Chemistry Formulae

ii. Helium gas

Dalton's Law

Total pressure = sum of partial pressure of all gases

Example:

A container is filled with the gases oxygen, neon and argon with partial pressure 10.0kPa, 30.0kPa and 15.0kPa. Calculate total pressure.

$$P_{tot} = PN_2 + PHe + PAr$$

= $(10.0 + 30.0 + 15.0)kPa$
= $55.0kPa$

Ideal Gas Equation

Liquid X is either ethanol C₂H₅OH or methanol CH₃OH. When 0.0800g of liquid X is heated in a syringe to 127° C, the vapour produced a pressure 1.00×10^{5} Pa and occupies 81.0 cm^{3} . Given R = 8.31

a) Calculate relative molecular mass of X (2m)

b) Calculate M_r of C₂H₅OH. The identify X. (2m)

Chemistry Formulae

Final temperature	65.0 °C
Initial temperature	25.0 °C
Mass of ethanol	1.95 g
Density of water	1.00 gcm ⁻³
Volume of water in	300 cm ³
aluminium can	

Calculate the enthalpy change of combustion of ethanol in kJmol⁻¹ [-1260kJmol⁻¹]

Enthalpy change of reaction does not do

Given the following enthalpy change:

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(I)$$
 $\Delta H = -286$
 $C(s) + O_{2}(g) \rightarrow CO_{2}(g)$ $\Delta H = -394$

$$\mathsf{CH_4}\left(\mathsf{g}\right) + 2\mathsf{O}_2\left(\mathsf{g}\right) \to \mathsf{CO}_2\left(\mathsf{g}\right) + 2\mathsf{H}_2\mathsf{O}\left(\mathsf{I}\right) \qquad \qquad \pmb{\Delta\mathsf{H}} = \textbf{-890}$$

$$\mathrm{C_2H_6\left(g\right)} + 7/2~\mathrm{O_2\left(g\right)} \Rightarrow 2\mathrm{CO_2\left(g\right)} + 3\mathrm{H_2O\left(I\right)}~\Delta H = \textbf{-1560}$$

Calculate the standard enthalpy for the reaction below

a) C (s) +
$$2H_2$$
 (g) \rightarrow C H_4 (g)

b) 2C (s) +
$$3H_2(g) \rightarrow C_2H_6(g)$$