
iv

Logical Operators .. 32

Bitwise Operators ... 34

Assignment Operators .. 37

Misc Operators ↦ sizeof & ternary ... 40

Operators Precedence in C .. 41

10. DECISION MAKING .. 45

if Statement .. 46

if…else Statement ... 48

if...else if...else Statement .. 49

Nested if Statements .. 51

switch Statement .. 53

Nested switch Statements .. 55

The ? : Operator: ... 57

11. LOOPS ... 58

while Loop .. 59

for Loop .. 61

do…while Loop ... 63

Nested Loops .. 65

Loop Control Statements .. 67

break Statement ... 68

continue Statement .. 70

goto Statement ... 72

The Infinite Loop ... 74

12. FUNCTIONS ... 76

Defining a Function ... 76

Function Declarations ... 77

Preview from Notesale.co.uk

Page 5 of 185

v

Calling a Function .. 78

Function Arguments .. 79

Call by Value ... 80

Call by Reference .. 81

13. SCOPE RULES... 84

Local Variables .. 84

Global Variables .. 85

Formal Parameters ... 86

Initializing Local and Global Variables ... 87

14. ARRAYS ... 89

Declaring Arrays .. 89

Initializing Arrays .. 89

Accessing Array Elements ... 90

Arrays in Detail ... 91

Multidimensional Arrays .. 92

Two-dimensional Arrays ... 92

Initializing Two-Dimensional Arrays ... 93

Accessing Two-Dimensional Array Elements .. 93

Passing Arrays to Functions .. 94

Return Array from a Function .. 96

Pointer to an Array ... 99

15. POINTERS .. 101

What are Pointers? ... 101

How to Use Pointers?.. 102

NULL Pointers .. 103

Pointers in Detail .. 104

Pointer Arithmetic .. 104

Incrementing a Pointer ... 105

Preview from Notesale.co.uk

Page 6 of 185

C Programming

5

Installation on Mac OS

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode

development environment from Apple's web site and follow the simple

installation instructions. Once you have Xcode setup, you will be able to use GNU

compiler for C/C++.

Xcode is currently available at developer.apple.com/technologies/tools/.

Installation on Windows

To install GCC on Windows, you need to install MinGW. To install MinGW, go to

the MinGW homepage, www.mingw.org, and follow the link to the MinGW

download page. Download the latest version of the MinGW installation program,

which should be named MinGW-<version>.exe.

While installing MinGW, at a minimum, you must install gcc-core, gcc-g++,

binutils, and the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to your PATH environment

variable, so that you can specify these tools on the command line by their simple

names.

After the installation is complete, you will be able to run gcc, g++, ar, ranlib,

dlltool, and several other GNU tools from the Windows command line.

Preview from Notesale.co.uk

Page 14 of 185

C Programming

11

Data types in C refer to an extensive system used for declaring variables or

functions of different types. The type of a variable determines how much space

it occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows:

S.N. Types and Description

1

Basic Types:

They are arithmetic types and are further classified into: (a) integer

types and (b) floating-point types.

2 Enumerated types:

They are again arithmetic types and they are used to define variables

that can only assign certain discrete integer values throughout the

program.

3 The type void:

The type specifier void indicates that no value is available.

4 Derived types:

They include (a) Pointer types, (b) Array types, (c) Structure types, (d)

Union types, and (e) Function types.

The array types and structure types are referred collectively as the aggregate

types. The type of a function specifies the type of the function's return value. We

will see the basic types in the following section, whereas other types will be

covered in the upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their

storage sizes and value ranges:

5. DATA TYPES

Preview from Notesale.co.uk

Page 20 of 185

C Programming

19

Constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a

floating constant, a character constant, or a string literal. There are enumeration

constants as well.

Constants are treated just like regular variables except that their values cannot

be modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix

specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for

decimal.

An integer literal can also have a suffix that is a combination of U and L, for

unsigned and long, respectively. The suffix can be uppercase or lowercase and

can be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of integer literals:

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

7. CONSTANTS AND LITERALS

Preview from Notesale.co.uk

Page 28 of 185

C Programming

33

operands is non-zero, then the condition

becomes true.

! Called Logical NOT Operator. It is used to

reverse the logical state of its operand. If a

condition is true, then Logical NOT operator will

make it false.

!(A && B) is

true.

Example

Try the following example to understand all the logical operators available in C:

#include <stdio.h>

main()

{

 int a = 5;

 int b = 20;

 int c ;

 if (a && b)

 {

 printf("Line 1 - Condition is true\n");

 }

 if (a || b)

 {

 printf("Line 2 - Condition is true\n");

 }

 /* lets change the value of a and b */

 a = 0;

 b = 10;

 if (a && b)

 {

 printf("Line 3 - Condition is true\n");

 }

Preview from Notesale.co.uk

Page 42 of 185

C Programming

44

Preview from Notesale.co.uk

Page 53 of 185

C Programming

45

Decision-making structures require that the programmer specifies one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and

optionally, other statements to be executed if the condition is determined to be

false.

Shown below is the general form of a typical decision-making structure found in

most of the programming languages:

C programming language assumes any non-zero and non-null values as true,

and if it is either zero or null, then it is assumed as false value.

C programming language provides the following types of decision-making

statements.

Statement Description

if statement An if statement consists of a boolean expression

followed by one or more statements.

if...else statement An if statement can be followed by an

optional else statement, which executes when

10. DECISION MAKING

Preview from Notesale.co.uk

Page 54 of 185

C Programming

49

Example

#include <stdio.h>

int main ()

{

 /* local variable definition */

 int a = 100;

 /* check the boolean condition */

 if(a < 20)

 {

 /* if condition is true then print the following */

 printf("a is less than 20\n");

 }

 else

 {

 /* if condition is false then print the following */

 printf("a is not less than 20\n");

 }

 printf("value of a is : %d\n", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

a is not less than 20;

value of a is : 100

if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is

very useful to test various conditions using single if...else if statement.

When using if…else if…else statements, there are few points to keep in mind:

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

Preview from Notesale.co.uk

Page 58 of 185

C Programming

51

 printf("Value of a is 10\n");

 }

 else if(a == 20)

 {

 /* if else if condition is true */

 printf("Value of a is 20\n");

 }

 else if(a == 30)

 {

 /* if else if condition is true */

 printf("Value of a is 30\n");

 }

 else

 {

 /* if none of the conditions is true */

 printf("None of the values is matching\n");

 }

 printf("Exact value of a is: %d\n", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

Nested if Statements

It is always legal in C programming to nest if-else statements, which means you

can use one if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

if(boolean_expression 1)

{

Preview from Notesale.co.uk

Page 60 of 185

C Programming

54

 Not every case needs to contain a break. If no break appears, the flow of

control will fall through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must

appear at the end of the switch. The default case can be used for

performing a task when none of the cases is true. No break is needed in

the default case.

Flow Diagram

Example

#include <stdio.h>

int main ()

{

 /* local variable definition */

 char grade = 'B';

 switch(grade)

 {

 case 'A' :

Preview from Notesale.co.uk

Page 63 of 185

C Programming

58

You may encounter situations when a block of code needs to be executed

several number of times. In general, statements are executed sequentially: The

first statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times. Given below is the general form of a loop statement in most of

the programming languages:

C programming language provides the following types of loops to handle looping

requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a

given condition is true. It tests the condition before

executing the loop body.

for loop Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

11. LOOPS

Preview from Notesale.co.uk

Page 67 of 185

C Programming

61

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

for Loop

A for loop is a repetition control structure that allows you to efficiently write a

loop that needs to execute a specific number of times.

Syntax

The syntax of a for loop in C programming language is:

for (init; condition; increment)

{

 statement(s);

}

Here is the flow of control in a ‘for’ loop:

1. The init step is executed first, and only once. This step allows you to

declare and initialize any loop control variables. You are not required to

put a statement here, as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is

executed. If it is false, the body of the loop does not execute and the flow

of control jumps to the next statement just after the ‘for’ loop.

3. After the body of the ‘for’ loop executes, the flow of control jumps back up

to the increment statement. This statement allows you to update any

loop control variables. This statement can be left blank, as long as a

semicolon appears after the condition.

Preview from Notesale.co.uk

Page 70 of 185

C Programming

68

C supports the following control statements.

Control Statement Description

break statement Terminates the loop or switch statement and

transfers execution to the statement immediately

following the loop or switch.

continue statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

goto statement Transfers control to the labeled statement.

break Statement

The break statement in C programming has the following two usages:

 When a break statement is encountered inside a loop, the loop is

immediately terminated and the program control resumes at the next

statement following the loop.

 It can be used to terminate a case in the switch statement (covered in

the next chapter).

If you are using nested loops, the break statement will stop the execution of the

innermost loop and start executing the next line of code after the block.

Syntax

The syntax for a break statement in C is as follows:

break;

Flow Diagram

Preview from Notesale.co.uk

Page 77 of 185

C Programming

82

 y = temp; / put temp into y */

 return;

}

Let us now call the function swap() by passing values by reference as in the

following example:

#include <stdio.h>

/* function declaration */

void swap(int *x, int *y);

int main ()

{

 /* local variable definition */

 int a = 100;

 int b = 200;

 printf("Before swap, value of a : %d\n", a);

 printf("Before swap, value of b : %d\n", b);

 /* calling a function to swap the values.

 * &a indicates pointer to a i.e. address of variable a and

 * &b indicates pointer to b i.e. address of variable b.

 */

 swap(&a, &b);

 printf("After swap, value of a : %d\n", a);

 printf("After swap, value of b : %d\n", b);

 return 0;

}

Let us put the above code in a single C file, compile and execute it, to produce

the following result:

Preview from Notesale.co.uk

Page 91 of 185

C Programming

92

array by specifying the array's name without an

index.

Return array from a function C allows a function to return an array.

Pointer to an array You can generate a pointer to the first element

of an array by simply specifying the array

name, without any index.

Multidimensional Arrays

C programming language allows multidimensional arrays. Here is the general

form of a multidimensional array declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three-dimensional integer

array:

int threedim[5][10][4];

Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A

two-dimensional array is, in essence, a list of one-dimensional arrays. To declare

a two-dimensional integer array of size [x][y], you would write something as

follows:

type arrayName [x][y];

Where type can be any valid C data type and arrayName will be a valid C

identifier. A two-dimensional array can be considered as a table which will have

x number of rows and y number of columns. A two-dimensional array a, which

contains three rows and four columns can be shown as follows:

Thus, every element in the array a is identified by an element name of the

form a[i][j], where ‘a’ is the name of the array, and ‘i' and ‘j’ are the

subscripts that uniquely identify each element in ‘a’.

Preview from Notesale.co.uk

Page 101 of 185

C Programming

98

int main ()

{

 /* a pointer to an int */

 int *p;

 int i;

 p = getRandom();

 for (i = 0; i < 10; i++)

 {

 printf("*(p + %d) : %d\n", i, *(p + i));

 }

 return 0;

}

When the above code is compiled together and executed, it produces the

following result:

r[0] = 313959809

r[1] = 1759055877

r[2] = 1113101911

r[3] = 2133832223

r[4] = 2073354073

r[5] = 167288147

r[6] = 1827471542

r[7] = 834791014

r[8] = 1901409888

r[9] = 1990469526

*(p + 0) : 313959809

*(p + 1) : 1759055877

*(p + 2) : 1113101911

*(p + 3) : 2133832223

*(p + 4) : 2073354073

*(p + 5) : 167288147

*(p + 6) : 1827471542

Preview from Notesale.co.uk

Page 107 of 185

C Programming

101

Pointers in C are easy and fun to learn. Some C programming tasks are

performed more easily with pointers, and other tasks, such as dynamic memory

allocation, cannot be performed without using pointers. So it becomes necessary

to learn pointers to become a perfect C programmer. Let's start learning them in

simple and easy steps.

As you know, every variable is a memory location and every memory location

has its address defined which can be accessed using ampersand (&) operator,

which denotes an address in memory. Consider the following example, which

prints the address of the variables defined:

#include <stdio.h>

int main ()

{

 int var1;

 char var2[10];

 printf("Address of var1 variable: %x\n", &var1);

 printf("Address of var2 variable: %x\n", &var2);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

What are Pointers?

A pointer is a variable whose value is the address of another variable, i.e.,

direct address of the memory location. Like any variable or constant, you must

declare a pointer before using it to store any variable address. The general form

of a pointer variable declaration is:

15. POINTERS

Preview from Notesale.co.uk

Page 110 of 185

C Programming

108

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* point to the previous location */

 ptr++;

 i++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Address of var[0] = bfdbcb20

Value of var[0] = 10

Address of var[1] = bfdbcb24

Value of var[1] = 100

Address of var[2] = bfdbcb28

Value of var[2] = 200

Array of Pointers

Before we understand the concept of arrays of pointers, let us consider the

following example, which uses an array of 3 integers:

#include <stdio.h>

const int MAX = 3;

int main ()

{

 int var[] = {10, 100, 200};

 int i;

 for (i = 0; i < MAX; i++)

 {

 printf("Value of var[%d] = %d\n", i, var[i]);

Preview from Notesale.co.uk

Page 117 of 185

C Programming

112

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Value of var = 3000

Value available at *ptr = 3000

Value available at **pptr = 3000

Passing Pointers to Functions

C programming allows passing a pointer to a function. To do so, simply declare

the function parameter as a pointer type.

Following is a simple example where we pass an unsigned long pointer to a

function and change the value inside the function which reflects back in the

calling function:

#include <stdio.h>

#include <time.h>

void getSeconds(unsigned long *par);

int main ()

{

 unsigned long sec;

 getSeconds(&sec);

 /* print the actual value */

 printf("Number of seconds: %ld\n", sec);

 return 0;

}

void getSeconds(unsigned long *par)

Preview from Notesale.co.uk

Page 121 of 185

C Programming

116

1523198053

1187214107

1108300978

430494959

1421301276

930971084

123250484

106932140

1604461820

149169022

*(p + [0]) : 1523198053

*(p + [1]) : 1187214107

*(p + [2]) : 1108300978

*(p + [3]) : 430494959

*(p + [4]) : 1421301276

*(p + [5]) : 930971084

*(p + [6]) : 123250484

*(p + [7]) : 106932140

*(p + [8]) : 1604461820

*(p + [9]) : 149169022

Preview from Notesale.co.uk

Page 125 of 185

C Programming

123

#include <string.h>

struct Books

{

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

/* function declaration */

void printBook(struct Books book);

int main()

{

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info */

 printBook(Book1);

 /* Print Book2 info */

Preview from Notesale.co.uk

Page 132 of 185

C Programming

126

 /* print Book2 info by passing address of Book2 */

 printBook(&Book2);

 return 0;

}

void printBook(struct Books *book)

{

 printf("Book title : %s\n", book->title);

 printf("Book author : %s\n", book->author);

 printf("Book subject : %s\n", book->subject);

 printf("Book book_id : %d\n", book->book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when

memory or data storage is at a premium. Typical examples include:

 Packing several objects into a machine word, e.g. 1 bit flags can be

compacted.

 Reading external file formats -- non-standard file formats could be read

in, e.g., 9-bit integers.

C allows us to do this in a structure definition by putting :bit length after the

variable. For example:

struct packed_struct {

Preview from Notesale.co.uk

Page 135 of 185

C Programming

130

#include <string.h>

union Data

{

 int i;

 float f;

 char str[20];

};

int main()

{

 union Data data;

 data.i = 10;

 data.f = 220.5;

 strcpy(data.str, "C Programming");

 printf("data.i : %d\n", data.i);

 printf("data.f : %f\n", data.f);

 printf("data.str : %s\n", data.str);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

data.i : 1917853763

data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that the values of i and f members of union got corrupted

because the final value assigned to the variable has occupied the memory

location and this is the reason that the value of str member is getting printed

very well.

Now let's look into the same example once again where we will use one variable

at a time which is the main purpose of having unions:

#include <stdio.h>

Preview from Notesale.co.uk

Page 139 of 185

C Programming

133

 unsigned int widthValidated;

 unsigned int heightValidated;

} status1;

/* define a structure with bit fields */

struct

{

 unsigned int widthValidated : 1;

 unsigned int heightValidated : 1;

} status2;

int main()

{

 printf("Memory size occupied by status1 : %d\n", sizeof(status1));

 printf("Memory size occupied by status2 : %d\n", sizeof(status2));

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Memory size occupied by status1 : 8

Memory size occupied by status2 : 4

Bit Field Declaration

The declaration of a bit-field has the following form inside a structure:

struct

{

 type [member_name] : width ;

};

The following table describes the variable elements of a bit field:

Elements Description

Preview from Notesale.co.uk

Page 142 of 185

C Programming

151

#define tokenpaster(n) printf ("token" #n " = %d", token##n)

int main(void)

{

 int token34 = 40;

 tokenpaster(34);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

token34 = 40

It happened so because this example results in the following actual output from

the preprocessor:

printf ("token34 = %d", token34);

This example shows the concatenation of token##n into token34 and here we

have used both stringize and token-pasting.

The Defined() Operator

The preprocessor defined operator is used in constant expressions to determine

if an identifier is defined using #define. If the specified identifier is defined, the

value is true (non-zero). If the symbol is not defined, the value is false (zero).

The defined operator is specified as follows:

#include <stdio.h>

#if !defined (MESSAGE)

 #define MESSAGE "You wish!"

#endif

int main(void)

{

 printf("Here is the message: %s\n", MESSAGE);

 return 0;

}

Preview from Notesale.co.uk

Page 160 of 185

C Programming

162

 fprintf(stderr, "Division by zero! Exiting...\n");

 exit(-1);

 }

 quotient = dividend / divisor;

 fprintf(stderr, "Value of quotient : %d\n", quotient);

 exit(0);

}

When the above code is compiled and executed, it produces the following result:

Division by zero! Exiting...

Program Exit Status

It is a common practice to exit with a value of EXIT_SUCCESS in case of

program coming out after a successful operation. Here, EXIT_SUCCESS is a

macro and it is defined as 0.

If you have an error condition in your program and you are coming out then you

should exit with a status EXIT_FAILURE which is defined as -1. So let's write

above program as follows:

#include <stdio.h>

#include <stdlib.h>

main()

{

 int dividend = 20;

 int divisor = 5;

 int quotient;

 if(divisor == 0){

 fprintf(stderr, "Division by zero! Exiting...\n");

 exit(EXIT_FAILURE);

 }

 quotient = dividend / divisor;

 fprintf(stderr, "Value of quotient : %d\n", quotient);

Preview from Notesale.co.uk

Page 171 of 185

C Programming

164

Recursion is the process of repeating items in a self-similar way. In

programming languages, if a program allows you to call a function inside the

same function, then it is called a recursive call of the function.

void recursion()

{

 recursion(); /* function calls itself */

}

int main()

{

 recursion();

}

The C programming language supports recursion, i.e., a function to call itself.

But while using recursion, programmers need to be careful to define an exit

condition from the function, otherwise it will go into an infinite loop.

Recursive functions are very useful to solve many mathematical problems, such

as calculating the factorial of a number, generating Fibonacci series, etc.

Number Factorial

The following example calculates the factorial of a given number using a

recursive function:

#include <stdio.h>

int factorial(unsigned int i)

{

 if(i <= 1)

 {

 return 1;

 }

 return i * factorial(i - 1);

27. RECURSION

Preview from Notesale.co.uk

Page 173 of 185

C Programming

168

5. Use a macro va_end to clean up the memory assigned

to va_list variable.

Now let us follow the above steps and write down a simple function which can

take the variable number of parameters and return their average:

#include <stdio.h>

#include <stdarg.h>

double average(int num,...)

{

 va_list valist;

 double sum = 0.0;

 int i;

 /* initialize valist for num number of arguments */

 va_start(valist, num);

 /* access all the arguments assigned to valist */

 for (i = 0; i < num; i++)

 {

 sum += va_arg(valist, int);

 }

 /* clean memory reserved for valist */

 va_end(valist);

 return sum/num;

}

int main()

{

 printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));

 printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15));

}

Preview from Notesale.co.uk

Page 177 of 185

C Programming

171

#include <stdlib.h>

#include <string.h>

int main()

{

 char name[100];

 char *description;

 strcpy(name, "Zara Ali");

 /* allocate memory dynamically */

 description = malloc(200 * sizeof(char));

 if(description == NULL)

 {

 fprintf(stderr, "Error - unable to allocate required memory\n");

 }

 else

 {

 strcpy(description, "Zara ali a DPS student in class 10th");

 }

 printf("Name = %s\n", name);

 printf("Description: %s\n", description);

}

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali

Description: Zara ali a DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace

malloc with calloc as follows:

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating

memory, unlike arrays where once the size is defined, you cannot change it.

Preview from Notesale.co.uk

Page 180 of 185

