Chapter 6 – Microbial Growth and Nutrition

- 1. Describe the role of carbon, hydrogen, oxygen, nitrogen, trace elements, and vitamins in microbial growth.
 - Carbon is used as an energy source for most organisms.
 - A **hydrogen** source is needed to conduct redox reactions.
 - **Nitrogen** is a component in proteins and nucleotides.
 - Oxygen is needed to survive, while obligate anaerobes cannot process oxygen.
 - Trace elements are those elements that are required in small quantities.
 - Vitamins are known as growth factors and can also act as cofactors.
- 2. Compare the four basic categories of microorganisms based on their carbon and energy sources

	Energy source		
	Light (<i>photo-)</i>	Chemical compounds (chemo-)	
Carbon dioxide (auto-)	Photoautotrophs Plants, algae, and cyanobacteria use H ₂ O to reduce CO ₂ , producing O ₂ as a by-product Green sulfur bacteria and purple sulfur bacteria do not use H ₂ O nor produce O ₂	Chemoautotrophs • Hydrogen, sulfur, and nitrifying bacteria, some archaea	
Organic compounds (hetero-)	Photoheterotrophs • Green nonsulfur bacteria and purple nonsulfur bacteria, some archaea	Chemoheterotrophs Aerobic respiration: most animals, fungi, and protozoa, and many bacteria Anaerobic respiration: some animals, protozoa, bacteria, and archaea Fermentation: some bacteria ea sy and archaea	sale.co.u

- 3. Distinguish aerobes, anaerobes a rott lerant anaerobes, accultative anaerobes, and microaerophiles.
 - Anaero es cannot be exposed to x g h compounds, while aerobes require oxygen for surviva.
 - Aerotolerant anaerobes do not use aerobic metabolism, but can be exposed to oxygen.
 - **Microaerophiles** are the organisms that require 2-10% of oxygen but cannot tolerate any more.
 - **Facultative anaerobes** utilize anaerobic respiration or fermentation, in order to survive without oxygen.
- 4. Explain how oxygen can be fatal to organisms, and how organisms protect themselves from toxic forms of oxygen
 - Oxygen can be fatal due to its reactive forms, it is a great oxidizing agent and steals electrons.
 - Organisms can protect themselves from these forms of oxygen through detoxifying them with enzymes. Things like carotenoids, superoxide dismutase (aerobic enzyme).
- 5. Describe nitrogen fixation and discuss its importance.
 - Nitrogen Fixation: Process in which nitrogen (N₂) is reduced to ammonia (NH₃).
 - Nitrogen fixation is essential for life because it provides nitrogen in a useable form for other organisms.