- **Eosinophils**: Often, they secrete antimicrobial chemicals to kill worms.
 - \circ Eosinophils have been observed to utilize mitochondrial DNA as an antimicrobial agent.
- Natural Killer Lymphocytes (only one cannot undergo phagocytosis; the other two can)

 Works by secreting toxins onto the surfaces of virally infected cells and tumors.
- Neutrophils
 - \circ Enzymes can make superoxide radical O₂, hydrogen peroxide, hypochlorite, and nitric oxide.
 - They can also generate a neutrophil extracellular trap (NET) to capture gram+ and gram- bacteria. Antimicrobial peptides then kill the bacteria.
- 10. Define Toll-like receptors and describe their action in relation to pathogen-associated molecular patterns.
 - (TLRs) are proteins in the membranes of phagocytic cells that act as an early warning system, triggering the body's responses to any molecule *shared by viruses or bacteria but absent in human*. Pathogen exclusive molecules are referred to as **pathogen-associated molecular patterns** (PAMPs).
- 11. Explain the roles of interferons in innate immunity.
 - Interferons are proteins released by host cells to nonspecifically prevent the spread of viral infections.
 - The subgroups Alpha (α) and beta (β) are present early in an infection as the innate immune system.
 - Alpha and beta interferons bind to neighboring uninfected cells. The binding of interferons produces antiviral proteins (AVPs), which remain inactive until a virus attempts to infect the cell.

12. Describe the complement system, including its three activation pathways. You don't need to know every single molecule in the classical pathway, just the key features: what triggers it, how it kills microbas.

- The **complement system** is a set of proteins that initially act as opponing and bomotactic factors and indirectly trigger inflammation and fever. The result of full compared activation is lysis of foreign cells.
- Complement proteins react with one another in which the product of each reaction becomes an enzyme that catalyzes the next reaction many times one
- Classical Pathway
 - Activated by 61 hezyrie when it binds to all an body-antigen complex.
- Alternative Pathway

• Activated by the cleavage of C3 enzyme into C3a and C3b. Then C3b binds to the cell wall or microbial surface. [The cell dies in the exact same way as classical.]

- Lectin Pathway
 - \circ Involves lectins, chemicals that bind to specific sugar subunits of polysaccharides.

13. Discuss the process and benefits of inflammation.

- The benefits of inflammation are **increased dilation** of blood vessels, **attraction of immune** cells, and beginning of **wound repair**.
- A signaling system alerts body of injury.
- There is increased vasodilation in injured tissues in response to Bradykinin and Histamine. • Blood brings more phagocytes, oxygen and nutrients.
- Increasing heat and redness is given off by the increased blood flow. Escaping fluid causes swelling.
- Pain is experienced as nerve endings are stimulated.

14. Explain the benefits of fever in fighting infection.

- Enhances the effects of interferons
- Inhibits the growth of some microorganisms
- Enhances the performance of phagocytes,
- Enhances the activity of immune cells and the process of tissue repair.