LOGICAl OPEIAtOrS.....uuuueeeeeeneennnnennsssnnss 32

BitWiSE OPEIatorscciiiiieeeriiiiiiiiiinnniiiiiiiitensssiiietiisesnsssisssiisssssssssssssssssnssssssssssssssnsssssssssssssnnnssssssssssnnnnns 34
ASSIZNMENT OPEIATOrSciiiiiieeeiiiiiiiiiireiiiiiiiieennsiiiestitesnssssssssitesnnssssssssssssnnssssssssssssnnnsssssssssssnnnnssssssssans 37
Misc Operators > SizeOf & tEINANYcccceiiiiiiiiiiiiiiiiiiiiiisiissiisss 40
OPerators Prece@d@ncCe iN C....ccciiiiiiiiiiiiiiiiiiiiisiiss 41
10. DECISION MAKING ...cooiiiiriiirititee sttt e e s e s e seierer e e e e s s s e esaseaene s e s e sesesnsnenenesesesesensnnsenenens 45
L3 1 7= 44 =T S 46
if...€1S€ SEATEMENT ...ueeeieeiictec s anes 48
if...else if...else STateMENtccoiviiiiiiiiiiie e s 49
Nested if STAtEMENTScoiviiiiiiiiiiic s aan e 51
SWItCh StatemMENT.....eeiieiiitecc s s e s anes 53
Nested sSWitCh STateMENTScoiveiiiiiiiiiiec e g e s an e e 55

LI TR 0 < T=1 - o N C@,\) 57

10, LOOPS oo N@"esa\ 58

for Loop .. [e\N 5 ... 61
"Bre™ T EE0e

(1 L3 e T o U NS TRPTNN 63
NESTEU LOOPS coeeeeeeniiiiiiieiinniiiiiiitennsseeesteseennssssssssseeesnnssssssssssssnnssssssssssssnnnsssssssssssnnnsssssssssssnnnnssssssssssnnnnns 65
LOOP CoNtrol STAatEMENTSccoiiiiiieeeciiiiiieeieesrccer e ereeesee s s e seenasssssessesesnnssssssssssesnnnssssssssessnnnnsssssssesennnnes 67
break StatemMeENtcciiiiieee e 68
CONLINUE STAtEMENT ..ccoiiiiiiiiiiiiiiiiiiiiiiittt sttt sserre e se s ssssseee s sessssssssseeessessssssssnaesssssssssssnnans 70
F=0] o Y = =T = o 1 S 72
The INfiNIte LOOP cccevieiiieiiieeieiieeeeieeeeeeeeeeeeeeeesessessnsssnsssnssnnnnns 74

12, FUNCTIONS ..ttt siren e s s es e seen s e sesane s e s e semanesssmnnenesensnenesessnsnesssansnenesns 76
DefiNiNG @ FUNCHIONcuueeeeieiiieiisssnnes 76
FUNCLion Declarationseeeeeiiiiiiiiiinieieiiiiiieeree e ass e sss e s aann e e 77

iv

g eutoriaispoint

LEARNINEG

(01| 110 ¥=3 T8 211 4 T 4 o JR R 78

FUNCHION AFBUMEBNTS....iiiiieeeiiiiiiiiienniiiiiiitennsssiisssiisesnsssssssssisssssssssssssssssnssssssssssssssnsssssssssssssnnnssssssssssnnnnns 79
CAll DY VAIUEccccccccccscssssss s ssss s s s s s s s s s s sssnnnnnnnnns 80
Call Y REFEIrENCEuueiiiiiiiiiiicnnnnsnssnssssississssss st s s s s s ssnss 81
13 SCOPE RULES ...ttt ettt ettt e e e e e s e st e e e e e e e e se s e aeneeeaenesananenenenanens 84
LI Yok 1IN =« 1= 84
Global Variables........ueeeeiiiiiiiiiiiiiiiieernn s aaane e 85
oY LI T T 0 =T =T 86
Initializing Local and GIobal Variablesiieriiirccccccrcccrccccscsrssssss s sssssssssssssssssssssssssnnnes 87
L4, ARRAYS Lttt ettt et e e ettt et e e s e st et e e e e e e st n et e e e e e e e st nrreneaeaeaeeananrraneneeens 89
DECIAIING ATTAYS...uuuueeeeeeennnnnnnnnsnsssnnnnns 89

Arrays in Detailcccvceeeeerreeeeeeneeeeccsseereeesneeeeenn N@t .. 91
Multidimensional Arrays "(O ‘l86 ... 92

Two-dimensionalANdV¥sl..... 8.2 i P O ... 92
?tTi@V/O\Dlmension?lage .. 93
ccessing TWo-DimensionaBArray EI@MENTS........uviiiei it e e e rrar e e s 93
Passing Arrays t0 FUNCLIONS ... 94
Return Array from @ FUNCLIONc..eiiieiiec ettt et e et e e tre e e et e e e e ate e e eentaee e saaaaaeensbeeeennns 96
(ol oL (=T o (o T T Y o - VPSSP 99

L5, POINTERS ...ttt seber e e e e s s s et e e e e e e e s e s e ab e e e eeeesesesananrreneneeesssasansnennns 101
WHhat are POINEEIS?uuueeeiiiiiiiiiiiieeeiiiiiniisinneeississsssssseesssnsssssssssss 101
HOW 10 USE POINEEIS?...iiiiieriiiiiiiiinneeniiiississsnsnesssissssssssssessssssssssssssessssssssssssssesssssssssssnssssssssssssssnnsenss 102
NULL POINTEIS aeuuviuiiiiiiiiiiiiiiiiiiiiiiiisiisssnes 103
o]0 (=T 3 [T 011 - 1 PP 104
o] o =T o g1 Y 4 1= 4 (ol ST 104
INCreMENTING @ POINTEI ... 105

\"/

w' tut ori Ispoint

L EASYLEARNING

C Programming

Installation on Mac OS

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode
development environment from Apple's web site and follow the simple
installation instructions. Once you have Xcode setup, you will be able to use GNU
compiler for C/C++.

Xcode is currently available at developer.apple.com/technologies/tools/.

Installation on Windows

To install GCC on Windows, you need to install MinGW. To install MinGW, go to
the MinGW homepage, www.mingw.org, and follow the link to the MinGW
download page. Download the latest version of the MinGW installation program,
which should be named MinGW-<version>.exe.

While installing MinGW, at a minimum, you must install gcc-core, gcc-g++,
binutils, and the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment
variable, so that you can specify these tools on the command line by their simple
names.

After the installation is complete, you will be able to run gcc, ﬁ;—,*\‘&anlib,
dlltool, and several other GNU tools from the Windows C\ a@ %

9 Ytutorialspoint

SIMPLYEASYLEARNINEG

5. DATATYPES

Data types in C refer to an extensive system used for declaring variables or
functions of different types. The type of a variable determines how much space
it occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows:

S.N. Types and Description

1 Basic Types:

They are arithmetic types and are further classified into: (a) integer
types and (b) floating-point types.

2 Enumerated types:
They are again arithmetic types and they are used to d bles
that can only assign certain discrete mteger Yee ughout the
program.

NO
’ Thgge\‘é\lﬂr ‘SO“?%Q “| l 5| ble.
Pe padf

4 Derived types:

They include (a) Pointer types, (b) Array types, (c) Structure types, (d)
Union types, and (e) Function types.

The array types and structure types are referred collectively as the aggregate
types. The type of a function specifies the type of the function's return value. We
will see the basic types in the following section, whereas other types will be
covered in the upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their
storage sizes and value ranges:

11

' tutorialspoint

SIMPLYEASYLEARNINEG

7. CONSTANTS AND LITERALS

Constants refer to fixed values that the program may not alter during its
execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a
floating constant, a character constant, or a string literal. There are enumeration
constants as well.

Constants are treated just like regular variables except that their values cannot
be modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix
specifies the base or radix: 0x or 0X for hexadecimal, O for octal, and nothing for
decimal.

An integer literal can also have a suffix that is a combination of Uxim_’ for
unsigned and long, respectively. The suffix can be upp rcase(o, ase and
can be in any order. i

Here are some examples of integer I|te§ i O‘,e A
212 /* Legal */‘(O O“ 307
215u L@
exFeP(eﬁ\Legal ? a'ge

078 /* Illegal: 8 is not an octal digit */
o32uUU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of integer literals:

85 /* decimal */

0213 /* octal */

Ox4b /* hexadecimal */
30 /* int */

30u /* unsigned int */
301 /* long */

30ul /* unsigned long */

19

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

operands is non-zero, then the condition
becomes true.

! Called Logical NOT Operator. It is used to !(A && B) is
reverse the logical state of its operand. If a true.
condition is true, then Logical NOT operator will
make it false.

Example

Try the following example to understand all the logical operators available in C:

#include <stdio.h>

main()
{
int a = 5;
int b = 20; CO UK

int c ; (:S‘AEEEE;EBJ\GE;‘

if (a & b) "
e
pre-kl'une 1 p&gon is true\n");

1f(a||b)
{

printf("Line 2 - Condition is true\n");

}

/* lets change the value of a and b */

a=09;

b = 10;

if (a & b)

{

printf("Line 3 - Condition is true\n");
}
33
(]

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

44

@ utorialspoint

10. DECISION MAKING

Decision-making structures require that the programmer specifies one or more
conditions to be evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be
false.

Shown below is the general form of a typical decision-making structure found in
most of the programming languages:

If condition If condition CO _\)\(
.

is true is false e

C programming language assumes any non-zero and non-null values as true,
and if it is either zero or null, then it is assumed as false value.

C programming language provides the following types of decision-making
statements.

Statement Description

if statement An if statement consists of a boolean expression
followed by one or more statements.

if...else statement An if statement can be followed by an
optional else statement, which executes when

45

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

Example

#tinclude <stdio.h>

int main ()

{

}

/* local variable definition */

int a = 100;

/* check the boolean condition */
if(a < 20)
{
/* if condition is true then print the following */

printf("a is less than 20\n");

else
{ co V¥
/* if condition is false then prlnkég@\\g\é */

printf("a is not less than N 6
3 19

return 0;

When the above code is compiled and executed, it produces the following result:

a

is not less than 20;

value of a is : 100

if..

else if...else Statement

An if statement can be followed by an optional else if...else statement, which is
very useful to test various conditions using single if...else if statement.

When using if...else if...else statements, there are few points to keep in mind:

e An if can have zero or one else's and it must come after any else if's.

e An if can have zero to many else if's and they must come before the else.

49

\ tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

printf("value of a is 10\n");

}

else if(a == 20)

{
/* if else if condition is true */
printf("value of a is 20\n");

}

else if(a == 30)

{
/* if else if condition is true */
printf("value of a is 30\n");

}

else

{

/* if none of the conditions is true */ \4

printf("None of the values is matching\n");

} \S-
printf("Exact value of a is: %d\wW" @x‘esa

{
return 0; e\N
preV oa0e

When the above code is complled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

Nested If Statements

It is always legal in C programming to nest if-else statements, which means you
can use one if or else if statement inside another if or else if statement(s).

Syntax
The syntax for a nested if statement is as follows:

if(boolean_expression 1)

{

51

\ tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

Not every case needs to contain a break. If no break appears, the flow of
control will fall through to subsequent cases until a break is reached.

A switch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for
performing a task when none of the cases is true. No break is needed in
the default case.

Flow Diagram

expression

case 1 code block 1

case 2 code block 2

code block 3

Example

#include <stdio.h>

int main ()

{

/* local variable definition */

char grade = 'B';

switch(grade)
{

case 'A’

54

m' tutorialspoint

PLYEASYLEARNING

11. LOOPS

You may encounter situations when a block of code needs to be executed
several number of times. In general, statements are executed sequentially: The
first statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements
multiple times. Given below is the general form of a loop statement in most of
the programming languages:

If condition
is false

C programming language provides the following types of loops to handle looping
requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a
given condition is true. It tests the condition before
executing the loop body.

for loop Executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

58

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

for Loop \)\4

A for loop is a repetition control structure that allgﬁeto%ﬂuently write a

loop that needs to execute a specific nxﬁ
Syntax -‘(Om ’L%B

The syntax&f\f‘@N\lm C prrglan’(anguage is:

-For‘v it; condltloan@‘ﬂnt)

{

statement(s);

}

Here is the flow of control in a ‘for’ loop:

1. Theinitstep is executed first, and only once. This step allows you to
declare and initialize any loop control variables. You are not required to
put a statement here, as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is
executed. If it is false, the body of the loop does not execute and the flow
of control jumps to the next statement just after the ‘for’ loop.

3. After the body of the ‘for’ loop executes, the flow of control jumps back up
to the increment statement. This statement allows you to update any
loop control variables. This statement can be left blank, as long as a
semicolon appears after the condition.

61

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming
C supports the following control statements.

Control Statement Description

break statement Terminates the loop or switch statement and
transfers execution to the statement immediately
following the loop or switch.

continue statement Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

goto statement Transfers control to the labeled statement.

break Statement

The break statement in C programming has the following two usages:

e When a break statement is encountered inside a loop, the\lgjp is
immediately terminated and the program control resunﬁ next
statement following the loop.

the next chapter).
If you are usmg nes ted lo % eak n&u %d%top the execution of the
innermost Ioo ecutin he ext li f code after the block.
Syntg(P ag

The syntax for a break statement in C is as follows:

e It can be used to terminate a CQ {@&@k statement (covered in

break;

Flow Diagram

68

9 Ytutorialspoint

SIMPLYEASYLEARNINEG

C Programming

y = temp; / put temp into y */

return;

}

Let us now call the function swap() by passing values by reference as in the
following example:

#tinclude <stdio.h>

/* function declaration */

void swap(int *x, int *y);

int main ()

{

/* local variable definition */

int a = 100; \4
int b = 200; Sa\e ‘CO .u

| W\
printf("Before swap, value)
i w valu (:(\ ‘Péd;))g EEEE)

- W
printf(’ Befor‘e {l\f “1 9&
/P Xl@ng a funct? a-gap the values.

* & indicates pointer to a i.e. address of variable a and

* &b indicates pointer to b i.e. address of variable b.
*/
swap(&a, &b);

printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);

return 0;

Let us put the above code in a single C file, compile and execute it, to produce
the following result:

82

9 Ytutorialspoint

SIMPLYEASYLEARNINEG

C Programming

array by specifying the array's name without an
index.

Return array from a function C allows a function to return an array.

Pointer to an array You can generate a pointer to the first element
of an array by simply specifying the array

name, without any index.

Multidimensional Arrays

C programming language allows multidimensional arrays. Here is the general
form of a multidimensional array declaration:

type name[sizel][size2]...[sizeN];

For example, the following declaration creates a three-dimensional integer
array:

int threedim[5][10][4];

Two-dimensional Arrays

The simplest for of u&r&‘@ aI a ay ‘Se&aﬁdlmensmnal array. A
two- dlmen5|o @d\? ssence -dimensional arrays. To declare

a tw teger arg e [x][y], you would write something as

foIIow
type arrayName [x][y 1;

Where type can be any valid C data type and arrayName will be a valid C
identifier. A two-dimensional array can be considered as a table which will have
X number of rows and y number of columns. A two-dimensional array a, which
contains three rows and four columns can be shown as follows:

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] a[0][1] a[o][2] a[o][3]
Row 1 a[1][0] a[1][1] | a[11(2] a[1][3]
Row 2 af2][0] a[2][1] a[2][2] af2][3]

Thus, every element in the array a is identified by an element name of the

forma[i 1[j 1, where 'a’ is the name of the array, and 'i' and '}’ are the

subscripts that uniquely identlfy each element in’

SIMPLYEA®SY

' tutorialspoint

LEARNINEG

C Programming

int main ()

{
/* a pointer to an int */
int *p;

int i;

p = getRandom();
for (1 =0; 1< 10; i++)
{

printf("*(p + %d)

return 0;

}

D %d\n", 1, *(p + 1));

When the above code is compiled together and executed,

it pr(ﬁ‘é the
\ A (‘<:)

following result:

r[@] = 313959809
r[1] = 1759055877 m
r[2] = 11131@1911\N -‘(O

10

r(3] =

P xgga 54073 age

r[4]%s

r[5] = 167288147

r[6] = 1827471542
r[7] = 834791014

r[8] = 1901409888
r[9] = 1990469526

*(p + @) : 313959809
*(p + 1) : 1759055877
*(p + 2) : 1113101911
*(p + 3) : 2133832223
*(p + 4) : 2073354073
*(p + 5) : 167288147
*(p + 6) : 1827471542

Nov

ST

1 of 1°

m' tutorialspoint

MPLYEASYLEARNINEG

98

15. POINTERS

Pointers in C are easy and fun to learn. Some C programming tasks are
performed more easily with pointers, and other tasks, such as dynamic memory
allocation, cannot be performed without using pointers. So it becomes necessary
to learn pointers to become a perfect C programmer. Let's start learning them in
simple and easy steps.

As you know, every variable is a memory location and every memory location
has its address defined which can be accessed using ampersand (&) operator,
which denotes an address in memory. Consider the following example, which
prints the address of the variables defined:

#tinclude <stdio.h>

int main ()

int varl;

char var2[10]; Sa\e
NO 5

prlnt-F("Addr‘ess vﬁr‘@r le: % ar‘,)‘%

pr‘1nt-F @var‘z v ab &Q , &var2);

Py padc

return 9;

}

When the above code is compiled and executed, it produces the following result:

Address of varl variable: bff5a400
Address of var2 variable: bff5a3f6

What are Pointers?

A pointer is a variable whose value is the address of another variable, i.e.,
direct address of the memory location. Like any variable or constant, you must
declare a pointer before using it to store any variable address. The general form
of a pointer variable declaration is:

101

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

printf("Address of var[%d] = %x\n", i, ptr);
printf("value of var[%d] = %d\n", i, *ptr);

/* point to the previous location */

ptr++;
i++;

}

return 0;

}

When the above code is compiled and executed, it produces the following result:

Address of var[@] = bfdbcb20
Value of var[@] =

Address of var[1l] = bfdbcb24
Value of var[1l] = 100

Address of var[2] = bfdbcb28 u\k
Value of var[2] = 200 \e CO :
A *

Array of Pointers ‘p 'L%

Before we undecré hg{oncept& rrays ointers, let us consider the
hich

foIIowepffe\d useﬁler 3 integers:

))
#incEde <stdio.h> \) ad

const int MAX

35

int main ()

{
int var[] = {10, 100, 200};
int i;
for (i = 0; i < MAX; i++)
{
printf("value of var[%d] = %d\n", i, var[i]);
108
(]

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

return 0;

}

When the above code is compiled and executed, it produces the following result:

Value of var = 3000
Value available at *ptr = 3000
Value available at **pptr = 3000

Passing Pointers to Functions

C programming allows passing a pointer to a function. To do so, simply declare
the function parameter as a pointer type.

Following is a simple example where we pass an unsigned long pointer to a
function and change the value inside the function which reflects back in the
calling function:

#tinclude <stdio.h> UK

#tinclude <time.h>

void getSeconds(unsigned long * P)NO"G“ l%%

, 1%
“prev e 12

unsigned long sec;

getSeconds(&sec);

/* print the actual value */

printf("Number of seconds: %1d\n", sec);

return 0;

void getSeconds(unsigned long *par)

112

w \ tutorialspoint

PLYEASYLEARNING

C Programming

1523198053
1187214107

1108300978

430494959

1421301276

930971084

123250484

106932140

1604461820

149169022

*(p + [@]) : 1523198053
*(p + [1]) : 1187214107
*(p + [2]) : 1108300978
*(p + [3]) : 430494959

*(p + [4]) : 1421301276

*(p + [5]) : 930971084 u\(

*(p + [6]) : 123250484 e,
esd)

*(p + [7]) : 106932140 0‘
*(p + [8]) : 1694461829_‘(0"(\ N

*(p + [9]) : n ,\25 O

pegc ™

116

% Ytutorialspoint

SIMPLYEASYLEARNINE

C Programming

#include <string.h>

struct Books

{
char title[50];
char author[50];
char subject[100];
int book_id;

¥

/* function declaration */
void printBook(struct Books book);
int main()
{
struct Books Book1; /* Declare Bookl of type Book */
struct Books Book2; /* Declare Book2 of type B&ka‘\)\4

c.
/* book 1 specification */ N tesa\
strcpy(Bookl.title, "f()(%\\mlng“ ; _‘ 'X_%B
strcpy(Bo]e\d\‘)r‘-,‘ Nuha A %2 O
@Ky&xi&.sub?ag%o:}a'mming Tutorial");
= 6495

Book1.book_id 407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;

/* print Bookl info */
printBook(Bookl);

/* Print Book2 info */

123

m' tutorialspoint

PLYEASYLEARNING

C Programming

/* print Book2 info by passing address of Book2 */
printBook(&Book2);

return 0;

}

void printBook(struct Books *book)

{
printf("Book title : %s\n", book->title);
printf("Book author : %s\n", book->author);
printf("Book subject : %s\n", book->subject);
printf("Book book_id : %d\n", book->book id);

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial O‘—e

Book book_id : 6495407 l%%
Book title : Tgle 1&1(9 lBB “

Boov?ﬁe\, &Q Ali
BookVsubject : Telecw @‘Qg Tutorial

Book book id : 6495700

Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when
memory or data storage is at a premium. Typical examples include:

e Packing several objects into a machine word, e.g. 1 bit flags can be
compacted.

e Reading external file formats -- non-standard file formats could be read
in, e.g., 9-bit integers.

C allows us to do this in a structure definition by putting :bit length after the
variable. For example:

struct packed struct {

126

\ tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

#include <string.h>

union Data

{

int i;

float f;

char str[20];
¥

int main()

{
union Data data;
data.i = 10;
data.f = 220.5;
strcpy(data.str, "C Programming"); O‘u\k

a\e-©

printf("data.i : %d\n", data. 1)NO‘€5 6
printf("data.f : _SS -‘ l%
pr‘1nt-F(\i“e\t\lz rx ,
r‘etur‘n 0; Pag

}

When the above code is compiled and executed, it produces the following result:

data.i : 1917853763
data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that the values ofiandf members of union got corrupted
because the final value assigned to the variable has occupied the memory
location and this is the reason that the value of str member is getting printed
very well.

Now let's look into the same example once again where we will use one variable
at a time which is the main purpose of having unions:

#tinclude <stdio.h>

130

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

unsigned int widthValidated;
unsigned int heightValidated;
} statusi;

/* define a structure with bit fields */

struct

{
unsigned int widthvValidated : 1;

unsigned int heightValidated : 1;
} status2;

int main()

{
printf("Memory size occupied by statusl : %d\n", sizeof(statusl));
printf("Memory size occupied by status2 : %d\n", sizeof(status2));
return 0; Sa\e C

} o\°° e,

When the above code |s ﬁ@¥\é exegﬁ:e@‘:ro&ugs the following result:

Mem? ve\l‘ Qed by stg &Hl’

Mem size occupled y

Bit Field Declaration

The declaration of a bit-field has the following form inside a structure:

struct

{

type [member _name] : width ;

}s

The following table describes the variable elements of a bit field:

Elements Description

133

\ tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

#tdefine tokenpaster(n) printf ("token" #n " = %d", tokenin)

int main(void)

{
int token34 = 40;
tokenpaster(34);
return 0;

¥

When the above code is compiled and executed, it produces the following result:

token34 = 40

It happened so because this example results in the following actual output from
the preprocessor:

printf ("token34 = %d", token34); \{:

This example shows the concatenation of token##n in é;kG@a‘n here we
have used both stringize and token-pasting.

xeS
The Defined() Operato NO 86

The prepro ess ‘gﬂN perator | @‘li cQstant expressions to determine
if an Ined usi he specified identifier is defined, the
vaIue ue€ (non- zer(? ymbol is not defined, the value is false (zero).
p

The deﬁned operator is Specified as follows:

#include <stdio.h>

#if !defined (MESSAGE)
#tdefine MESSAGE "You wish!"
#tendif

int main(void)

{
printf("Here is the message: %s\n", MESSAGE);

return 0;

151

9 Ytutorialspoint

SIMPLYEASYLEARNINEG

C Programming

fprintf(stderr, "Division by zero! Exiting...\n");
exit(-1);

}

quotient = dividend / divisor;

fprintf(stderr, "Value of quotient : %d\n", quotient);

exit(e);
}

When the above code is compiled and executed, it produces the following result:

Division by zero! Exiting...

Program Exit Status

It is a common practice to exit with a value of EXIT_SUCCESS in case of
program coming out after a successful operation. Here, EXIT_ SUCCESS is a
macro and it is defined as 0.

If you have an error condition in your program and you Xgo@gdut then you
should exit with a status EXIT_FAILURE whl%’ég So let's write

above program as follows: ‘ l
#include <stdio. h>W -‘(O ’L
#include < é \l@ e ’L’(

P pad
main()

{
int dividend = 20;
int divisor = 5;

int quotient;

if(divisor == 0){
fprintf(stderr, "Division by zero! Exiting...\n");
exit (EXIT_FAILURE);

}

quotient = dividend / divisor;

fprintf(stderr, "Value of quotient : %d\n", quotient);

162

\ tutorialspoint

SIMPLYEASYLEARNINEG

27. RECURSION

Recursion is the process of repeating items in a self-similar way. In
programming languages, if a program allows you to call a function inside the
same function, then it is called a recursive call of the function.

void recursion()

{

recursion(); /* function calls itself */

int main()

{

recursion();

} ~0 \)\(

A Y

The C programming language supports recur5| \amctlon to call itself.
But while using recursion, programm e car | to define an exit
condition from the function other QO |n loop.

Recursive functhns “u ful t%‘s? ematlcal problems, such

as caSaU@qQ | of a n ratlng FlbonaCC| series, etc.

Number FactorlalP

The following example calculates the factorial of a given number using a
recursive function:

#include <stdio.h>

int factorial(unsigned int i)

{
if(i <= 1)
{
return 1;
}

return i * factorial(i - 1);

164

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

5. Use a macrova_endto clean up the memory assigned
to va_list variable.

Now let us follow the above steps and write down a simple function which can
take the variable number of parameters and return their average:

#include <stdio.h>

#include <stdarg.h>

double average(int num,...)

{
va_list valist;
double sum = 0.0;
int i;
/* initialize valist for num number of arguments */
va_start(valist, num); \4
cO AS
e.
/* access all the arguments assigned ;i /
for (i = @; i < num; 1++)m N l%B
{ \!}' foh 4 ol
P (é\, \36 Vallstget)l’(
/* clean memory reserved for valist */
va_end(valist);
return sum/num;
}

int main()

{
printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));
printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15));

168

' tutorialspoint

SIMPLYEASYLEARNINEG

C Programming

#tinclude <stdlib.h>

#include <string.h>

int main()

{
char name[100];
char *description;
strcpy(name, "Zara Ali");
/* allocate memory dynamically */
description = malloc(200 * sizeof(char));
if(description == NULL)
{
fprintf(stderr, "Error - unable to allocate required memory\n");
} CO AS)
else Sa\e
{ NO‘G 5
strcpy(descr‘lptl_‘n(eﬂ\ DPS s de&% ass 10th");
@(@Me 2 A
printf(" Descr1pt1 : %#s\n", description);
}

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali

Description: Zara ali a DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace
malloc with calloc as follows:

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating
memory, unlike arrays where once the size is defined, you cannot change it.

171

\ tutorialspoint

SIMPLYEASYLEARNINEG

