Inference Rules for FD's (continued)^k Notesaled)^k Preview from Notesaled Preview from A of 67 Page 4 of 67 Preview Page 4

If
$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

and $B_1, B_2, ..., B_m \rightarrow C_1, C_2, ..., C_p$

then

$$A_1, A_2, \dots, A_n \rightarrow C_1, C_2, \dots, C_p$$

Why?

Closure of a set of FDs

- It is not sufficient to consider just the given set of FDs
- We need to consider all FDs that hold
- Given F, more FDs can be inferred
- Such FDs are said to be logically implied by F
- F⁺ is the set of all FDs logically implied by F
- We can compute F⁺ using formal definition of FD
- If F were large, this process would be lengthy & cumbersome
- Axioms or Rules of Inference provide simpler technique
- Armstrong's Axioms

Inference Rulescor FDs <u>Armstrong's interencertiles:</u> IR1. (Bettexive) \$\$49 X, then X → Y IR2. (Augmentation) If X → Y, then XZ → YZ (Notation: XZ stands for X U Z) IR3. (Transitive) If X → Y and Y → Z, then X → Z

IR1, IR2, IR3 form a *sound* & *complete* set of inference rules

•
$$R = (A \in \mathbb{N}C), G, H, J)$$
 of 67
• $R = (A \in \mathbb{N}C), G, H, J)$ of 67
• $Pf \in \{A \to BP age$
 $A \to C$
 $CG \to H$
 $CG \to H$
 $B \to H\}$

- some members of F⁺
 - $A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $\quad CG \rightarrow HI$
 - By union rule

Based one PDs that take into account all candidate keys of a relation

- For a relation with only 1 CK, 3NF & BCNF are equivalent
- A relation is said to be in BCNF if every determinant is a CK
- Is PLOTS in BCNF?
- NO

Account	Client	Office
Α	Joe	1
В	Mary	1
Α	John	1
С	Joe	2

Goals of Decomposition

- 1. Lossless Joins Want to be able to reconstruct by (e.g. universal) relation by joining smaller ones (asing natural joins) (i.e. R1 VIR2 = R) 0
- Dependency preservation
 Want to minimize the cost of global integrity constraints based on FD's (i.e. avoid big joins in assertions)
- 3. Redundancy Avoidance

Avoid unnecessary data duplication (the motivation for decomposition)

Why important?

- LJ: information loss
- DP: efficiency (time)
- RA: efficiency (space), update anomalies

consider R = R1 U R2 s.t. R1 = (A, B, D) , R2 = (C, D)

(1)
$$F+ = \{ A \rightarrow BD, C \rightarrow D \} +$$

(2) $G = \{ A \rightarrow BD, C \rightarrow D, ... \} +$

(3) F+ = G+note: G+ cannot introduce new FDs not in F+

Decomposition is DP

- *R* is not in BCNF (*B* → *C* but *B* is not superkey)
- Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - $-R_1$ and R_2 in BCNF
 - Lossless-join decomposition
 - Dependency preserving

3NF Decomposition Algorithm Let *F_c* be a canonical cover feater *i* := 0;

Let F_c be a canonical cover to A_i , i := 0; for each functional dependency $\alpha \rightarrow \beta$ in F_c do if none of the schemas R_j , $1 \le j \le i$ contains $\alpha \beta$ then begin

$$i := i + 1;$$
$$R_i := \alpha \beta$$

end

if none of the schemas R_{j} , $1 \le j \le i$ contains a candidate key for R then begin

i := i + 1; $R_i :=$ any candidate key for R_i

end

/* Optionally, remove redundant relations */

repeat

if any schema R_j is contained in another schema R_k then /* delete R_j */ $R_j = R;;$ i=i-1;return $(R_1, R_2, ..., R_i)$

BCNF Decomposition Algorithm result := {R}; done := false; compute F+: from 65 of 67 while end done age if (there is a schema R_i in *result* that is not in BCNF) then begin let $\alpha \Box \rightarrow \beta$ be a nontrivial functional dependency that holds on R_i such that $\alpha \Box \rightarrow R_i$ is not in F^+ , and $\alpha \cap \beta = \emptyset$; result := $(result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);$ end else done := true;

Note: each R_i is in BCNF, and decomposition is lossless-join.