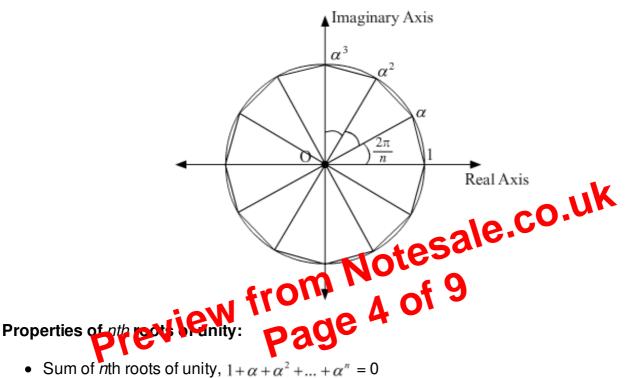
If
$$r = n - 1$$
, then $x = \cos \frac{2(n-1)\pi}{n} + i \sin \frac{2(n-1)\pi}{n} = e^{i\frac{2(n-1)\pi}{n}}$

The roots 1, $e^{i\frac{2\pi}{n}}$, $e^{i\frac{4\pi}{n}}$, ..., $e^{i\frac{2(n-1)\pi}{n}}$ are the *n*th roots of unity.

If $e^{i\frac{2\pi}{n}} = \alpha$ then the n^{th} roots of unity will be represented as 1, α , α^2 ,..., α^{n-1} .

Representation of *n*th **roots of unity on the Argand plane:**

The *n*th roots of unity when plotted on Argand plane represent the vertices of a regular polygon of *n* sides which are inscribed in the circle |z| = 1.



• Sum of *n* in 10013 of anity, $1+\alpha+\alpha+\ldots+\alpha=0$

- Product of n^{th} roots of unity, $1 \times \alpha \times \alpha^2 \times \ldots \times \alpha^{n-1} = -1^{n-1}$
- $1 + \alpha^r + \alpha^{2r} + \ldots + \alpha^{(n-1)r} = 0$ if H.C.F (r, n) = 1
- A number of the form a + ib, where a and b are real numbers and $i = \sqrt{-1}$, is defined as a complex number.
- For the complex numbers z = a + ib, a is called the real part (denoted by Re z) and b is called the imaginary part (denoted by Im z) of the complex number z.

Example: For the complex number $z = \frac{-5}{9} + i \frac{\sqrt{3}}{17}$, Re $z = \frac{-5}{9}$ and Im $z = \frac{\sqrt{3}}{17}$

Two complex numbers z₁ = a + ib and z₂ = c + id are equal if a = c and b = d.

Addition of complex numbers

Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ can be added as,

$$z_1 + z_2 = (a + ib) + (c + id) = (a + c) + i(b + d)$$