- o **Lipids:** Diverse class of organic molecules that includes **fats, oils,** waxes, and steroids. They are hydrophobic meaning they are not water-soluble. Lipids consist of a **glycerol** (Alcohol head) with **fatty** acid tails
 - **Saturated:** Solid at room temperature, come from animals, and straight due to the sing bonded Carbon molecules.
 - **Unsaturated:** Liquid at room temperature, come from plants, and is kinked due to a double bond.
 - **Steroids:** Lipids with 4 fused rings that act differently than other lipids.
 - Ex: Testosterone
 - **Functions of Lipids:**
 - **Energy Storage:** Lipids release calories (units of energy) when burned.
 - **Structural:** Phospholipid layers make up the cellular membranes in animal cells.
 - **Endocrine:** Some lipids act as hormones.
 - **Phospholipids:** Modified lipids that contain a hydrophysic head (phosphate/glycerol) with hydrophobic tans (buty acids).
- o **Proteins:** Complex macromolecules that call Qut.
 - Growth/Repair
 - Cell signal 🚺 🔾
 - Reputation: Hormones line in ulin regulate blood sugar
 - Enzymatic activity: Catalyzing chemical reactions
 - Movemen: Actin/myosin are protein fibers that regular muscle contraction.
- Preview **Polymers** or **polypeptides**, consists of **amino acids**, which are joined by **peptide bonds**.
 - Dipeptides: Molecule consisting of two amino acids.
 - Amino acids consist of a carboxyl group, amine group, and an R group.
 - Amino acids differ because of their R group.
 - **Conformation:**
 - **Primary:** Linear sequence of amino acids.
 - o Ex: Insulin
 - **Secondary:** The addition of hydrogen bonding. It creates a coiled shape (alpha helix/beta pleated sheet)
 - **Tertiary:** Creates an intricate 3D shape that determines specificity.
 - **Quaternary:** Structure that consists of several polypeptide chains.
 - Ex: globular proteins (hemoglobin)

- **Pathways:** Metabolic serious that each serve a purpose.
- Enzymes act as catalytic proteins that speed up reactions by lowering the energy of activation, or the amount of energy that is needed to start a reaction.
 - Enzymes are globular proteins that exhibit tertiary structure.
 - Induced-fit model: An enzyme is induced when a substrate enters it.
 - This forms the **enzyme-substrate complex**. They take on the name of their substrate with a suffix "ase."
 - Competitive Inhibition: Substrate "imposters" fight for enzymes.
 - **Allosteric:** When enzymes change shape to alter their function.
 - **Noncompetitive Inhibitors/Allosteric Regulators:** Bind to another part of enzyme to change its shape, stopping function.

The Cell:

- Theory of Endosymbiosis: Eukaryotic cells came about when free-living mitochondria and chloroplasts joined together in a larger cell
- All cells contain protective membranes, cytosol, ribo one, and DNA material.

	 Eukaryotes and Prokary tell at two different types of cells. 		
	Eukaryotes	Prokaryotes	
	Con an distant organal	No internal membranes; no nuclear	
D	e (drain distant organal)	membrane, E.R, mitochondria,	
		vacuoles, (etc.)	
	DNA wrapped into chromosomes	Circular, naked DNA	
	Ribosomes are larger	Ribosomes are very small, simple	
	Metabolism is aerobic	Metabolism in anaerobic or aerobic	
	Cytoskeleton	No cytoskeleton	
	Cells are large (Animal/Plant cells)	Cells are small (Bacteria)	

• Structure & Function:

- o "Function dictates form"
 - The different shape of cells helps in their functions.
 - Ex: Nerve cells (transport of signals) are long
 - Ex: Fat cells are rounded and large
- o Why are cells so small?