
4 

Inference Rules for FD’s 
(continued) 

Transitive Closure Rule 

If 

and 

then 

Why ? 

A1, A2, …, An  B1, B2, …, Bm 

B1, B2, …, Bm   C1, C2, …, Cp 

A1, A2, …, An  C1, C2, …, Cp 
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Closure of a set of FDs 

• It is not sufficient to consider just the given set of FDs  

• We need to consider all FDs that hold 

• Given F, more FDs can be inferred 

• Such FDs are said to be logically implied by F 

• F+ is the set of all FDs logically implied by F 

• We can compute F+ using formal definition of FD 

• If F were large, this process would be lengthy & 
cumbersome 

• Axioms or Rules of Inference provide simpler technique 

• Armstrong’s Axioms 
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Inference Rules for FDs 

Armstrong's inference rules: 
IR1. (Reflexive) If Y  X, then X  Y 

IR2. (Augmentation) If X  Y, then XZ  YZ 

  (Notation: XZ stands for X U Z) 

IR3. (Transitive) If X  Y and Y  Z, then X  Z 

 

 IR1, IR2, IR3 form a sound & complete set of 

inference rules  

Never generates 
any wrong FD 

Generate all FDs 
that hold 
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Example 

• R = (A, B, C, G, H, I) 
F = {  A  B 
    A  C 
 CG  H 
 CG  I 
    B  H} 

• some members of F+ 

– A  H         

• by transitivity from A  B and B  H 

– AG  I        

• by augmenting A  C with G, to get AG  CG  

                   and then transitivity with CG  I  

– CG  HI      

• By union rule 
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• Based on FDs that take into account all candidate 

keys of a relation 

• For a relation with only 1 CK, 3NF & BCNF are 

equivalent 

• A relation is said to be in BCNF if every 

determinant is a CK 

• Is PLOTS in BCNF? 

• NO 

BCNF 
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3NF Schema 

Account Client Office 

A Joe 1 

B Mary 1 

A John 1 

C Joe 2 

For every functional 

dependency X->Y in a set F 

of functional  dependencies 

over relation R, either:   

– Y is a subset of X or, 

– X is a superkey of R, or 

– Y is a subset of K for 
some key K of R 

Client, Office -> Client, Office, Account 
Account -> Office Preview from Notesale.co.uk
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Goals of Decomposition 
1. Lossless Joins 
    Want to be able to reconstruct big (e.g. universal) relation by  
     joining smaller ones (using natural joins)    
          (i.e.    R1       R2 = R) 
 

2. Dependency preservation 
      Want to minimize the cost of global integrity constraints based on FD’s 
       ( i.e. avoid big joins in assertions) 
 
3. Redundancy Avoidance 
      Avoid unnecessary data duplication (the motivation for decomposition) 

Why important? 
       LJ :  information loss 
       DP:  efficiency (time) 

       RA: efficiency (space), update anomalies 
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Decomposition Goal #2: Dependency 

preservation 

Example:      Given    F = { AB,  AB D, C D} 
 
consider   R  = R1  U  R2 s.t.  
            R1 = (A, B, D)    ,  R2 = (C, D) 

(1)   F+ = { ABD,  CD}+ 
(2)   G = {ABD, CD, ...} + 
 
(3)  F+ = G+    
          note: G+ cannot introduce new FDs not in F+ 
 
Decomposition is DP 
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Example 
• R = (A, B, C ) 

F = {A  B 

  B  C} 
Key = {A} 

• R is not in BCNF (B  C but B is not  
superkey) 

• Decomposition R1 = (A, B),  R2 = (B, C) 

– R1 and R2 in BCNF 

– Lossless-join decomposition 

– Dependency preserving 
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3NF Decomposition Algorithm 
 Let Fc be a canonical cover for F; 

i := 0; 
for each  functional dependency a   in Fc do 
 if none of the schemas Rj, 1  j   i contains  a   
  then begin 
    i := i  + 1; 
    Ri  := a   
   end 
if none of the schemas Rj, 1  j   i contains a candidate key for R 
 then begin 
   i := i  + 1; 
   Ri := any candidate key for R; 
  end  
/* Optionally, remove redundant relations */ 

      repeat 
if any schema Rj is contained in another schema Rk 

        then /* delete Rj  */ 
           Rj = R;; 
           i=i-1; 
return (R1, R2, ..., Ri)       

Preview from Notesale.co.uk

Page 63 of 67



BCNF Decomposition Algorithm 
 result := {R }; 

done := false; 
compute F +; 
while (not done) do 
 if (there is a schema Ri in result  that is not in BCNF) 
  then begin 
   let a     be a nontrivial functional dependency that  
                       holds on Ri  such that a   Ri is not in F +,  
       and a    = ; 
      result := (result – Ri )  (Ri – )  (a,  ); 
      end 
  else done := true;  

 

     Note:  each Ri is in BCNF, and decomposition is lossless-join. 
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