
4

Inference Rules for FD’s
(continued)

Transitive Closure Rule

If

and

then

Why ?

A1, A2, …, An  B1, B2, …, Bm

B1, B2, …, Bm  C1, C2, …, Cp

A1, A2, …, An  C1, C2, …, Cp

Preview from Notesale.co.uk

Page 4 of 67

6

Closure of a set of FDs

• It is not sufficient to consider just the given set of FDs

• We need to consider all FDs that hold

• Given F, more FDs can be inferred

• Such FDs are said to be logically implied by F

• F+ is the set of all FDs logically implied by F

• We can compute F+ using formal definition of FD

• If F were large, this process would be lengthy &
cumbersome

• Axioms or Rules of Inference provide simpler technique

• Armstrong’s Axioms

Preview from Notesale.co.uk

Page 6 of 67

7

Inference Rules for FDs

Armstrong's inference rules:
IR1. (Reflexive) If Y  X, then X  Y

IR2. (Augmentation) If X  Y, then XZ  YZ

 (Notation: XZ stands for X U Z)

IR3. (Transitive) If X  Y and Y  Z, then X  Z

 IR1, IR2, IR3 form a sound & complete set of

inference rules

Never generates
any wrong FD

Generate all FDs
that hold

Preview from Notesale.co.uk

Page 7 of 67

9

Example

• R = (A, B, C, G, H, I)
F = { A  B
 A  C
 CG  H
 CG  I
 B  H}

• some members of F+

– A  H

• by transitivity from A  B and B  H

– AG  I

• by augmenting A  C with G, to get AG  CG

 and then transitivity with CG  I

– CG  HI

• By union rule

Preview from Notesale.co.uk

Page 9 of 67

28

• Based on FDs that take into account all candidate

keys of a relation

• For a relation with only 1 CK, 3NF & BCNF are

equivalent

• A relation is said to be in BCNF if every

determinant is a CK

• Is PLOTS in BCNF?

• NO

BCNF

Preview from Notesale.co.uk

Page 28 of 67

3NF Schema

Account Client Office

A Joe 1

B Mary 1

A John 1

C Joe 2

For every functional

dependency X->Y in a set F

of functional dependencies

over relation R, either:

– Y is a subset of X or,

– X is a superkey of R, or

– Y is a subset of K for
some key K of R

Client, Office -> Client, Office, Account
Account -> Office Preview from Notesale.co.uk

Page 30 of 67

40

Goals of Decomposition
1. Lossless Joins
 Want to be able to reconstruct big (e.g. universal) relation by
 joining smaller ones (using natural joins)
 (i.e. R1 R2 = R)

2. Dependency preservation
 Want to minimize the cost of global integrity constraints based on FD’s
 (i.e. avoid big joins in assertions)

3. Redundancy Avoidance
 Avoid unnecessary data duplication (the motivation for decomposition)

Why important?
 LJ : information loss
 DP: efficiency (time)

 RA: efficiency (space), update anomalies

Preview from Notesale.co.uk

Page 40 of 67

51

Decomposition Goal #2: Dependency

preservation

Example: Given F = { AB, AB D, C D}

consider R = R1 U R2 s.t.
 R1 = (A, B, D) , R2 = (C, D)

(1) F+ = { ABD, CD}+
(2) G = {ABD, CD, ...} +

(3) F+ = G+
 note: G+ cannot introduce new FDs not in F+

Decomposition is DP

Preview from Notesale.co.uk

Page 51 of 67

Example
• R = (A, B, C)

F = {A  B

 B  C}
Key = {A}

• R is not in BCNF (B  C but B is not
superkey)

• Decomposition R1 = (A, B), R2 = (B, C)

– R1 and R2 in BCNF

– Lossless-join decomposition

– Dependency preserving

Preview from Notesale.co.uk

Page 57 of 67

3NF Decomposition Algorithm
 Let Fc be a canonical cover for F;

i := 0;
for each functional dependency a   in Fc do
 if none of the schemas Rj, 1  j  i contains a 
 then begin
 i := i + 1;
 Ri := a 
 end
if none of the schemas Rj, 1  j  i contains a candidate key for R
 then begin
 i := i + 1;
 Ri := any candidate key for R;
 end
/* Optionally, remove redundant relations */

 repeat
if any schema Rj is contained in another schema Rk

 then /* delete Rj */
 Rj = R;;
 i=i-1;
return (R1, R2, ..., Ri)

Preview from Notesale.co.uk

Page 63 of 67

BCNF Decomposition Algorithm
 result := {R };

done := false;
compute F +;
while (not done) do
 if (there is a schema Ri in result that is not in BCNF)
 then begin
 let a   be a nontrivial functional dependency that
 holds on Ri such that a  Ri is not in F +,
 and a   = ;
 result := (result – Ri)  (Ri – )  (a, );
 end
 else done := true;

 Note: each Ri is in BCNF, and decomposition is lossless-join.

Preview from Notesale.co.uk

Page 65 of 67

