# 12. Contrast the regulation of an inducible operon with that of a repressible operon. Give an example of each.

- Inducible:
  - o Regulatory gene constantly transcribed making **lac operon** generally inactive.
  - o E. Coli takes in lactose whenever available, converts it to allolactose.
  - Allolactose is an inducer that inactivates the repressor, thus lac operon genes are free and active
  - Lac operon then codes genes for lactose catabolism only when there is a demand by lactose
- Repressible: Repressor genes, that inhibit amino acid synthesis, are usually inactive
  - O When tryptophan in environment is...
    - i. Available, it activates repressor gene and stops the production of tryptophan
    - ii. Unavailable, the repressor gene is inactive and E. Coli synthesizes its own tryptophan

## 13. Define mutation. Define point mutation and describe three types.

- A mutation is a change in the nucleotide base sequence(s).
- **Point mutation**: single nucleotide base is affected.

# 14. List three effects of point mutations. Describe frame-shift mutations.

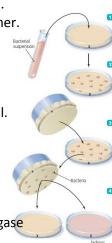
- Silent: Redundancy in codons allow for reduction of error. No hange
- Missense: A single nucleotide change causes that the specific amino acid.
- Nonsense: A single nucleotide change cause change from amino acid codon into STOP codon
- Frameshifts involve it strang or deleting an uced the to shift the sequence of codons.

## 15. Distributed in its properties of the properties of the control of the complex of the complex

**lonizing**: X-rays and gamma rays energize electrons to break free and attack other atoms.

- Non-ionizing: UV light causes adjacent pyrimidines (C,T,U) to covalently bond to each other.
  - This formation is called pyrimidine dimers.

#### 16. Are most mutations advantageous or deleterious?


- Mostly deleterious, because they cause non-functional proteins or abrupt transcription.
  - o If cells cannot metabolize, they die and these mutation disappear from gene pool.
- Mutations can be advantageous as they could help with survival, thus contribute to evolution.

#### 17. Describe the so-called light repair and dark repair mechanisms of DNA repair.

- **DNA photolyase** is an enzyme activated by visible light to break dimers.
- Repair enzymes cut damaged DNA, then reconnected with DNA polymerase I and DNA ligase (occurs in either light or dark)

### 18. Contrast positive selection and negative selection approaches to identifying bacterial mutants

- **Positive selection**: selecting a mutant by eliminating the normal phenotypes.
  - o Example: isolating penicillin-resistant bacteria by spreading in penicillin
- Negative selection: indirect method of selecting auxotrophs from normal phenotypes
  - Auxotrophs = mutant with differing nutritional requirements than normal

