Line Spectra and the Bohr Model

Bohr Model

- Since the energy states of equantized, the light emitted frame xcite batoms must be quantized and appear as line spectra.
- After lots of math, Bohr showed that

$$E_n = \left(-2.178 \times 10^{-18} \text{ J} \right) \left(\frac{1}{n^2}\right)$$

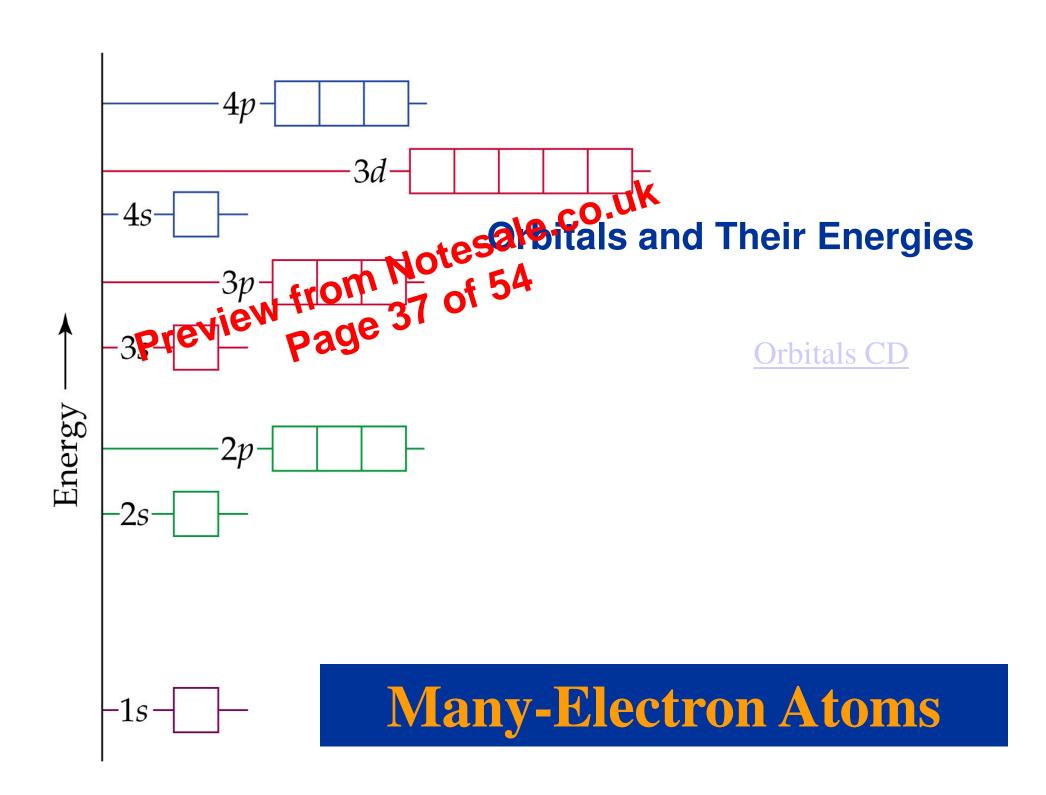
where n is the principal quantum number (i.e., n = 1, 2, 3, ... and nothing else).

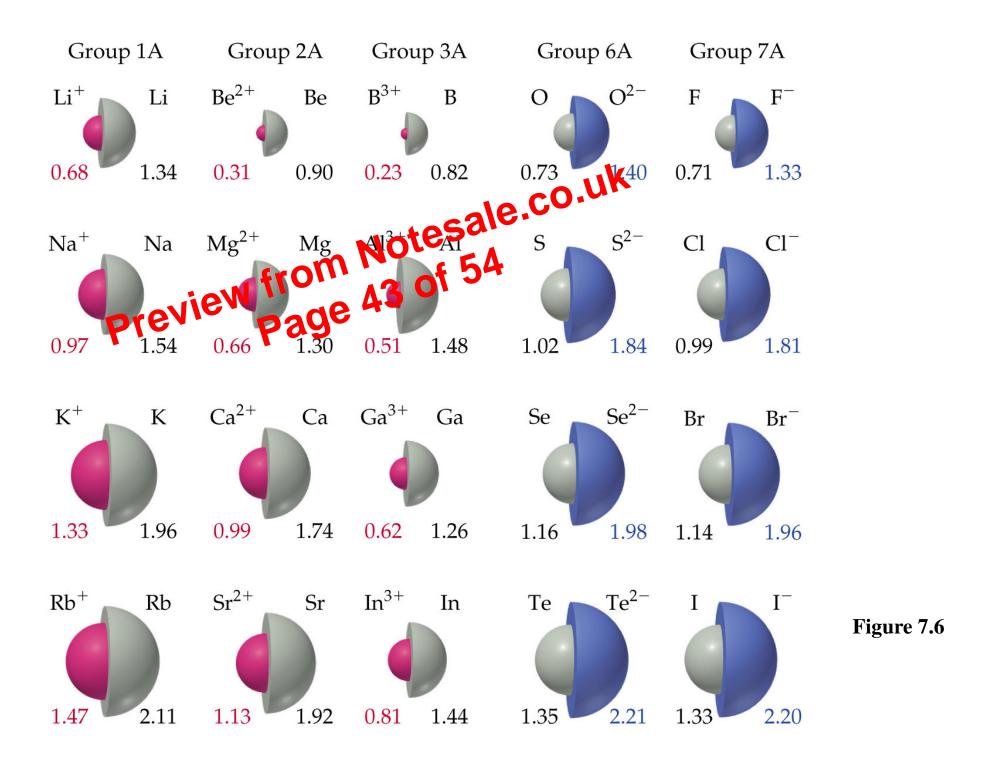
Energy and Matter

Size of Matter	Particle Procorty	Wave Property
Large Tew from Page	Wainly	Unobservable
Intermediate – electron	Some	Some
Small – photon	Few	Mainly

 $E = m c^2$

Quantum Mechanics and Atomic Orbitals


Equation gives rise to 'Orbitals iew page 24 of 54


These orbitals = the electron density distributed about the nucleus. Orbitals are described by quantum numbers. χ

Quantum Mechanics and Atomic Orbitals

Orbitals and Quantum Numbers

TABLE 6.2 Relationship of Total Number of Possible Subshell Possible Orbitals in						
п	Possible Values of <i>l</i>	Subshell Designation	Possible Values of m_l	Number of Orbitals in Subshell	Total Number of Orbitals in Shell	
1	0	1s	0	1	1	
2	0	2 <i>s</i>	0	1		
	1	2 <i>p</i>	1, 0, -1	3	4	
3	0	3s	0	1		
	1	3 <i>p</i>	1, 0, -1	3		
	2	3d	2, 1, 0, -1, -2	5	9	
4	0	4s	0	1		
	1	4p	1, 0, -1	3		
	2	4d	2, 1, 0, -1, -2	5		
	3	4f	3, 2, 1, 0, -1, -2, -3	7	16	

Group Trends for the Active Metals

Group 24 The Alkaline Earth Metals from 19 of 54

TABLE 75 (S)	vie Propertics of	che Alkaline Earth Metals
--------------	-------------------	---------------------------

Element	Electron Configuration	Melting Point (°C)	Density (g/cm³)	Atomic Radius (Å)	I_1 (kJ/mol)
Beryllium	$[He]2s^2$	1287	1.85	0.90	899
Magnesium	$[Ne]3s^2$	650	1.74	1.30	738
Calcium	$[Ar]4s^2$	842	1.54	1.74	590
Strontium	$[Kr]5s^2$	777	2.63	1.92	549
Barium	$[Xe]6s^2$	727	3.51	2.15	503

Group Trends for Selected Nonmetals

iew from Notesale Group 7A: The Halogens

TABLE 7	75	S me Pr	op roi e	317	ne Halogens
---------	----	----------------	-----------------	-----	-------------

Element	Electron Configuration	Melting Point (°C)	Density	Atomic Radius (Å)	I ₁ (kJ/mol)
Fluorine	$[He]2s^22p^5$	-220	1.69 g/L	0.71	1681
Chlorine	[Ne] $3s^23p^5$	-102	3.21 g/L	0.99	1251
Bromine	$[Ar]3d^{10}4s^24p^5$	-7.3	3.12g/cm^3	1.14	1140
Iodine	$[Kr]4d^{10}5s^25p^5$	114	4.93 g/cm^3	1.33	1008

Group Trends for the Active Metals

- Group 253 The Alkaline Earth Metals

 Alkaline earth one talk are 54 rder and more dense than the alkaline talk age 53
 - The chemistry is dominated by the loss of two s electrons:

$$M \rightarrow M^{2+} + 2e^{-}$$
.
 $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$
 $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

• Be does not react with water. Mg will only react with steam. Ca onwards:

$$Ca(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g)$$