped to the zero vector, with the range being the set of all images of the mapping,
as shown in Fig. 1.

V U
T

N(T ) 0

V U
T

R(T )

Figure 1

In Theorem 3 we see that the null space and the range of a linear transformation
are both subspaces.

THEOREM 3 Let V and W be vector spaces and T: V −→ W a linear transformation.

1. The null space of T is a subspace of V .
2. The range of T is a subspace of W .

Proof (1) Let v1 and v2 be in N(T ), so that T (v1) = 0 and T (v2) = 0. If c is a
scalar, then using the linearity of T , we have

T (cv1 + v2) = cT (v1) + T (v2) = c0+ 0 = 0

Thus, cv1 + v2 is in N(T ), and by Theorem 4 of Sec. 3.2, N(T ) is a subspace
of V .
(2) Let w1 and w2 be in R(T ). Then there are vectors v1 and v2 in V such that
T (v1) = w1 and T (v2) = w2. Then for any scalar c,

T (cv1 + v2) = cT (v1) + T (v2) = cw1 + w2

so that cw1 + w2 is in R(T ) and hence R(T ) is a subspace of W .

EXAMPLE 1 Define the linear transformation T: !4 −→ !3 by

T

⎛

⎜⎜⎝

⎡

⎢⎢⎣

a

b

c

d

⎤

⎥⎥⎦

⎞

⎟⎟⎠ =

⎛

⎝

⎡

⎣
a + b

b − c

a + d

⎤

⎦

⎞

⎠

a. Find a basis for the null space of T and its dimension.
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Applying A−1 to w, we obtain
[

0 −1
1 1

] [
v1 + v2

−v1

]
=

[
v1
v2

]
= T −1(w)

THEOREM 11 If V and W are vector spaces of dimension n, then V and W are isomorphic.

Proof By Theorem 10, there are isomorphisms T1: V −→ !n and T2: W −→ !n,
as shown in Fig. 1. Let φ = T −1

2 ◦T1: V −→ W . To show that φ is linear, we first
note that T −1

2 is linear by Proposition 3. Next by Theorem 2 of Sec. 4.1, the
composition T −1

2 ◦T1 is linear. Finally, by Theorem 4 of Sec. A.2, the mapping φ

is one-to-one and onto and is therefore a vector space isomorphism.

V !n

W

φ

T1

T2

φ = T −1
2 ◦T1: V −→ W

Figure 1

EXAMPLE 4 Find an explicit isomorphism from P2 onto the vector space of 2 × 2 symmetric
matrices S2×2.

Solution To use the method given in the proof of Theorem 11, first let

B1 = {1, x, x2} and B2 =
{[

0 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 0

]}

be ordered bases for P2 and S2×2, respectively. Let T1 and T2 be the respective
coordinate maps from P2 and S2×2 into !3. Then

T1(ax2 + bx + c) =

⎡

⎣
c

b

a

⎤

⎦ and T2

([
a b

b c

])
=

⎡

⎣
c

b

a

⎤

⎦
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22. T

([
x

y

])
=

[
−2 3
−1 −1

] [
x

y

]

23. T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =

⎡

⎣
−2 0 1

1 −1 −1
0 1 0

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦

24. T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =

⎡

⎣
2 −1 1

−1 1 −1
0 1 0

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦

In Exercises 25–28, determine whether the matrix
mapping T: V → V is an isomorphism.

25. T

([
x

y

])
=

[
−3 1

1 −3

] [
x

y

]

26. T

([
x

y

])
=

[
−3 1
−3 1

] [
x

y

]

27. T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =

⎡

⎣
0 −1 −1
2 0 2
1 1 −3

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦

28. T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =

⎡

⎣
1 3 0

−1 −2 −3
0 −1 3

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦

29. Show that T: Mn×n → Mn×n defined by

T (A) = At

is an isomorphism.

30. Show that T: P3 → P3 defined by

T (p(x)) = p′′′(x) + p′′(x) + p′(x) + p(x)

is an isomorphism.

31. Let A be an n × n invertible matrix. Show that
T: Mn×n → Mn×n defined by

T (B) = ABA−1

is an isomorphism.

32. Find an isomorphism from M2×2 onto !4.

33. Find an isomorphism from !4 onto P3.

34. Find an isomorphism from M2×2 onto P3.

35. Let

V =

⎧
⎨

⎩

⎡

⎣
x

y

z

⎤

⎦

∣∣∣∣∣∣
x + 2y − z = 0

⎫
⎬

⎭

Find an isomorphism from V onto !2.

36. Let
V =

{[
a b

c −a

]∣∣∣∣ a, b, c ∈ !

}

Find an isomorphism from P2 onto V .

37. Suppose T: !3 → !3 is an isomorphism. Show
that T takes lines through the origin to lines
through the origin and planes through the origin
to planes through the origin.

4.4 ßMatrix Representation of a Linear Transformation

Matrices have played an important role in our study of linear algebra. In this section
we establish the connection between matrices and linear transformations. To illustrate
the idea, recall from Sec. 4.1 that given any m × n matrix A, we can define a linear
transformation T: !n −→ !m by

T (v) = Av

In Example 8 of Sec. 4.1, we showed how a linear transformation T: !3 −→ !2 is
completely determined by the images of the coordinate vectors e1, e2, and e3 of !3.

The key was to recognize that a vector v =

⎡

⎣
v1
v2
v3

⎤

⎦ can be written as

v = v1e1 + v2e2 + v3e3 so that T (v) = v1T (e1) + v2T (e2) + v3T (e3)
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In that example, T was defined so that

T (e1) =
[

1
1

]
, T (e2) =

[
−1

2

]
T (e3) =

[
0
1

]

Now let A be the 2 × 3 matrix whose column vectors are T (e1), T (e2), and T (e3).
Then

T (v) =
[

1 −1 0
1 2 1

]
v = Av

That is, the linear transformation T is given by a matrix product. In general, if
T: !n −→ !m is a linear transformation, then it is possible to write

T (v) = Av

where A is the m × n matrix whose j th column vector is T (ej ) for j = 1, 2, . . . , n.
The matrix A is called the matrix representation of T relative to the standard
bases of !n and !m.

In this section we show that every linear transformation between finite dimensional
vector spaces can be written as a matrix multiplication. Specifically, let V and W be
finite dimensional vector spaces with fixed ordered bases B and B ′, respectively. If
T: V −→ W is a linear transformation, then there exists a matrix A such that

[T (v)]B ′ = A[v]B

In the case for which V = !n, W = !m, and B and B ′ are, respectively, the standard
bases, the last equation is equivalent to

T (v) = Av

as above. We now present the details.
Let V and W be vector spaces with ordered bases B = {v1, v2, . . . , vn} and B ′ =

{w1,w2, . . . ,wm}, respectively, and let T: V −→ W be a linear transformation. Now
let v be any vector in V and let

[v]B =

⎡

⎢⎢⎣

c1
c2
...

cn

⎤

⎥⎥⎦

be the coordinate vector of v relative to the basis B. Thus,

v = c1v1 + c2v2 + · · · + cnvn

Applying T to both sides of this last equation gives

T (v) = T (c1v1 + c2v2 + · · · + cnvn)

= c1T (v1) + c2T (v2) + · · · + cnT (vn)

Note that for each i = 1, 2, . . . , n the vector T (vi ) is in W . Thus, there are unique
scalars aij with 1 ≤ i ≤ m and 1 ≤ j ≤ n such that
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B ′ =
{[

1
0

]
,

[
0
1

]}

v =
[

−1
−2

]

6. T: !3 → !3,

T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =

⎡

⎣
2x − z

−x + y + z

2z

⎤

⎦

B =

⎧
⎨

⎩

⎡

⎣
−1

0
1

⎤

⎦,

⎡

⎣
1
2
0

⎤

⎦,

⎡

⎣
1
2
1

⎤

⎦

⎫
⎬

⎭

B ′ =

⎧
⎨

⎩

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦,

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭

v =

⎡

⎣
1

−1
1

⎤

⎦

7. T: !2 → !2,

T

([
x

y

])
=

[
2x

x + y

]

B =
{[

−1
−2

]
,

[
1
1

]}

B ′ =
{[

3
−2

]
,

[
0

−2

]}

v =
[

−1
−3

]

8. T: !3 → !3,

T

⎛

⎝

⎡

⎣
x

y

z

⎤

⎦

⎞

⎠ =

⎡

⎣
x + z

2y − x

y + z

⎤

⎦

B =

⎧
⎨

⎩

⎡

⎣
−1

1
1

⎤

⎦,

⎡

⎣
−1
−1

1

⎤

⎦,

⎡

⎣
0
1
1

⎤

⎦

⎫
⎬

⎭

B ′ =

⎧
⎨

⎩

⎡

⎣
0
0
1

⎤

⎦,

⎡

⎣
1
0

−1

⎤

⎦,

⎡

⎣
−1
−1

0

⎤

⎦

⎫
⎬

⎭

v =

⎡

⎣
−2

1
3

⎤

⎦

9. T: P2 → P2,

T (ax2 + bx + c) = ax2 + bx + c

B = {1, 1 − x, (1 − x)2}
B ′ = {1, x, x2}
v = x2 − 3x + 3

10. T: P2 → P2,

T (p(x)) = p′(x) + p(x)

B = {1 − x − x2, 1, 1 + x2}
B ′ = {−1 + x, −1 + x + x2, x}
v = 1 − x

11. Let
H =

[
1 0
0 −1

]

and let T be the linear operator on all 2 × 2
matrices with trace 0, defined by

T (A) = AH − HA

B =
{[

1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}

B ′ = B

v =
[

2 1
3 −2

]

12. T: M2×2 → M2×2,

T (A) = 2At + A

B and B ′ the standard basis on M2×2

v =
[

1 3
−1 2

]

13. Let T: !2 → !2 be the linear operator defined by

T

([
x

y

])
=

[
x + 2y

x − y

]

Let B be the standard ordered basis for !2 and B ′

the ordered basis for !2 defined by

B ′ =
{[

1
2

]
,

[
4

−1

]}

a. Find [T ]B .
b. Find [T ]B ′ .
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to show directly that the matrices [T ]B1 and [T ]B2
are similar.

16. Let T: P2 −→ P2 be the linear operator defined
by T (p(x)) = xp′(x) + p′′(x). Find the matrix
representation [T ]B1 relative to the basis
B1 = {1, x, x2} and the matrix representation
[T ]B2 relative to B2 = {1, x, 1 + x2}. Find the
transition matrix P = [I ]B1

B2
, and use Theorem 15

to show directly that the matrices [T ]B1 and [T ]B2
are similar.

17. Show that if A and B are similar matrices and B

and C are similar matrices, then A and C are
similar matrices.

18. Show that if A and B are similar matrices, then
det(A) = det(B).

19. Show that if A and B are similar matrices, then
tr(A) = tr(B).

20. Show that if A and B are similar matrices, then
At and Bt are similar matrices.

21. Show that if A and B are similar matrices, then
An and Bn are similar matrices for each positive
integer n.

22. Show that if A and B are similar matrices and λ

is any scalar, then det(A − λI ) = det(B − λI ).

4.6 ßApplication: Computer Graphics

The rapid development of increasingly more powerful computers has led to the explo-
sive growth of digital media. Computer-generated visual content is ubiquitous, found
in almost every arena from advertising and entertainment to science and medicine.
The branch of computer science known as computer graphics is devoted to the study
of the generation and manipulation of digital images. Computer graphics are based
on displaying two- or three-dimensional objects in two-dimensional space. Images
displayed on a computer screen are stored in memory using data items called pixels,
which is short for picture elements. A single picture can be comprised of millions
of pixels, which collectively determine the image. Each pixel contains informa-
tion on how to color the corresponding point on a computer screen, as shown in
Fig. 1. If an image contains curves or lines, the pixels which describe the object
may be connected by a mathematical formula. The saddle shown in Fig. 1 is an
example.

Figure 1
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Reflection
The reflection of a geometric object through a line produces the mirror image of the
object across the line. The linear operator that reflects a vector through the x axis is
given by

Rx

([
x

y

])
=

[
x

−y

]

A reflection through the y axis is given by

Ry

([
x

y

])
=

[
−x

y

]

and a reflection through the line y = x is given by

Ry=x

([
x

y

])
=

[
y

x

]

The matrix representations, relative to the standard basis B, for each of these are given
by

[Rx ]B =
[

1 0
0 −1

]
[Ry]B =

[
−1 0

0 1

]
[Ry=x]B =

[
0 1
1 0

]

EXAMPLE 3 Perform the following reflections on the triangle T of Fig. 4.

a. Reflection through the x axis.
b. Reflection through the y axis.
c. Reflection through the line y = x.

Solution a. The vertices of the triangle in Fig. 4 are given by

v1 =
[

0
1

]
v2 =

[
2
1

]
v3 =

[
1
3

]

Applying the matrix [Rx ]B to the vertices of the original triangle, we obtain

v′
1 =

[
0

−1

]
v′

2 =
[

2
−1

]
v′

3 =
[

1
−3

]

The image of the triangle is shown in Fig. 9(a).
b. Applying the matrix [Ry ]B to the vertices of the original triangle, we obtain

v′
1 =

[
0
1

]
v′

2 =
[

−2
1

]
v′

3 =
[

−1
3

]

The image of the triangle with this reflection is shown in Fig. 9(b).
c. Finally, applying the matrix [Rx=y]B to the vertices of the original triangle,

we obtain
v′

1 =
[

1
0

]
v′

2 =
[

1
2

]
v′

3 =
[

3
1

]

The image of the triangle is shown in Fig. 9(c).
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given by
Sθ

([
x

y

])
=

[
x cos θ − y sin θ

x sin θ + y cos θ

]

The matrix of Sθ relative to the standard basis B = {e1, e2} for !2 is given by

[Sθ]B =
[

cos θ − sin θ

sin θ cos θ

]

When using homogeneous coordinates, we apply the matrix
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

EXAMPLE 7 Find the image of the triangle of Fig. 4 under a translation by the vector b =[
1

−1

]
, followed by a rotation of 30◦, or π/6 rad, in the counterclockwise

direction.
Solution The matrix for the combined operations is given by

⎡

⎣
cos π

6 − sin π
6 0

sin π
6 cos π

6 0
0 0 1

⎤

⎦

⎡

⎣
1 0 1
0 1 −1
0 0 1

⎤

⎦ =

⎡

⎢⎢⎣

√
3

2 − 1
2 0

1
2

√
3

2 0
0 0 1

⎤

⎥⎥⎦

⎡

⎢⎣
1 0 1
0 1 −1
0 0 1

⎤

⎥⎦

=

⎡

⎢⎢⎣

√
3

2 − 1
2

√
3

2 + 1
2

1
2

√
3

2
1
2 −

√
3

2
0 0 1

⎤

⎥⎥⎦

The vertices of the triangle in homogeneous coordinates are given by

v1 =

⎡

⎣
0
1
1

⎤

⎦ v2 =

⎡

⎣
2
1
1

⎤

⎦ and v3 =

⎡

⎣
1
3
1

⎤

⎦

After applying the above matrix to each of these vectors, we obtain

v′
1 =

⎡

⎢⎣

√
3

2
1
2
1

⎤

⎥⎦ v′
2 =

⎡

⎢⎣

3
√

3
2
3
2
1

⎤

⎥⎦ and v′
3 =

⎡

⎣

√
3 − 1√
3 + 1
1

⎤

⎦
x 

y 

!5

!5

5

5

Figure 13 The resulting triangle is shown in Fig. 13.

Projection

Rendering a picture of a three-dimensional object on a flat computer screen requires
projecting points in 3-space to points in 2-space. We discuss only one of many methods
to project points in !3 to points in !2 that preserve the natural appearance of an object.
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x 

y 

z 

Figure 15

b. Find a 3 × 3 matrix that will rotate the (projected) vertices of the cube by 30◦

and another that will translate the cube by the vector
[

2
1

]
.

Solution a. We can arbitrarily set zd = −1. Then

tan ψ = tan 30◦ ≈ 0.577 = yd

xd
and (tan φ)2 = (tan 26.6◦

)2 ≈ (0.5)2 = x2
d + y2

d

so that
yd = 0.577xd and x2

d + y2
d = 1

4
Solving the last two equations gives xd ≈ 0.433 and yd ≈ 0.25, so that the
direction vector is

vd =

⎡

⎣
0.433
0.25

−1

⎤

⎦

Using the formulas for a projected point given above, we can project each
vertex of the cube into !2. Connecting the images by line segments gives the
picture shown in Fig. 16. The projected points are given in Table 1.

Table 1

Vertex Projected Point

(0,0,1) (0.433, 0.25)

(1,0,1) (1.433, 0.25)

(1,0,0) (1, 0)

(0,0,0) (0, 0)

(0,1,1) (0.433, 1.25)

(1,1,1) (1.433, 1.25)

(1,1,0) (1, 1)

(0,1,0) (0, 1)
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Alternatively, the set

Vλ = {v ∈ !n | Av = λv} = {v ∈ !n | (A − λI )v = 0} = N(A − λI )

Since Vλ is the null space of the matrix A − λI , by Theorem 3 of Sec. 4.2 it is a
subspace of !n.

EXAMPLE 2 Find the eigenvalues and corresponding eigenvectors of

A =
[

2 −12
1 −5

]

Give a description of the eigenspace corresponding to each eigenvalue.

Solution By Theorem 1 to find the eigenvalues, we solve the characteristic equation

det(A − λI ) =
∣∣∣∣

2 − λ −12
1 −5 − λ

∣∣∣∣
= (2 − λ)(−5 − λ) − (1)(−12)

= λ2 + 3λ + 2
= (λ + 1)(λ + 2) = 0

Thus, the eigenvalues are λ1 = −1 and λ2 = −2. To find the eigenvectors, we need
to find all nonzero vectors in the null spaces of A − λ1I and A − λ2I . First, for
λ1 = −1,

A − λ1I = A + I =
[

2 −12
1 −5

]
+

[
1 0
0 1

]
=

[
3 −12
1 −4

]

The null space of A + I is found by row-reducing the augmented matrix
[

3 −12 0
1 −4 0

]
to

[
1 −4 0
0 0 0

]

The solution set for this linear system is given by S =
{[

4t

t

]∣∣∣∣ t ∈ !

}
. Choosing

t = 1, we obtain the eigenvector v1 =
[

4
1

]
. Hence, the eigenspace corresponding

to λ1 = −1 is
Vλ1 =

{
t

[
4
1

]∣∣∣∣ t is any real number
}

For λ2 = −2,
A − λ2I =

[
4 −12
1 −3

]

In a similar way we find that the vector v2 =
[

3
1

]
is an eigenvector corresponding

to λ2 = −2. The corresponding eigenspace is
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THEOREM 3 Let A be an n × n matrix, and let λ1, λ2, . . . , λn be distinct eigenvalues with
corresponding eigenvectors v1, v2, . . . , vn. Then the set {v1, v2, . . . , vn} is linearly
independent.

Proof The proof is by contradiction. Assume that λ1, λ2, . . . , λn are distinct
eigenvalues of A with corresponding eigenvectors v1, v2, . . . , vn, and assume that
the set of eigenvectors is linearly dependent. Then by Theorem 5 of Sec. 2.3,
at least one of the vectors can be written as a linear combination of the others.
Moreover, the eigenvectors can be reordered so that v1, v2, . . . , vm, with m < n,
are linearly independent, but v1, v2, . . . , vm+1 are linearly dependent with vm+1 a
nontrivial linear combination of the first m vectors. Therefore, there are scalars
c1, . . . , cm, not all 0, such that

vm+1 = c1v1 + · · · + cmvm

This is the statement that will result in a contradiction. We multiply the last equation
by A to obtain

Avm+1 = A(c1v1 + · · · + cmvm)

= c1A(v1) + · · · + cmA(vm)

Further, since vi is an eigenvector corresponding to the eigenvalue λi , then Avi =
λivi , and after substitution in the previous equation, we have

λm+1vm+1 = c1λ1v1 + · · · + cmλmvm

Now multiplying both sides of vm+1 = c1v1 + · · · + cmvm by λm+1, we also have

λm+1vm+1 = c1λm+1v1 + · · · + cmλm+1vm

By equating the last two expressions for λm+1vm+1 we obtain

c1λ1v1 + · · · + cmλmvm = c1λm+1v1 + · · · + cmλm+1vm

or equivalently,

c1(λ1 − λm+1)v1 + · · · + cm(λm − λm+1)vm = 0

Since the vectors v1, v2, . . . , vm are linearly independent, the only solution to the
previous equation is the trivial solution, that is,

c1(λ1 − λm+1) = 0 c2(λ2 − λm+1) = 0 . . . cm(λm − λm+1) = 0

Since all the eigenvalues are distinct, we have

λ1 − λm+1 ̸= 0 λ2 − λm+1 ̸= 0 . . . λm − λm+1 ̸= 0

and consequently
c1 = 0 c2 = 0 . . . cm = 0

This contradicts the assumption that the nonzero vector vm+1 is a nontrivial linear
combination of v1, v2, . . . , vm.
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COROLLARY 1 If A is an n × n matrix with n distinct eigenvalues, then A is diagonalizable.

EXAMPLE 4 Show that every 2 × 2 real symmetric matrix is diagonalizable.

Solution Recall that the matrix A is symmetric if and only if A = At . Every 2 × 2 symmetric
matrix has the form

A =
[

a b

b d

]

See Example 5 of Sec. 1.3. The eigenvalues are found by solving the characteristic
equation

det(A − λI ) =
∣∣∣∣

a − λ b

b d − λ

∣∣∣∣ = λ2 − (a + d)λ + ad − b2 = 0

By the quadratic formula, the eigenvalues are

λ = a + d ±
√

(a − d)2 + 4b2

2
Since the discriminant (a − d)2 + 4b2 ≥ 0, the characteristic equation has either one
or two real roots. If (a − d)2 + 4b2 = 0, then (a − d)2 = 0 and b2 = 0, which holds
if and only if a = d and b = 0. Hence, the matrix A is diagonal. If
(a − d)2 + 4b2 > 0, then A has two distinct eigenvalues; so by Corollary 1, the
matrix A is diagonalizable.

By Theorem 2, if A is diagonalizable, then A is similar to a diagonal matrix
whose eigenvalues are the same as the eigenvalues of A. In Theorem 4 we show that
the same can be said about any two similar matrices.

THEOREM 4 Let A and B be similar n × n matrices. Then A and B have the same eigenvalues.

Proof Since A and B are similar matrices, there is an invertible matrix P such
that B = P −1AP . Now

det(B − λI ) = det(P −1AP − λI )

= det(P −1(AP − P (λI )))

= det(P −1(AP − λIP ))

= det(P −1(A − λI )P )
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EXAMPLE 6 Define the linear operator T: !3 −→ !3 by

T

⎛

⎝

⎡

⎣
x1
x2
x3

⎤

⎦

⎞

⎠ =

⎡

⎣
3x1 − x2 + 2x3

2x1 + 2x3
x1 + 3x2

⎤

⎦

Show that T is diagonalizable.

Solution Let B = {e1, e2, e3} be the standard basis for !3. Then the matrix for T relative to
B is

[T ]B =

⎡

⎣
3 −1 2
2 0 2
1 3 0

⎤

⎦

Observe that the eigenvalues of [T ]B are λ1 = −2, λ2 = 4, and λ3 = 1 with cor-
responding eigenvectors, respectively,

v1 =

⎡

⎣
1
1

−2

⎤

⎦ v2 =

⎡

⎣
1
1
1

⎤

⎦ and v3 =

⎡

⎣
−5

4
7

⎤

⎦

Now let B ′ = {v1, v2, v3} and

P =

⎡

⎣
1 1 −5
1 1 4

−2 1 7

⎤

⎦

Then

[T ]B ′ = 1
9

⎡

⎣
−1 4 −3

5 1 3
−1 1 0

⎤

⎦

⎡

⎣
3 −1 2
2 0 2
1 3 0

⎤

⎦

⎡

⎣
1 1 −5
1 1 4

−2 1 7

⎤

⎦ =

⎡

⎣
−2 0 0

0 4 0
0 0 1

⎤

⎦

Fact Summary

Let A be an n × n matrix.

1. If A is diagonalizable, then A = PDP −1 or equivalently D = P −1AP . The
matrix D is a diagonal matrix with diagonal entries the eigenvalues of A.
The matrix P is invertible whose column vectors are the corresponding
eigenvectors.

2. If A is diagonalizable, then the diagonalizing matrix P is not unique. If the
columns of P are permuted, then the diagonal entries of D are permuted in
the same way.

3. The matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

4. If A has n distinct eigenvalues, then A is diagonalizable.
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b. Find the matrix B for T relative to the basis
{x, x − 1, x2}.

c. Show the eigenvalues of A and B are the same.
d. Explain why T is not diagonalizable.

36. Define a vector space V = span{sin x, cos x} and
a linear operator T: V → V by T (f (x)) = f ′(x).
Show that T is diagonalizable.

37. Define a linear operator T: !3 → !3 by

T

⎛

⎝

⎡

⎣
x1
x2
x3

⎤

⎦

⎞

⎠ =

⎡

⎣
2x1 + 2x2 + 2x3
−x1 + 2x2 + x3

x1 − x2

⎤

⎦

Show that T is not diagonalizable.

38. Define a linear operator T: !3 → !3 by

T

⎛

⎝

⎡

⎣
x1
x2
x3

⎤

⎦

⎞

⎠ =

⎡

⎣
4x1 + 2x2 + 4x3
4x1 + 2x2 + 4x3

4x3

⎤

⎦

Show that T is diagonalizable.

39. Let T be a linear operator on a finite dimensional
vector space, A the matrix for T relative to a
basis B1, and B the matrix for T relative to a
basis B2. Show that A is diagonalizable if and
only if B is diagonalizable.

5.3 ßApplication: Systems of Linear Differential
Equations

In Sec. 3.5 we considered only a single differential equation where the solution
involved a single function. However, in many modeling applications, an equation
that involves the derivatives of only one function is not sufficient. It is more likely
that the rate of change of a variable quantity will be linked to other functions outside
itself. This is the fundamental idea behind the notion of a dynamical system. One of
the most familiar examples of this is the predator-prey model. For example, suppose
we wish to create a model to predict the number of foxes and rabbits in some habitat.
The growth rate of the foxes is dependent on not only the number of foxes but also the
number of rabbits in their territory. Likewise, the growth rate of the rabbit population
in part is dependent on their current number, but is obviously mitigated by the number
of foxes in their midst. The mathematical model required to describe this relationship
is a system of differential equations of the form

{
y ′

1(t) = f (t, y1, y2)

y ′
2(t) = g(t, y1, y2)

In this section we consider systems of linear differential equations. Problems such as
predator-prey problems involve systems of nonlinear differential equations.

Uncoupled Systems
At the beginning of Sec. 3.5 we saw that the differential equation given by

y ′ = ay

has the solution y(t) = Ceat , where C = y(0). An extension of this to two dimensions
is the system of differential equations

{
y ′

1 = ay1

y ′
2 = by2
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In Example 2 we describe the solution for a system when the eigenvalues have
the same sign.

EXAMPLE 2 Find the general solution to the system of differential equations
{

y ′
1 = y1 + 3y2

y ′
2 = 2y2

Solution The system of differential equations is given in matrix form by

y′ = Ay =
[

1 3
0 2

]
y

The eigenvalues of A are λ1 = 1 and λ2 = 2 with corresponding eigenvectors

v1 =
[

1
0

]
and v2 =

[
3
1

]

The matrix that diagonalizes A is then

P =
[

1 3
0 1

]
with P −1 =

[
1 −3
0 1

]

The uncoupled system is given by

w′ =
[

1 −3
0 1

] [
1 3
0 2

] [
1 3
0 1

]
w

=
[

1 0
0 2

]
w

with general solution

w(t) =
[

et 0
0 e2t

]
w(0)

Hence, the solution to the original system is given by

y(t) =
[

1 3
0 1

] [
et 0
0 e2t

] [
1 −3
0 1

]
y(0)

=
[

et −3et + 3e2t

0 e2t

]
y(0)

The general solution can also be written in the form

y1(t) =
[
y1(0) − 3y2(0)

]
et + 3y2(0)e2t and y2(t) = y2(0)e2t
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Hence, the solution to the original system is given by

y(t) =
[

−1 1
1 2

] [
e− 3

20 t 0
0 1

] [
− 2

3
1
3

1
3

1
3

]
y(0)

= 1
3

[
2e− 3

20 t + 1 −e− 3
20 t + 1

−2e− 3
20 t + 2 e− 3

20 t + 2

] [
8
0

]

= 8
3

[
2e− 3

20 t + 1
−2e− 3

20 t + 2

]

c. The solution to the system in equation form is given by

y1(t) = 8
3

(
2e− 3

20 t + 1
)

and y2(t) = 8
3

(
−2e− 3

20 t + 2
)

To find the amount of salt in each tank as t goes to infinity, we compute the
limits

lim
t→∞

8
3

(
2e− 3

20 t + 1
)

= 8
3

(0 + 1) = 8
3

and
lim
t→∞

8
3

(
−2e− 3

20 + 2
)

= 8
3

(0 + 2) = 16
3

These values make sense intuitively as we expect that the 8 lb of salt should
eventually be thoroughly mixed, and divided proportionally between the two
tanks in a ratio of 1 : 2.

Exercise Set 5.3

In Exercises 1–6, find the general solution to the
system of differential equations.

1.
{

y ′
1 = −y1 + y2

y ′
2 = − 2y2

2.
{

y ′
1 = −y1 + 2y2

y ′
2 = y1

3.
{

y ′
1 = y1 − 3y2

y ′
2 = −3y1 + y2

4.
{

y ′
1 = y1 − y2

y ′
2 = −y1 + y2

5.

⎧
⎪⎨

⎪⎩

y ′
1 = −4y1 − 3y2 − 3y3

y ′
2 = 2y1 + 3y2 + 2y3

y ′
3 = 4y1 + 2y2 + 3y3

6.

⎧
⎪⎨

⎪⎩

y ′
1 = −3y1 − 4y2 − 4y3

y ′
2 = 7y1 + 11y2 + 13y3

y ′
3 = −5y1 − 8y2 − 10y3

In Exercises 7 and 8, solve the initial-value problem.

7.
{

y ′
1 = −y1 y1(0) = 1 y2(0) = −1

y ′
2 = 2y1 + y2
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For reasons that will soon be clear, we scale v1 (by the reciprocal of the sum of its
components) so that it becomes a probability vector. Observe that this new vector

v̂1 =
[

5
8
3
8

]

is also an eigenvector since it is in the eigenspace Vλ1. Since the 2 × 2 transition
matrix has two distinct eigenvalues, by Corollary 1 of Sec. 5.2, T is diagonalizable
and, by Theorem 2 of Sec. 5.2, can be written as

T = PDP −1

=
[ 5

8 −1
3
8 1

] [
1 0
0 2

10

] [
1 1

− 3
8

5
8

]

By Exercise 27 of Sec. 5.2, the powers of T are given by

T n = PDnP −1 = P

[
1n 0
0

( 2
10

)n

]
P −1

As mentioned above, this gives us an easier way to compute the state vector for
large values of n. Another benefit from this representation is that the matrix Dn

approaches
[

1 0
0 0

]

as n gets large. This suggests that the eigenvector corresponding to λ = 1 is useful in
determining the limiting proportion of sunny days to cloudy days far into the future.

Steady-State Vector
Given an initial state vector v, of interest is the long-run behavior of this vector in a
Markov chain, that is, the tendency of the vector T nv for large n. If for any initial
state vector v there is some vector s such that T nv approaches s, then s is called a
steady-state vector for the Markov process.

In our weather model we saw that the transition matrix T has an eigenvalue λ = 1
and a corresponding probability eigenvector given by

v̂1 =
[

5
8
3
8

]
=

[
0.625
0.375

]
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We claim that this vector is a steady-state vector for the weather model. As verification,
let u be an initial probability vector, say, u =

[
0.4
0.6

]
. We then compute

T 10u =
[

0.6249999954
0.3750000046

]
and T 20u =

[
0.6250000002
0.3750000002

]

which suggests that T nu approaches v̂1. That this is in fact the case is stated in
Theorem 6. Before doing so, we note that a regular transition matrix T is a transition
matrix such that for some n, all the entries of T n are positive.

THEOREM 6 If a Markov chain has a regular stochastic transition matrix T, then there is a
unique probability vector s with T s = s. Moreover, s is the steady-state vector for
any initial probability vector.

EXAMPLE 1 A group insurance plan allows three different options for participants, plan A, B,
or C. Suppose that the percentages of the total number of participants enrolled in
each plan are 25 percent, 30 percent, and 45 percent, respectively. Also, from past
experience assume that participants change plans as shown in the table.

A B C
A 0.75 0.25 0.2
B 0.15 0.45 0.4
C 0.1 0.3 0.4

a. Find the percent of participants enrolled in each plan after 5 years.
b. Find the steady-state vector for the system.

Solution Let T be the matrix given by

T =

⎡

⎣
0.75 0.25 0.2
0.15 0.45 0.4
0.1 0.3 0.4

⎤

⎦

a. The number of participants enrolled in each plan after 5 years is approximated
by the vector

T 5v =

⎡

⎣
0.49776 0.46048 0.45608
0.28464 0.30432 0.30664
0.21760 0.23520 0.23728

⎤

⎦

⎡

⎣
0.25
0.30
0.45

⎤

⎦ =

⎡

⎣
0.47
0.30
0.22

⎤

⎦

so approximately 47 percent will be enrolled in plan A, 30 percent in plan B,
and 22 percent in plan C.

b. The steady-state vector for the system is the probability eigenvector corre-
sponding to the eigenvalue λ = 1, that is,

s =

⎡

⎣
0.48
0.30
0.22

⎤

⎦
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a. Let D be the diagonal matrix

D =

⎡

⎢⎢⎢⎣

λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
. . .

...

0 . . . . . . . . . λn

⎤

⎥⎥⎥⎦

and find eD .

b. Suppose A is diagonalizable and D = P −1AP .
Show that eA = PeDP −1.

c. Use parts (a) and (b) to compute eA for the
matrix

A =
[

6 −1
3 2

]

Chapter 5: Chapter Test

In Exercises 1–40, determine whether the statement is
true or false.

1. The matrix
P =

[
1 1
0 1

]

diagonalizes the matrix

A =
[

−1 1
0 −2

]

2. The matrix
A =

[
−1 1

0 −2

]

is similar to the matrix

D =
[

−1 0
0 −1

]

3. The matrix

A =

⎡

⎣
−1 0 0

0 1 0
−1 −1 1

⎤

⎦

is diagonalizable.

4. The eigenvalues of

A =
[

−1 0
−4 −3

]

are λ1 = −3 and λ2 = −1.

5. The characteristic polynomial of

A =

⎡

⎣
−1 −1 −1

0 0 −1
2 −2 −1

⎤

⎦

is λ3 + 2λ2 + λ − 4.

6. The eigenvectors of

A =
[

−4 0
3 −5

]

are
[

0
1

]
and

[
1
3

]
.

7. The matrix
A =

[
3 −2
2 −1

]

has an eigenvalue λ1 = 1 and Vλ1 has
dimension 1.

8. If

A =

∣∣∣∣∣∣

− 1
2

√
3

2
√

3
2

1
2

∣∣∣∣∣∣
then AAt = I .

9. If A is a 2 × 2 matrix with det(A) < 0, then A

has two real eigenvalues.
10. If A is a 2 × 2 matrix that has two distinct

eigenvalues λ1 and λ2, then tr(A) = λ1 + λ2.

11. If A =
[

a b

b a

]
, then the eigenvalues of A are

λ1 = a + b and λ2 = b − a.

12. For all integers k the matrix A =
[

1 k

1 1

]
has

only one eigenvalue.

13. If A is a 2 × 2 invertible matrix, then A and A−1

have the same eigenvalues.

14. If A is similar to B, then tr(A) = tr(B).

15. The matrix A =
[

1 1
0 1

]
is diagonalizable.
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PROPOSITION 2 Two nonzero vectors u and v in !n are orthogonal if and only if u · v = 0. The
zero vector is orthogonal to every vector in !n.

One consequence of Proposition 2 is that if u and v are orthogonal, then

||u+ v ||2 = (u+ v) · (u+ v) = ||u ||2 + 2u · v+ || v ||2

= ||u ||2 + || v ||2

This is a generalization of the Pythagorean theorem to !n.
Theorem 3 gives several useful properties of the norm in !n.

THEOREM 3 Properties of the Norm in !n Let v be a vector in !n and c a scalar.

1. || v || ≥ 0
2. || v || = 0 if and only if v = 0
3. || cv || = |c| || v ||
4. (Triangle inequality) ||u+ v || ≤ ||u || + || v ||

Proof Parts 1 and 2 follow immediately from Definition 1 and Theorem 1. Part 3
is established in Example 1. To establish part 4, we have

||u+ v ||2 = (u+ v) · (u+ v)
= (u · u) + 2(u · v) + (v · v)
= ||u ||2 + 2(u · v) + || v ||2

≤ ||u ||2 + 2|u · v| + || v ||2

Now, by the Cauchy-Schwartz inequality, |u · v| ≤ ||u || || v ||, so that

|| u+ v ||2 ≤ ||u ||2 + 2 ||u || || v || + || v ||2

= (||u || + || v ||)2

After taking square roots of both sides of this equation, we obtain

||u+ v || ≤ ||u || + || v ||x 

y 

||u |||| v ||

||u+ v ||

|| v ||

Figure 4 Geometrically, part 4 of Theorem 3 confirms our intuition that the shortest distance
between two points is a straight line, as seen in Fig. 4.
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PROPOSITION 3 Let u and v be vectors in !n. Then || u+ v || = ||u || + || v || if and only if the
vectors have the same direction.

Proof First suppose that the vectors have the same direction. Then the angle
between the vectors is 0, so that cos θ = 1 and u · v = ||u || || v ||. Therefore,

||u+ v ||2 = (u+ v) · (u+ v)
= ||u ||2 + 2(u · v) + || v ||2

= ||u ||2 + 2 ||u || || v || + || v ||2

= (||u || + || v ||)2

Taking square roots of both sides of the previous equation gives ||u+ v || =
|| u || + || v ||.

Conversely, suppose that ||u+ v || = ||u || + || v ||. After squaring both sides,
we obtain

||u+ v ||2 = ||u ||2 + 2 ||u || || v || + || v ||2

However, we also have

||u+ v ||2 = (u+ v) · (u+ v) = ||u ||2 + 2u · v+ || v ||2

Equating both expressions for ||u+ v ||2 gives

||u ||2 + 2 ||u || || v || + || v ||2 = || u ||2 + 2u · v+ || v ||2

Simplifying the last equation, we obtain u · v = ||u || || v || and hence
u · v

||u || || v || = 1

Therefore, cos θ = 1, so that θ = 0 and the vectors have the same direction.

Fact Summary

All vectors are in !n.

1. The length of a vector and the distance between two vectors are natural
extensions of the same geometric notions in !2 and !3.

2. The dot product of a vector with itself gives the square of its length and is
0 only when the vector is the zero vector. The dot product of two vectors is
commutative and distributes through vector addition.

3. By using the Cauchy-Schwartz inequality |u · v| ≤ || u || || v ||, the angle
between vectors is defined by

cos θ = u · v
||u || || v ||

4. Two vectors are orthogonal if and only if the dot product of the vectors is 0.
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In Exercises 19–22, let

v1 =

⎡

⎣
1
2

−1

⎤

⎦ v2 =

⎡

⎣
6

−2
2

⎤

⎦

v3 =

⎡

⎣
−1
−2

1

⎤

⎦ v4 =

⎡

⎣
−1/

√
3

1/
√

3
1/

√
3

⎤

⎦

v5 =

⎡

⎣
3

−1
1

⎤

⎦

19. Determine which of the vectors are orthogonal.

20. Determine which of the vectors are in the same
direction.

21. Determine which of the vectors are in the
opposite direction.

22. Determine which of the vectors are unit vectors.
In Exercises 23–28, find the projection of u onto v
given by

w = u · v
v · v v

The vector w is called the orthogonal projection of u
onto v. Sketch the three vectors u, v, and w.

23. u =
[

2
3

]
v =

[
4
0

]

24. u =
[

−2
3

]
v =

[
4
0

]

25. u =
[

4
3

]
v =

[
3
1

]

26. u =

⎡

⎣
5
2
1

⎤

⎦ v =

⎡

⎣
1
0
0

⎤

⎦

27. u =

⎡

⎣
1
0
0

⎤

⎦ v =

⎡

⎣
5
2
1

⎤

⎦

28. u =

⎡

⎣
2
3

−1

⎤

⎦ v =

⎡

⎣
0
2
3

⎤

⎦

29. Let S = {u1, u2, . . . , un} and suppose v ·ui = 0
for each i = 1, . . . , n. Show that v is orthogonal
to every vector in span(S).

30. Let v be a fixed vector in !n and define
S = {u | u · v = 0}. Show that S is a subspace of
!n.

31. Let S = {v1, v2, . . . , vn} be a set of nonzero
vectors which are pairwise orthogonal. That is, if
i ̸= j , then vi · vj = 0. Show that S is linearly
independent.

32. Let A be an n × n invertible matrix. Show that if
i ̸= j , then row vector i of A and column vector
j of A−1 are orthogonal.

33. Show that for all vectors u and v in !n,

||u+ v ||2 + ||u− v ||2

= 2 ||u ||2 + 2 || v ||2

34. a. Find a vector that is orthogonal to every vector
in the plane P : x + 2y − z = 0.

b. Find a matrix A such that the null space N(A)

is the plane x + 2y − z = 0.

35. Suppose that the column vectors of an n × n

matrix A are pairwise orthogonal. Find AtA.

36. Let A be an n × n matrix and u and v vectors in
!n. Show that

u · (Av) = (Atu) · v

37. Let A be an n × n matrix. Show that A is
symmetric if and only if

(Au) · v = u · (Av)
for all u and v in !n. Hint : See Exercise 36.
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and linearly independent. Theorem 5 relates the notions of orthogonality and linear
independence in an inner product space.

THEOREM 5 If S = {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in an inner product
space V , then S is linearly independent.

Proof Since the set S is an orthogonal set of nonzero vectors,
〈
vi , vj

〉
= 0 for i ̸= j and ⟨vi , vi⟩ = || vi ||2 ̸= 0 for all i

Now suppose that
c1v1 + c2v2 + · · · + cnvn = 0

The vectors are linearly independent if and only if the only solution to the previous
equation is the trivial solution c1 = c2 = · · · = cn = 0. Now let vj be an element
of S. Take the inner product on both sides of the previous equation with vj so that
〈
vj , (c1v1 + c2v2 + · · · + cj−1vj−1 + cjvj + cj+1vj+1 + · · · + cnvn)

〉
=

〈
vj , 0

〉

By the linearity of the inner product and the fact that S is orthogonal, this equation
reduces to

cj

〈
vj , vj

〉
=

〈
vj , 0

〉

Now, by Proposition 4 and the fact that
∣∣∣∣ vj

∣∣∣∣ ̸= 0, we have

cj

∣∣∣∣ vj

∣∣∣∣2 = 0 so that cj = 0

Since this holds for each j = 1, . . . , n, then c1 = c2 = · · · = cn = 0 and therefore
S is linearly independent.

COROLLARY 1 If V is an inner product space of dimension n, then any orthogonal set of n nonzero
vectors is a basis for V .

The proof of this corollary is a direct result of Theorem 12 of Sec. 3.3. Theorem
6 provides us with an easy way to find the coordinates of a vector relative to
an orthonormal basis. This property underscores the usefulness and desirability of
orthonormal bases.

THEOREM 6 If B = {v1, v2, . . . , vn} is an ordered orthonormal basis for an inner product space
V and v = c1v1 + c2v2 + · · · + cnvn, then the coordinates of v relative to B are
given by ci = ⟨vi , v⟩ for each i = 1, 2, . . . , n.

Proof Let vi be a vector in B. Taking the inner product on both sides of

v = c1v1 + c2v2 + · · · + ci−1vi−1 + civi + ci+1vi+1 + · · · + cnvn
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To justify this substitution, note that w1 ·w2 = 0; that is, multiplying w2 by a
scalar does not change the fact that it is orthogonal to w1. To find w3, we use the
computation

w3 = u3 − u3 ·w1

w1 ·w1
w1 − u3 ·w2

w2 ·w2
w2

=

⎡

⎢⎢⎣

1
0
0
1

⎤

⎥⎥⎦ −
(

−1
3

)
⎡

⎢⎢⎣

−1
1
1
0

⎤

⎥⎥⎦ − 1
6

⎡

⎢⎢⎣

1
2

−1
0

⎤

⎥⎥⎦ = 1
2

⎡

⎢⎢⎣

1
0
1
2

⎤

⎥⎥⎦

As before we replace w3 with

w3 =

⎡

⎢⎢⎣

1
0
1
2

⎤

⎥⎥⎦

An orthogonal basis for U is then given by

B ′ =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

−1
1
1
0

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

1
2

−1
0

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

1
0
1
2

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

Normalizing each of the vectors of B ′ produces the orthonormal basis

B ′′ =

⎧
⎪⎪⎨

⎪⎪⎩

1√
3

⎡

⎢⎢⎣

−1
1
1
0

⎤

⎥⎥⎦,
1√
6

⎡

⎢⎢⎣

1
2

−1
0

⎤

⎥⎥⎦,
1√
6

⎡

⎢⎢⎣

1
0
1
2

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

Fact Summary

1. Every finite dimensional inner product space has an orthonormal basis.
2. The Gram-Schmidt process is an algorithm to construct an orthonormal

basis from any basis of the vector space.

Exercise Set 6.3

In Exercises 1–8, use the standard inner product on
!n.

a. Find projv u.
b. Find the vector u− projvu and verify this

vector is orthogonal to v.

1. u =
[

−1
2

]
v =

[
−1

1

]

2. u =
[

3
−2

]
v =

[
1

−2

]
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3. u =
[

1
−2

]
v =

[
1
2

]

4. u =
[

1
−1

]
v =

[
−2
−2

]

5. u =

⎡

⎣
−1

3
0

⎤

⎦ v =

⎡

⎣
1

−1
−1

⎤

⎦

6. u =

⎡

⎣
1
0
1

⎤

⎦ v =

⎡

⎣
3
2

−1

⎤

⎦

7. u =

⎡

⎣
1

−1
−1

⎤

⎦ v =

⎡

⎣
0
0
1

⎤

⎦

8. u =

⎡

⎣
3
2
0

⎤

⎦ v =

⎡

⎣
1
0

−1

⎤

⎦

In Exercises 9–12, use the inner product on P2
defined by

⟨p, q⟩ =
∫ 1

0
p(x)q(x) dx

a. Find projqp.
b. Find the vector p − projqp and verify that this

vector is orthogonal to q.

9. p(x) = x2 − x + 1, q(x) = 3x − 1

10. p(x) = x2 − x + 1, q(x) = 2x − 1

11. p(x) = 2x2 + 1, q(x) = x2 − 1

12. p(x) = −4x + 1, q(x) = x

In Exercises 13–16, use the standard inner product on
!n. Use the basis B and the Gram-Schmidt process to
find an orthonormal basis for !n.

13. B =
{[

1
−1

]
,

[
1

−2

]}

14. B =
{[

2
−1

]
,

[
3

−2

]}

15. B =

⎧
⎨

⎩

⎡

⎣
1
0
1

⎤

⎦,

⎡

⎣
0

−1
1

⎤

⎦,

⎡

⎣
0

−1
−1

⎤

⎦

⎫
⎬

⎭

16. B =

⎧
⎨

⎩

⎡

⎣
1
0

−1

⎤

⎦,

⎡

⎣
0
1
1

⎤

⎦,

⎡

⎣
1
1
1

⎤

⎦

⎫
⎬

⎭

In Exercises 17 and 18, use the inner product on P2
defined by

⟨p, q⟩ =
∫ 1

0
p(x)q(x) dx

Use the given basis B and the Gram-Schmidt process
to find an orthonormal basis for P2.

17. B = {x − 1, x + 2, x2}

18. B = {x2 − x, x, 2x + 1}
In Exercises 19–22, use the standard inner product on
!n to find an orthonormal basis for the subspace
span(W).

19. W =

⎧
⎨

⎩

⎡

⎣
1
1
1

⎤

⎦,

⎡

⎣
1

−1
−1

⎤

⎦

⎫
⎬

⎭

20. W =

⎧
⎨

⎩

⎡

⎣
0
1
1

⎤

⎦,

⎡

⎣
−1
−1

1

⎤

⎦

⎫
⎬

⎭

21. W =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

−1
−2

0
1

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

−1
3

−1
−1

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

1
−2

0
1

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

22. W =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

1
−2

0
0

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

−1
3
1

−1

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

0
−1

0
−1

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

In Exercises 23 and 24, use the inner product on P3
defined by

⟨p, q⟩ =
∫ 1

0
p(x)q(x) dx

to find an orthonormal basis for the subspace
span(W).

23. W = {x, 2x + 1}

24. W = {1, x + 2, x3 − 1}

Preview from Notesale.co.uk

Page 372 of 509



Confirming Pages

6.4 Orthogonal Complements 359

Solution a. Let

w1 =

⎡

⎢⎢⎣

1
0

−1
−1

⎤

⎥⎥⎦ and w2 =

⎡

⎢⎢⎣

0
1

−1
1

⎤

⎥⎥⎦

Notice that w1 and w2 are orthogonal and hence by Theorem 5 of Sec. 6.2 are
linearly independent. Thus, {w1,w2} is a basis for W .

b. Now by Proposition 5, the vector

v =

⎡

⎢⎢⎣

x

y

z

w

⎤

⎥⎥⎦

is in W⊥ if and only if v ·w1 = 0 and v ·w2 = 0. This requirement leads to
the linear system {

x − z − w = 0
y − z + w = 0

The two-parameter solution set for this linear system is

S =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

s + t

s − t

s

t

⎤

⎥⎥⎦

∣∣∣∣∣∣∣∣
s, t ∈ !

⎫
⎪⎪⎬

⎪⎪⎭

The solution to this system, in vector form, provides a description of the
orthogonal complement of W and is given by

W⊥ = span

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

1
1
1
0

⎤

⎥⎥⎦,

⎡

⎢⎢⎣

1
−1

0
1

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

Let

v1 =

⎡

⎢⎢⎣

1
1
1
0

⎤

⎥⎥⎦ and v2 =

⎡

⎢⎢⎣

1
−1

0
1

⎤

⎥⎥⎦

Since v1 and v2 are orthogonal, by Theorem 5 of Sec. 6.2 they are linearly
independent and hence a basis for W⊥.

c. Let B be the set of vectors B = {w1,w2, v1, v2}. Since B is an orthogonal
set of four vectors in !4, then by Corollary 1 of Sec. 6.2, B is a basis for
!4. Dividing each of these vectors by its length, we obtain the (ordered)
orthonormal basis for !4 given by
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22. W = span
{[

1
2

]}
v =

[
1
1

]

23. W = span
{[

3
−1

]}
v =

[
0
1

]

24. W = span

⎧
⎨

⎩

⎡

⎣
1
1
0

⎤

⎦

⎫
⎬

⎭

v =

⎡

⎣
1
1
1

⎤

⎦

25. W = span

⎧
⎨

⎩

⎡

⎣
1
1

−1

⎤

⎦,

⎡

⎣
−1

2
4

⎤

⎦

⎫
⎬

⎭

v =

⎡

⎣
2
1
1

⎤

⎦

26. Show that if V is an inner product space, then
V ⊥ = {0} and {0}⊥ = V.

27. Show that if W1 and W2 are finite dimensional
subspaces of an inner product space and
W1 ⊂ W2, then W⊥

2 ⊂ W⊥
1 .

28. Let V = C(0)[−1, 1] with the inner product

⟨f, g⟩ =
∫ 1

−1
f (x)g(x) dx

and W = {f ∈ V | f (−x) = f (x)}.
a. Show that W is a subspace of V.

b. Show W⊥ = {f ∈ V | f (−x) = −f (x)}.

c. Verify that W ∩ W⊥ = {0}.
d. Let g(x) = 1

2 [f (x) + f (−x)] and
h(x) = 1

2 [f (x) − f (−x)]. Verify
g(−x) = g(x) and h(−x) = −h(x), so every
f can be written as the sum of a function in W

and a function in W⊥.

29. Let V = M2×2 with the inner product

⟨A, B⟩ = tr(BtA)

Let W = {A ∈ V | A is symmetric}.
a. Show that

W⊥ = {A ∈ V | A is skew symmetric}

b. Show that every A in V can be written as the
sum of matrices from W and W⊥.

30. In !2 with the standard inner product, the
transformation that sends a vector to the
orthogonal projection onto a subspace W is a

linear transformation. Let W = span
{[

2
1

]}
.

a. Find the matrix representation P relative to the
standard basis for the orthogonal projection of
!2 onto W.

b. Let v =
[

1
1

]
. Find projWv and verify the

result is the same by applying the matrix P

found in part (a).
c. Show P 2 = P.

31. If W is a finite dimensional subspace of an inner
product space, show that (W⊥)⊥ = W.

6.5 ßApplication: Least Squares Approximation

There are many applications in mathematics and science where an exact solution to
a problem cannot be found, but an approximate solution exists that is sufficient to
satisfy the demands of the application. Consider the problem of finding the equation
of a line going through the points (1, 2), (2, 1), and (3, 3). Observe from Fig. 1 that
this problem has no solution as the three points are noncollinear.

This leads to the problem of finding the line that is the best fit for these three
points based on some criteria for measuring goodness of fit. There are different ways
of solving this new problem. One way, which uses calculus, is based on the idea
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1. Find the eigenvalues and corresponding eigenvectors of A.

2. Since A is diagonalizable, there are n linearly independent eigenvectors. If nec-
essary, use the Gram-Schmidt process to find an orthonormal set of eigenvectors.

3. Form the orthogonal matrix P with column vectors determined in Step 2.
4. The matrix P −1AP = P tAP = D is a diagonal matrix.

EXAMPLE 3 Let

A =

⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦

Find an orthogonal matrix P such that P −1AP is a diagonal matrix.

Solution The characteristic equation for A is given by

det(A − λI ) = −λ3 + 3λ + 2 = −(λ − 2)(λ + 1)2 = 0

Thus, the eigenvalues are λ1 = −1 and λ2 = 2. The corresponding eigenspaces are

Vλ1 = span

⎧
⎨

⎩

⎡

⎣
−1

1
0

⎤

⎦,

⎡

⎣
−1

0
1

⎤

⎦

⎫
⎬

⎭ and Vλ2 = span

⎧
⎨

⎩

⎡

⎣
1
1
1

⎤

⎦

⎫
⎬

⎭

Let B be the set of vectors

B = {v1, v2, v3} =

⎧
⎨

⎩

⎡

⎣
1
1
1

⎤

⎦,

⎡

⎣
−1

1
0

⎤

⎦,

⎡

⎣
−1

0
1

⎤

⎦

⎫
⎬

⎭

Since B is a linearly independent set of three vectors, by Theorem 2 of Sec. 5.2,
A is diagonalizable. To find an orthogonal matrix P which diagonalizes A, we use
the Gram-Schmidt process on B. This was done in Example 3 of Sec. 6.3, yielding
the orthonormal basis

B ′ =

⎧
⎨

⎩
1√
3

⎡

⎣
1
1
1

⎤

⎦,
1√
2

⎡

⎣
−1

1
0

⎤

⎦,
1√
6

⎡

⎣
−1
−1

2

⎤

⎦

⎫
⎬

⎭

Now let P be the matrix given by

P =

⎡

⎢⎢⎢⎣

√
3

3 −
√

2
2 −

√
6

6
√

3
3

√
2

2 −
√

6
6

√
3

3 0
√

6
3

⎤

⎥⎥⎥⎦

Observe that P is an orthogonal matrix with P −1 = P t . Morevover,

P tAP =

⎡

⎣
2 0 0
0 −1 0
0 0 −1

⎤

⎦
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Since the eigenvalues have opposite sign, the conic section C is a hyperbola. To
describe the hyperbola, we first diagonalize A. Using the unit eigenvectors, the
orthogonal matrix that diagonalizes A is

P = 1√
5

[
1 −2
2 1

]
with

[
−2 0

0 3

]
= P tAP

Making the substitution x = P x′ in the equation xtAx+ btx+ f = 0 gives

[x ′ y ′]
[

−2 0
0 3

] [
x ′

y ′

]
+ [−4 − 8]

[ 1√
5

−2√
5

2√
5

1√
5

][
x ′

y ′

]
+ 14 = 0

After simplification of this equation we obtain

−2(x ′)2 − 4
√

5x ′ + 3(y ′)2 + 14 = 0

that is,
−2[(x ′)2 + 2

√
5(x ′)] + 3(y ′)2 + 14 = 0

After completing the square on x ′, we obtain

−2[(x ′)2 + 2
√

5(x ′) + 5] + 3(y ′)2 = −14 − 10

that is,
(x′ +

√
5)2

12
− (y ′)2

8
= 1

This last equation describes a hyperbola with x ′ as the major axis. An additional
transformation translating the x ′ axis allows us to simplify the result even further.
If we let

x ′′ = x ′ +
√

5 and y ′′ = y ′

then the equation now becomes

(x ′′)2

12
− (y ′′)2

8
= 1

The graph is shown in Fig. 3.

x 

y 

!10

!10

10

10

x' 

y' 

!
10

!
10

10

10

Figure 3
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x 

y 

2

2

!2

!2

σ1
σ2

y 
x 

z 

x 

y Multiplication by
A

Figure 1

For certain matrices, some of the singular values may be zero. As an illustration,

consider the matrix A =
[

1 2
3 6

]
. For this matrix, we have col(A) = span

[
1
3

]
.

The reduced row echelon form for A is the matrix
[

1 2
0 0

]
, which has only one

pivot column. Hence, the rank of A is equal to 1. The eigenvalues of AtA are λ1 = 50
and λ2 = 0 with corresponding unit eigenvectors

v1 =
[

1/
√

5
2/

√
5

]
and v2 =

[
−2/

√
5

1/
√

5

]

The singular values of A are given by σ1 = 5
√

2 and σ2 = 0. Now, multiplying v1
and v2 by A gives

Av1 =
[ √

5
3
√

5

]
and Av2 =

[
0
0

]

Observe that Av1 spans the one dimensional column space of A. In this case, the
linear transformation T : !2 −→ !2 defined by T (x) = Ax maps the unit circle to the
line segment {

t

[ √
5

3
√

5

]∣∣∣∣ − 1 ≤ t ≤ 1
}

as shown in Fig. 2.

Singular Value Decomposition (SVD)
We now turn our attention to the problem of finding a singular value decomposition
of an m × n matrix A.

THEOREM 18 SVD Let A be an m × n matrix of rank r , with r nonzero singular values
σ1, σ2, . . . , σr . Then there exists an m × n matrix !, an m × m orthogonal matrix
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x 

y 

2 x 

y 

T

Figure 2

U, and an n × n orthogonal matrix V such that

A = U!V t

Proof Since AtA is an n × n symmetric matrix, by Theorem 14 of Sec. 6.6 there
is an orthonormal basis {v1, . . . , vn} of !n, consisting of eigenvectors of AtA. Now
by Theorem 17, {Av1, . . . ,Avr} is an orthogonal basis for col(A). Let {u1, . . . , ur}
be the orthonormal basis for col(A), given by

ui = 1
|| Avi ||Avi = 1

σi
Avi for i = 1, . . . , r

Next, extend {u1, . . . , ur} to the orthonormal basis {u1, . . . , um} of !m. We can
now define the orthogonal matrices V and U , using the vectors {v1, . . . , vn} and
{u1, . . . , um}, respectively, as column vectors, so that

V = [ v1 v2 · · · vn ] and U = [ u1 u2 · · · um ]

Moreover, since Avi = σiui , for i = 1, . . . , r, then

AV =

⎡

⎣ Av1 · · · Avr 0 · · · 0

⎤

⎦ =

⎡

⎣ σ1u1 · · · σrur 0 · · · 0

⎤

⎦

Now let ! be the m × n matrix given by

! =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

0 · · · · · · σr 0 . . . 0
0 . . . . . . 0 0 . . . 0
...

...
...

...

0 . . . . . . 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Preview from Notesale.co.uk

Page 416 of 509



Confirming Pages

398 Chapter 6 Inner Product Spaces

Then

U! =

⎡

⎣ u1 u2 · · · um

⎤

⎦!

=

⎡

⎣ σ1u1 · · · σrur 0 · · · 0

⎤

⎦

= AV

Since V is orthogonal, then V t = V −1, and hence, A = U!V t .

EXAMPLE 3 Find a singular value decomposition of the matrix

A =

⎡

⎣
−1 1
−1 1

2 −2

⎤

⎦

Solution A procedure for finding an SVD of A is included in the proof of Theorem 18. We
present the solution as a sequence of steps.
Step 1. Find the eigenvalues and corresponding orthonormal eigenvectors of AtA

and define the matrix V .
The eigenvalues of the matrix

AtA =
[

6 −6
−6 6

]

in decreasing order are given by λ1 = 12 and λ2 = 0. The corresponding orthonor-
mal eigenvectors are

v1 =
[

−1/
√

2
1/

√
2

]
and v2 =

[
1/

√
2

1/
√

2

]

Since the column vectors of V are given by the orthonormal eigenvectors of AtA,

the matrix V is given by

V =
[

−1/
√

2 1/
√

2
1/

√
2 1/

√
2

]

Step 2. Find the singular values of A and define the matrix !.
The singular values of A are the square roots of the eigenvalues of AtA, so that

σ1 =
√

λ1 = 2
√

3 and σ2 =
√

λ2 = 0

Since ! has the same dimensions as A, then ! is 3 × 2. In this case,

! =

⎡

⎣
2
√

3 0
0 0
0 0

⎤

⎦
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singular values) has the SVD A = U!V t . That is,

A = U!V t =

⎡

⎣ σ1u1 · · · σrur 0 · · · 0

⎤

⎦V t

= σ1u1vt
1 + σ2u2vt

2 + · · · + σrurvt
r

= σ1

(
1
σ1

Av1

)
vt

1 + σ2

(
1
σ2

Av2

)
vt

2 + · · · + σr

(
1
σr

Avr

)
vt

r

= (Av1)vt
1 + (Av2)vt

2 + · · · + (Avr )vt
r

Observe that each of the terms Avivt
i is a matrix of rank 1. Consequently, the sum

of the first k terms of the last equation is a matrix of rank k ≤ r, which gives an
approximation to the matrix A. This factorization of a matrix has application in many
areas.

As an illustration of the utility of such an approximation, suppose that A is the
356 × 500 matrix, where each entry is a numeric value for a pixel, of the gray scale
image of the surface of Mars shown in Fig. 4. A simple algorithm using the method
above for approximating the image stored in the matrix A is given by the following:

Figure 4 1. Find the eigenvectors of the n × n symmetric matrix AtA.

2. Compute Avi , for i = 1, . . . , k, with k ≤ r = rank(A).

3. The matrix (Av1)vt
1 + (Av2)vt

2 + · · · + (Avk)vt
k is an approximation of the orig-

inal image.

To transmit the kth approximation of the image and reproduce it back on earth
requires the eigenvectors v1, . . . , vk of AtA and the vectors Av1, . . . , Avk.

The images in Fig. 5 are produced using matrices of ranks 1, 4, 10, 40, 80, and
100, respectively.

Figure 5

The storage requirements for each of the images are given in Table 1.
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read as “Q implies P ” or “P is necessary for Q.” For example, let P be the statement
Mary lives in Iowa and Q the statement that Mary lives in the United States. Then
certainly P !⇒ Q is a theorem since every resident of Iowa is a resident of the
United States. But Q !⇒ P is not a theorem since, for example, if Mary is a
resident of California, then she is a resident of the United States but not a resident of
Iowa. So the statement Q !⇒ P is not always true given that Q is true. In terms
of sets, if A is the set of residents of Iowa and B is the set of residents of the United
States, then the statement P is Mary is in A and Q is Mary is in B. Then Mary is in A
implies Mary is in B. It is also clear that if Mary is in B\A, then Mary is in B does
not imply that Mary is in A.

A statement that is equivalent to the theorem P !⇒ Q is the contrapositive
statement ∼Q !⇒ ∼P , that is, not Q implies not P. In the example above, if Mary is
not a resident of the United States, then Mary is not a resident of Iowa. An equivalent
formulation of the statement, in the terminology of sets, is that if Mary /∈ B, then it
implies Mary /∈ A.

There are other statements in mathematics that require proof. Lemmas are pre-
liminary results used to prove theorems, propositions are results not as important as
theorems, and corollaries are special cases of a theorem. A statement that is not yet
proven is called a conjecture. One of the most famous conjectures is the celebrated
Riemann hypothesis. A single counterexample is enough to refute a false conjec-
ture. For example, the statement All lions have green eyes is rendered invalid by the
discovery of a single blue-eyed lion.

In this section we briefly introduce three main types of proof. A fourth type,
called mathematical induction, is discussed in Sec. A.4.

Direct Argument
In a direct argument, a sequence of logical steps links the hypotheses P to the
conclusion Q. Example 1 provides an illustration of this technique.

EXAMPLE 1 Prove that if p and q are odd integers, then p + q is an even integer.

Solution To prove this statement with a direct argument, we assume that p and q are odd
integers. Then there are integers m and n such that

p = 2m + 1 and q = 2n + 1

Adding p and q gives

p + q = 2m + 1+ 2n + 1
= 2(m + n) + 2
= 2(m + n + 1)

Since p + q is a multiple of 2, it is an even integer.
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Since for every natural number n ≥ 1 it is also the case that n + 1 ≥ 2, we have

(n + 1)! ≥ (n + 1)2n−1 ≥ 2 · 2n−1 = 2n

Consequently, the statement n! ≥ 2n−1 is true for every natural number n.

EXAMPLE 4 For any natural number n, find the sum of the odd natural numbers from 1 to
2n − 1.

Solution The first five cases are given in Table 3.

Table 3

n 2n − 1 1+ 3+ · · · + (2n − 1)
1 1 1

2 3 1 + 3 = 4

3 5 1 + 3 + 5 = 9

4 7 1 + 3 + 5 + 7 = 16

5 9 1 + 3 + 5 + 7 + 9 = 25

The data in Table 3 suggest that for each n ≥ 1,

1 + 3 + 5 + 7 + · · · + (2n − 1) = n2

Starting with the case for n = 1, we see that the left-hand side is 1 and the
expression on the right is 12 = 1. Hence, the statement holds when n = 1. Next,
we assume that 1 + 3 + 5 + · · · + (2n − 1) = n2. For the next case when the index
is n + 1, we consider the sum

1 + 3 + 5 + · · · + (2n − 1)+[2(n + 1)−1] =1 + 3 + 5 + · · · + (2n − 1) + (2n + 1)

Using the inductive hypothesis, we get

1 + 3 + 5 + · · · + (2n − 1)︸ ︷︷ ︸
n2

+[2(n + 1) − 1] = n2 + (2n + 1)

= n2 + 2n + 1

= (n + 1)2

Therefore, by induction the statement holds for all natural numbers.
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d.

25. a. [I ]B2
B1

=

⎡

⎣
−1 −1 0

2 2 −1
0 −1 1

⎤

⎦

b. [2u1 − 2u2 + u3]B2 = [I ]B2
B1

⎡

⎣
2

−3
1

⎤

⎦ =

⎡

⎣
1

−3
4

⎤

⎦

Section 3.5
1. a. y1 = e2x , y2 = e3x

b. W [y1, y2](x ) =
∣∣∣∣∣
e2x e3x

2e2x 3e3x

∣∣∣∣∣ = e5x > 0 for all x .

c. y(x ) = C1e2x + C2e3x

3. a. y1 = e−2x , y2 = xe−2x

b. W [y1, y2](x ) =
∣∣∣∣∣

e−2x xe−2x

−2e−2x e−2x − 2xe−2x

∣∣∣∣∣ =

e−4x > 0 for all x .
c. y(x ) = C1e−2x + C2xe−2x

5. y(x ) = ex + 2xex

7. a. yc(x ) = C1e3x + C2ex

b. a = 1, b = 3, c = 4
9. y(x ) = 1

4 cos (8x)

Review Exercises Chapter 3
1. k ̸= 69
3. a. Since S is closed under vector addition and scalar

multiplication, S is a subspace of M2×2.
b. Yes, let a = 3, b = −2, c = 0.

c. B =
{[

1 1
0 1

]
,
[

−1 0
1 0

]
,
[

0 0
1 −1

]}

d. The matrix
[

0 1
2 1

]
is not in S .

5. a. The set T is a basis since it is a linearly independent
set of three vectors in the three-dimensional vector
space V .

b. The set W is not a basis for V since it is not linearly
independent.

7. Since v1 can be written as

v1 =
(

−c2

c1

)
v2 +

(
−c3

c1

)
v3 + · · · +

(
−cn
c1

)
vn

then
V = span{v2, v3, . . . , vn }

9. a. The set B = {u, v} is a basis for !2 since it is
linearly independent. To see this, consider

au+ bv = 0

Now take the dot product of both sides with first u,
then v, to show that a = b = 0.

b. If [w]B =
[

α

β

]
, then

α =

∣∣∣∣
x v1
y v2

∣∣∣∣
∣∣∣∣
u1 v1
u2 v2

∣∣∣∣
= xv2 − yv1

u1v2 − v1u2

and

β =

∣∣∣∣
u1 x
u2 y

∣∣∣∣
∣∣∣∣
u1 v1
u2 v2

∣∣∣∣
= yu1 − xu2

u1v2 − v1u2
.

Chapter Test: Chapter 3

1. F 2. T
3. F 4. F
5. T 6. F
7. F 8. F
9. T 10. T
11. T 12. T
13. T 14. T
15. T 16. F
17. F 18. F
19. T 20. T
21. T 22. T
23. T 24. T
25. T 26. F
27. T 28. T
29. T 30. F
31. T 32. F
33. T 34. F
35. T
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e. [Tn ]B =

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦
n

9. Since T 2 − T + I = 0,T − T 2 = I . Then

(T ◦ (I − T ))(v) = T ((I − T )(v)) = T (v− T (v))

= T (v) − T 2(v) = I (v) = v

Chapter Test: Chapter 4

1. F 2. F
3. T 4. T
5. T 6. F
7. F 8. F
9. T 10. F
11. T 12. F
13. T 14. T
15. T 16. T
17. T 18. T
19. T 20. T
21. F 22. F
23. T 24. F
25. T 26. F
27. F 28. T
29. F 30. T
31. F 32. F
33. T 34. F
35. F 36. T
37. T 38. T
39. F 40. T

Chapter 5

Section 5.1

1. λ = 3

3. λ = 0

5. λ = 1

7. a. λ2 + 5λ = 0

b. λ1 = 0, λ2 = −5

c. v1 =
[

1
1

]
, v2 =

[
−2

3

]

d. [
−2 2

3 −3

] [
1
1

]
=

[
0
0

]
= 0

[
1
1

]
;

[
−2 2

3 −3

] [
−2

3

]
=

[
10

−15

]
= −5

[
−2

3

]

9. a. (λ − 1)2 = 0
b. λ1 = 1

c. v1 =
[

1
0

]

d. [
1 −2
0 1

] [
1
0

]
=

[
1
0

]
= 1

[
1
0

]

11. a. (λ + 1)2(λ − 1) = 0
b. λ1 = −1, λ2 = 1

c. v1 =

⎡

⎣
1
0
0

⎤

⎦, v2 =

⎡

⎣
1
2
2

⎤

⎦

d. ⎡

⎣
−1 0 1

0 1 0
0 2 −1

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦ =

⎡

⎣
−1

0
0

⎤

⎦ = −1

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
−1 0 1

0 1 0
0 2 −1

⎤

⎦

⎡

⎣
1
2
2

⎤

⎦ =

⎡

⎣
1
2
2

⎤

⎦ = 1

⎡

⎣
1
2
2

⎤

⎦

13. a. (λ − 2)(λ − 1)2 = 0
b. λ1 = 2, λ2 = 1

c. v1 =

⎡

⎣
1
0
0

⎤

⎦, v2 =

⎡

⎣
−3

1
1

⎤

⎦

d. ⎡

⎣
2 1 2
0 2 −1
0 1 0

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦ =

⎡

⎣
2
0
0

⎤

⎦ = 2

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
2 1 2
0 2 −1
0 1 0

⎤

⎦

⎡

⎣
−3

1
1

⎤

⎦ =

⎡

⎣
−3

1
1

⎤

⎦ = 1

⎡

⎣
−3

1
1

⎤

⎦

15. a. (λ + 1)(λ − 2)(λ + 2)(λ − 4) = 0
b. λ1 = −1, λ2 = 2, λ3 = −2, λ4 = 4

c. v1 =

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦, v2 =

⎡

⎢⎢⎣

0
1
0
0

⎤

⎥⎥⎦, v3 =

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦,

v4 =

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦
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39. Since A and B are matrix representations for the same
linear operator, they are similar. Let A = Q−1BQ . The
matrix A is diagonalizable if and only if D = P−1AP
for some invertible matrix P and diagonal matrix D .
Then

D = P−1(Q−1BQ)P = (QP)−1B(QP)

so B is diagonalizable. The proof of the converse is
identical.

Section 5.3
1. y1(t ) = [y1(0) + y2(0)]e−t − y2(0)e−2t

y2(t ) = y2(0)e−2t

3. y1(t ) = 1
2

[y1(0) − y2(0)]e4t

+ 1
2

[y1(0) + y2(0)]e−2t

y2(t ) = 1
2

[−y1(0) + y2(0)]e4t

+ 1
2

[y1(0) + y2(0)]e−2t

5. y1(t ) = [2y1(0) + y2(0) + y3(0)]e−t

+ [−y1(0) − y2(0) − y3(0)]e2t

y2(t ) = [−2y1(0) − y2(0) − 2y3(0)]et

+ 2[y1(0) + y2(0) + y3(0)]e2t

y3(t ) = [−2y1(0) − y2(0) − y3(0)]e−t

+ [2y1(0) + y2(0) + 2y3(0)]et

7. y1(t ) = e−t , y2(t ) = −e−t

9. a. y ′
1(t ) = − 1

60 y1 + 1
120 y2,

y ′
2(t ) = 1

60y1 − 1
120y2

y1(0) = 12, y2(0) = 0

b. y1(t ) = 4 + 8e− 1
40 t , y2(t ) = 8 − 8e− 1

40 t

c. limt→∞ y1(t ) = 4, limt→∞ y2(t ) = 8
The 12 lb of salt will be evenly distributed in a ratio
of 1:2 between the two tanks.

Section 5.4

1. a. T =
[

0.85 0.08
0.15 0.92

]

b. T 10
[

0.7
0.3

]
≈

[
0.37
0.63

]

c.
[

0.35
0.65

]

3. T =

⎡

⎣
0.5 0.4 0.1
0.4 0.4 0.2
0.1 0.2 0.7

⎤

⎦

T 3

⎡

⎣
0
1
0

⎤

⎦ ≈

⎡

⎣
0.36
0.35
0.29

⎤

⎦

T 10

⎡

⎣
0
1
0

⎤

⎦ ≈

⎡

⎣
0.33
0.33
0.33

⎤

⎦

5. T =

⎡

⎣
0.5 0 0
0.5 0.75 0
0 0.25 1

⎤

⎦

The steady-state probability vector is

⎡

⎣
0
0
1

⎤

⎦, and

hence the disease will not be eradicated.

7. a. T =

⎡

⎢⎢⎣

0.33 0.25 0.17 0.25
0.25 0.33 0.25 0.17
0.17 0.25 0.33 0.25
0.25 0.17 0.25 0.33

⎤

⎥⎥⎦

b. T

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0.5(0.16)n + 0.25
0.25

−0.5(0.16)n + 0.25
0.25

⎤

⎥⎥⎦

c.

⎡

⎢⎢⎣

0.25
0.25
0.25
0.25

⎤

⎥⎥⎦

9. Eigenvalues of T : λ1 = −q + p + 1, λ2 = 1, with

corresponding eigenvectors
[

−1
1

]
and

[
q/p

1

]
.

The steady-state probability vector is

1
1 + q/p

[
q/p

1

]
=

[
q

p+q
p

p+q

]
.

Review Exercises Chapter 5

1. a.
[
a b
b a

] [
1
1

]
=

[
a + b
a + b

]

= (a + b)
[

1
1

]

b. λ1 = a + b, λ2 = a − b

c. v1 =
[

1
1

]
, v2 =

[
−1

1

]
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17.

x 

y 

!5

!5

5

5

19.

x 

y 

!5

!5

5

5

21. (A ∩ B) ∩ C = {5} = A ∩ (B ∩ C )
23. A ∩ (B ∪ C ) = {1, 2, 5, 7} = (A ∩ B) ∪ (A ∩ C )
25. A\(B ∪ C ) = {3, 9, 11} = (A\B) ∩ (A\C )

Section A.2
1. Since for each first coordinate there is a unique second

coordinate, f is a function.
3. Since there is no x such that f (x ) = 14, the function is

not onto. The range of f is the set {−2, −1, 3, 9, 11}.
5. f −1({−2}) = {1, 4}
7. Since f is not one-to-one, f does not have an inverse.
9. {(1, −2), (2, −1), (3, 3), (4, 5), (5, 9), (6, 11)}
11. f (A ∪ B) = f ((−3, 7)) = [0, 49)

f (A) ∪ f (B) = [0, 25] ∪ [0, 49] = [0, 49]
13. f (A ∩ B) = f ({0}) = {0}

f (A) ∩ f (B) = [0, 4] ∩ [0, 4] = [0, 4]
Therefore, f (A ∩ B) ⊂ f (A) ∩ f (B), but
f (A ∩ B) ̸= f (A) ∩ f (B).

15. f −1(x ) = x−b
a

17. If n is odd, then f (n)(x ) = −x + c. If n is even, then
f (n)(x ) = x .

19. a. To show that f is one-to-one, we have

e2x1−1 = e2x2−1

⇔ 2x1 − 1 = 2x2 − 1
⇔ x1 = x2

b. Since the exponential function is always positive,
f is not onto !.

c. Define g : ! → (0, ∞) by g(x ) = e2x−1.
d. g−1(x ) = 1

2 (1 + ln x ).
21. a. To show that f is one-to-one, we have 2n1 = 2n2 if

and only if n1 = n2.
b. Since every image is an even number, the range of f

is a proper subset of ".
c. f −1(E ) = "; f −1(O) = φ

23. a. f (A) = {2k + 1 | k ∈ #}
b. f (B) = {2k + 1 | k ∈ #}
c. f −1({0}) = {(m, n) | n = −2m}
d. f −1(E ) = {(m, n) | n is even}
e. f −1(O) = {(m, n) | n is odd}
f. Since f ((1, −2)) = 0 = f ((0, 0)), then f is not

one-to-one.
g. If z ∈ #, let m = 0 and n = z , so that f (m, n) = z .

Section A.3
1. If the side is x , then h2 = x2 + x2 = 2x2, so

h =
√

2x .

3. If the side is x , then the height is h =
√

3
2 x , so the area

is A = 1
2x

√
3

2 x =
√

3
4 x

2.

5. If a divides b, there is some k such that ak = b; and if
b divides c, there is some ℓ such that bℓ = c. Then
c = bℓ = (ak )ℓ = (kℓ)a, so a divides c.

7. If n is odd, there is some k such that n = 2k + 1. Then
n2 = (2k + 1)2 = 2(2k2 + k ) + 1, so n2 is odd.

9. If b = a + 1, then (a + b)2 = (2a + 1)2 =
2(2a2 + 2a) +1, so (a + b)2 is odd.

11. Let m = 2 and n = 3. Then m2 + n2 = 13, which is
not divisible by 4.

13. Contrapositive: Suppose n is even, so there is some k
such that n = 2k . Then n2 = 4k2, so n2 is even.

15. Contrapositive: Suppose p = q . Then√pq =
√
p2 = p = (p + q)/2.

17. Contrapositive: Suppose x > 0. If ϵ = x/2 > 0, then
x > ϵ.

19. Contradiction: Suppose 3√2 = p/q such that p and q
have no common factors. Then 2q3 = p3, so p3 is even
and hence p is even. This gives that q is also even,
which contradicts the assumption that p and q have no
common factors.

21. If 7xy ≤ 3x2 + 2y2, then 3x2 − 7xy + 2y2 =
(3x − y)(x − 2y) ≥ 0. There are two cases: either both
factors are greater than or equal to 0, or both are less
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Base case: n = 1 : 2 = 1(2)
Inductive hypothesis: Assume the summation formula
holds for the natural number n .
Consider

2 + 4 + 6 + · · · + 2n + 2(n + 1)
= n(n + 1) + 2(n + 1)
= (n + 1)(n + 2)

13. Base case: n = 5 : 32 = 25 > 25 = 52

Inductive hypothesis: Assume 2n > n2 holds for the
natural number n .
Consider 2n+1 = 2(2n ) > 2n2. But since 2n2−
(n + 1)2 = n2 − 2n − 1 = (n − 1)2 − 2 > 0, for all
n ≥ 5, we have 2n+1 > (n + 1)2.

15. Base case: n = 1 : 12 + 1 = 2, which is divisible by 2.
Inductive hypothesis: Assume n2 + n is divisible by 2.
Consider (n + 1)2 + (n + 1) = n2 + n + 2n + 2. By the
inductive hypothesis, n2 + n is divisible by 2, so since
both terms on the right are divisible by 2, then
(n + 1)2 + (n + 1) is divisible by 2. Alternatively,
observe that n2 + n = n(n + 1), which is the product of
consecutive integers and is therefore even.

17. Base case: n = 1 : 1 = r−1
r−1

Inductive hypothesis: Assume the formula holds for the
natural number n .
Consider

1 + r + r2 + · · · + rn−1 + rn

= rn − 1
r − 1

+ rn

= rn − 1 + rn (r − 1)
r − 1

= rn+1 − 1
r − 1

19. Base case: n = 2 : A ∩ (B1 ∪ B2) = (A ∩ B1) ∪ (A ∩ B2),
by Theorem 1 of Sec. A.1
Inductive hypothesis: Assume the formula holds for the
natural number n.
Consider

A∩(B1 ∪ B2 ∪ · · · ∪ Bn ∪ Bn+1)
= A ∩ [(B1 ∪ B2 ∪ · · · ∪ Bn ) ∪ Bn+1]
= [A ∩ (B1 ∪ B2 ∪ · · · ∪ Bn )] ∪ (A ∩ Bn+1)
= (A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩ Bn ) ∪ (A ∩ Bn+1)

21. (
n
r

)
= n!
r!(n − r)!

= n!
(n − r)!(n − (n − r))!

=
(

n
n − r

)

23. By the binomial theorem,

2n = (1 + 1)n =
n∑

k=0

(
n
k

)
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Gram-Schmidt process
examples of, 349–352
explanation of, 344, 347–348, 394
geometric interpretation of,

348–349
Graphics operations in !2

reflection, 260, 261
reversing, 261–262
rotation, 264–265
scaling and shearing, 256–259
translation, 262–264

Graphs
of conic sections, 61
of functions, 416

H
Hamming, Richard, 127
Hamming’s code, 127, 129
Homogeneous coordinates, 262–264
Homogeneous linear systems,

49–51, 113
Horizontal line test, 419
Horizontal scaling, 256, 257
Horizontal shear, 258
Hypothesis

explanation of, 424
inductive, 430

I
Identity matrix, 39
Images

explanation of, 415, 418
inverse, 416, 418

Imaginary part, complex
numbers, 134

Inconsistent linear systems
explanation of, 2, 10
reduced matrix for, 21–22

Independence, linear. See Linear
independence

Inequality, Cauchy-Schwartz, 326–327
Infinite dimensional vector space, 165
Initial point, vector, 95
Initial probability vectors, 275
Initial-value problems,

186, 192–193
Injective mapping. See One-to-one mapping
Injective functions, 419
Inner product

examples of, 334–336

explanation of, 333
that is not dot product, 335

Inner product spaces
diagonalization of symmetric matrices

and, 377–383
explanation of, 333–334
facts about, 340
least squares approximation and,

366–375
orthogonal complements and, 355–364
orthogonal sets and, 338–340
orthonormal bases and, 342–352
properties of norm in, 336–337
quadratic forms and, 385–391
singular value decomposition and,

392–403
subspaces of, 355

Input-output matrix, 83
Integers, set of, 409
Internal demand, 83
Intersection, of sets, 410, 411
Inverse functions

explanation of, 418–420
unique nature of, 421

Inverse images, 416, 418
Inverse of elementary matrix, 71–72
Inverse of square matrix

definition of, 40
explanation of, 40–45
facts about, 45

Inverse transformations, 230–231
Invertible functions, 418–420
Invertible matrix

elementary matrices and, 72
explanation of, 41, 54
inverse of product of, 44–45
square, 60–61

Isomorphisms
definition of, 229
explanation of, 226
inverse and, 230–231
linear transformations as,

229–231
one-to-one and onto mappings

and, 226–230
vector space, 232–233

K
Kepler, Johannes, 61
Kirchhoff’s laws, 88
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Markov chains
applications of, 310–314
explanation of, 275–276

Markov process, 310
Mathematical induction

base case, 430
binomial coefficients and binomial

theorem and, 435–438
examples of, 431–435
inductive hypothesis, 430
introduction to, 429–430
principle of, 430–431

Matrices
addition of, 27–29
augmented, 15–17, 22, 23
check, 128
coefficient, 15
condition number of, 403
definition of, 14
determinants of, 54–65
diagonal, 56
discussion of, 14–15
echelon form of, 17–21
elementary, 69–72
finding singular value decomposition

of, 398–402
identity, 39
input-output, 83
inverse of product of invertible, 44–45
inverse of square, 39–45
linear independence of, 114
linear transformations and, 202–203,

221–222, 235–245
LU factorization of, 69, 72–75
minors and cofactors of, 56
nullity of, 221–223
null space of, 152–153
orthogonal, 381–382
permutation, 76–77
positive definite, 354
positive semidefinite, 354
rank of, 222
scalar multiplication, 27
singular values of, 393–396
stochastic, 275, 311, 314
subspaces and, 362
symmetric, 36
that commute, 32, 33
transition, 177–182, 275, 276,

311–313

transpose of, 35–36
triangular, 15, 56–57, 283
vector spaces of, 130

Matrix addition, 27–29
Matrix algebra

addition and scalar multiplication,
27–29

explanation of, 26–27
facts about, 36–37
matrix multiplication, 29–35
symmetric matrix, 36
transpose of matrix, 35–36

Matrix equations, 48–51
Matrix form, of linear systems, 48
Matrix multiplication

definition of, 32
explanation of, 29–35, 210
linear combinations and, 107
linear transformations between finite

dimensional vector spaces and,
236–237

properties of, 35
to write linear systems in terms of

matrices and vectors, 48–51
Members, of sets, 409
Minors, of matrices, 56
Multiplication. See Matrix multiplication;

Scalar multiplication,
Multiplicative identity, 39
Multivariate calculus, 322

N
Natural numbers. See also Mathematical

induction,
set of, 409
statements involving,

429–434
Network flow application,

79–81
Newton, Isaac, 61
Nilpotent, 299
Noninvertible matrix, 41
Normal equation, least squares solution

to, 369–370
Nullity, of matrices, 221–223
Null sets, 410
Null space,

of linear transformations, 214–221
of matrices, 152–153, 221

Nutrition application, 81–82
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matrix representation relative to, 235–237
polynomials of, 163

Standard position, of vectors, 95
State vectors, Markov chains and, 311–312
Steady-state vectors

explanation of, 276
Markov chain and, 313–314

Stochastic matrix, 275, 311, 314
Subsets, 410, 412
Subspaces

closure criteria for, 144
definition of, 140
examples of, 142–143
explanation of, 140–142
facts about, 153
four fundamental, 401
of inner product spaces, 355–360,

362
null space and column space of matrix

and, 152–153
span of set of vectors and, 146–152
trivial, 142
of vector spaces, 140, 145, 146

Substitution
back, 4
forward, 68–69

Superposition principle, 188–189
Surjective functions, 420
Surjective mapping. See Onto mapping,
Symmetric matrix

diagonalization of,
377–383

explanation of, 36
Syndrome vectors , 128
Systems of linear differential equations

diagonalization and, 302–309
explanation of, 300
to model concentration of salt in

interconnected tanks,
307–309

phase plane and, 301–302
uncoupled, 300–301

Systems of linear equations. See
Linear systems

T
Terminal point, vector, 95
Theorems

converse of, 424–425
explanation of, 424

Tower of Hanoi puzzle,
429–430

Trace, of square matrices,
142–143

Trajectories, 301–302
Transformation, 199–200. See also Linear

transformations
Transition matrix

diagonalizing the, 312–313
example of, 275, 276
explanation of, 177–180
inverse of, 181–182
Markov chains and,

311–312
Translation, 262–264
Transpose, of matrices, 35–36
Triangular form

of linear systems, 4, 6–7, 10
matrices in, 15

Triangular matrix
determinant of, 57, 58
eigenvalues of, 283
explanation of, 56–57

Trigonometric polynomials, 373–374
Trivial solution, to homogeneous systems,

49, 50
Trivial subspaces, 142

U
Uncoupled systems, 300–301
Uniform scaling, 257
Union, of sets, 410
Unit vectors, 325
Universal quantifiers, 427
Universal set, 410
Upper triangular matrix

examples of, 57
explanation of, 56, 68, 74

V
Vector addition, 95–99, 129
Vector form

of linear systems, 106–107
of solution to linear systems, 48–50

Vectors
addition and scalar multiplication of,

95–99
algebraic properties of, 97–98
angle between, 327–330
applications for, 94
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