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These structure equations already have global implications. For example, sup-
pose that > were compact. Then it would necessarily be geodesically complete,
but the structure equations above show that, along any integral curve of W, the
function S satisfies an equation of the form S§” — S = 0, where the prime denoted
differentiation with respect to the flow parameter along the integral curve. How-
ever, the only solution of this equation which is bounded in both directions is the
zero solution. Since ¥ is supposed to be compact, S must be bounded on X and
hence on every integral curve. Of course this implies that S (and hence C) must
vanish identically, so that the structure is locally Riemannian. In particular any
Finsler structure on a compact surface M which satisfies K = —1 (or any negative
constant, for that matter) must be a Riemannian metric!! | a result to be found
in [AK].

Note that J = —S2 + C? is constant along the geodesic curves, i.e., the integral
curves of W, and so is a first integral of the geodesic equations. Thus, in the non-
Riemannian case, the geodesic flow must be completely integrable, again, a great
contrast with the Riemannian case when K = —1.

6.1. Canonical structures on the geodesic space. Consider the 1-form S 6 —
C'n, the 2-form nAf, and the quadratic form n? — 62. A computation from the

structure equations yields K
Lw(S0—Cn)=Lw(nrb) =Lw(n —\e OCJO

so that all of these quantities are invaga t@& eodesu: flow.

If one assumes that the gen T structyr geodesically amenable,
with geodesic projectlox hen it foll & exist on A a 1-form ¢
so that *p== X a 2- form dA (dA) = na#; and a Lorentzian
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I did in the K = 1 case, I can identify n and 6 as the canonical forms on the
Lorentzian orthonormal frame bundle of g and, due to the equations

dn=(w+S0—-Cn)rb
dd=(w+S60—-Cn)na

one sees that ¢ = (w+S560—Cn) can be thought of as the Levi-Civita connection of
this pseudo-metric. The curvature R of this metric is then defined by diyy = Rnaf
and is well-defined on A. Then, just as before, one derives

dp = (1 — R) dA.

as the equation relating the 1-form ¢ with the oriented Lorentzian structure defined
by g and the choice of oriented area form dA.

Conversely, starting with an oriented surface A endowed with a Lorentzian
metric g of curvature R and area form dA and a 1-form ¢ which satisfies the

I Note that this result definitely does not hold for Finsler structures on a compact surface if
one merely assumes that K is bounded above by a negative constant



