Preface

In the present venture we present a few important aspects of Ordinary Differential equations
in the form of lectures. The material is more or less dictated by the syllabus suggested by
NPTEL program ( courtesy MHRD, Government of India). It is only a modest attempt to
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the material is presented in the form of lectures rather than as chapters of a book.

In all there are 39 lectures. More or less a theme is selected for each lecture. A few
problems are posed at the end of each lecture either for illustration or to cover a missed
elements of the theme. The notes is divided into 5 modules . Module 1 dealswith existence
and uniqueness of solutions for Initial Value Problems(IVP) while Module 2 dealswith the
structure of solutions of Linear Equations Of Higher Orders. The Study of Systems Of Linear
Differential equations is the content of Module 3. Module 4 is an elementary introduction
to Theory Of Oscillations and Two Point Boundary Value Problems. The notes ends with
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Theory. Elementary Real Analysis, Linear Algebra is a prerequisite.
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implies the inequality

£(8) < h(t) + /t " G($)h(s) exp ( /t Sg(u)du)ds, Lt

0

{Hint: Let z(t) = ft'; g(s)f(s)ds. Then,

Hence,
() — g(t)z(t) < g(H)h(t).
Multiply by exp(— ftto g(s)ds) on either side of this inequality and integrate over [to, ¢]}.
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Exercise : Prove that Z is a solution of (1.5) existing on hy < t < ho.

Now consider a rectangle around P : (hg, z(ha — 0)) lying inside D. Consider a solution
of (1.5) through P. As before, by Picard’s theorem there exists a solution y through the
point P on an interval

ho —a<t<hs+a a>0 and with ho — a > h;.
Now define z by

E(t), hi<t<h
2(t) =y(t), ha<t<hs+a.

Claim: z is a solution of (1.5) on h; < t < hg + . Since y is a unique solution of (1.5) on
ho —a <t < hy+ «a, we have

:i’(t) = y(t), hg — S t S hg.

We note that z is a solution of (1.5) on he <t < hy 4+ « and so it only remains to verify that
Z' is continuous at the point ¢t = hy. Clearly,

t
z(t) = &(hg) + : f(s,2(s))ds, ha <t <hs+a. (1.20)

Further, K
&(he) = zo + f(s 2( \e CO \.) (1.21)

to
Thus, the relation (1.20) and (1.21) together )ﬂo“e

p(e\’ e\l\ﬂl “é%gzg ?i ?:‘%

Obviously, the derivatives at the end points hy and he 4+ « are one-sided.
We summarize :

Theorem 1.4.1. Let

(i) D C R™! be an open connected set and let f : D — R be continuous and satisfy the
Lipschitz condition in x on D;

(ii) f be bounded on D and
(7ii) = be a unique solution of the IVP (1.5) existing on hy <t < hs.
Then,

li t
i (1)

exists. If (ho,z(hy — 0)) € D, then = can be continued to the right of hs.
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Since the function f is continuous on the rectangle
R={(ta): |t —to| <T, & — z0| < %(eKT Y
there exists a real number L; > 0 such that
|f(t,x)] < L1, (t,z) € R.

Moreover, the convergence of the sequence {z,} is uniform implies that the limit x is con-
tinuous. From the corollary (1.14), it follows that

Ly (KT)"™ er

o(8) — )] < 0T

Finally, we show that x is a solution of the integral equation
t
z(t) =zo+ [ f(s,2(s))ds, to<t<to+T. (1.35)
to
Also

j(t) — o — / f(s,2(5))ds| = |(t) — zn(t) + / [£(5,2a(s)) — £(s2(s))]ds]

< Ja(t) = zn(t)| + }f(sw(t)) — f(s,2n(s))ds| 36)

Since z, — x uniformly on [to,to + T, the right side of (1.36) te é @@;1-—> co. By
letting n — oo, from (1.36) we indeed have

\(2=
éém Q @Eﬂ’
P(e\,\ ?@Q@ﬂgfds t € [to, to + T).

The uniqueness of x follows s

or else

ilarly as shown in the proof of Theorem 1.3.2. O

Remark : The example cited at the beginning of this section does not contradict the
Theorem 1.5.1 as f(t,2) = 22 does not satisfy the strip condtion f € Lip(S, K).

A consequence of the Theorem 1.5.1 is :

Theorem 1.5.2. Assume that f(t,x) is a continuous function on |t| < oo, |z| < co. Further,
let f satisfies Lipschitz condition on the the strip S, for all a > 0, where

Se =A{(t,x) : t| < a,|z|] < co}.
Then, the initial value problem
¥ = f(t,z), x(ty) = o, (1.37)

has a unique solution existing for all t.
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Lecture 6

1.6 Existence and Uniqueness of Solutions of Systems

The methodology developed till now concerns existence and uniqueness of a single equation
or usually called a scalar equations which is a natural extension for the study of a system
of equations or to higher order equations. In the sequel, we glance at these extensions. Let
I C R be an interval, E C R™. Let fi, fo,..., fn : I Xx E — R be given continuous functions.
Consider a system of nonlinear equations

ry = fi(t, v, 22, ..., 7p),
xh = fot, 21,22, ooy Tn),

RRDRRRORRPRRO (138)
zl, = fu(t, 1,29, .0y Ty,

Denoting (column) vector x with components 1, z2, ..., z, and vector f with components
f1, f2y .-y fn, the system of equations (1.38) assumes the form

¥ = f(t, z). (1.39)

A general n-th order equation is representable in the form (1.38) which mwg\é tudy
of n-th order nonlinear equation is naturally embedded in the It speaks of
the importance of the study of systems of nonhnea\‘e g- eaving apart numerous
difficulties that one has to face. Consider an

"( Q“\ @ ‘x l67 (1.40)
The px?sf%}g, ;ngnon— m %rems for systems of equations stated below

have a femarkable resemblan! of scalar equations. The detailed proofs are to be
supplied by readers with suitable modifications to handle the presence of vectors and their
norms. Below the symbol |.| is used to denote both the norms of a vector and the absolute
value. There is no possibility of confusion since the context clarifies the situation.
In all of what follows we are concerned with the region D, a rectangle in R™*! space,
defined by
D ={(t,x) : [t —to| < a,|xr — x0| < b},

where x,x¢g € R" and ¢,t5 € R.

Definition 1.6.1. A function f : D — R"™ is said to satisfy the Lipschitz condition in the
variable x, with Lipschitz constant K on D if

If(t,x1) — f(t, x2)| < K|z — 2 (1.41)
uniformly in ¢ for all (¢,21), (¢, z2) in D.
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Lecture 7

1.7 Cauchy-Peano Theorem

Let us recall that the IVP stated in Example 1.6.7 admits solutions. It is not difficult to
verify, in this case, that f is continuous in (¢,z) in the neighborhood of (0,0). In fact, the
continuity of f is sufficient to prove the existence of a solution. The proofs in this section
are based on Ascoli-Arzela theorem which in turn needs the concept of equicontinuity of a
family of functions. We need the following ground work before embarking on the proof of
such results. Let I = [a,b] C R be an interval. Let F'(I,R) denote the set of all real valued
functions defined on I.

Definition 1.7.1. A set E C F(I,R) is called equicontinuous on [ if for any € > 0, there is
a 0 > 0 such that for all f € F,

|f(z) — f(y)| <€, whenever |z —y| <d.

Definition 1.7.2. A set E C F(I,R) is called uniformly bounded on [ if there is a M > 0,
such that
|f(z)] < M for all f € E and for all z € I.

Theorem 1.7.3. (Ascoli-Arzela Theorem) Let B C F(I,R) be any umformly boun j% nd

equicontinuous set on I. Then, every sequence of functions { f,} in B cont

{fn,}:k=1,2..., which converges uniformly on every compac@ er
Theorem 1.7.4. (Peano’s existence theore taé

et S C R? be a strip
defined by m
LNOV 1l 5y @:ﬁ
Let I': [tovt%@\r\ie — R be § nuous function. Then, the IVP

to = X, (145)
has at least one solution existing on [xg — a,zo + al.

Proof. The proof of the theorem is first dealt on [tg, %y + a] and the proof on [ty — a,tp] is
similar with suitable modifications. Let the sequence of functions {x,} be defined by, for
n=1,2
wa(t) =m0, to<t<to+-, tel,
n
t—2
n k kE+1
xn(t) = zo +/ f(s,zn(s))ds if o+ o< to + w, E=1,2,...,n (1.46)
to n n
We note that z,, is defined on [to, o + %] to start with and thereafter defined on

k k+1
[to+£,t0+u, k=1,2,...,n.
n n
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1. Find the general solution of 2"/ +z” +12’+x = 1 given that cost,sint and e™* are three
linearly independent solutions of the corresponding homogeneous equation. Also find
the solution when z(0) = 0,2/(0) = 1,2"”(0) = 0.

2. Use the method of variation of parameter to find the general solution of 2 — 2’ = d(t)
where
(i) dt)=t, (i) d(t)=¢€!, (iii) d(t) =cost, and (iv) d(t) = e ".
In all the above four problems assume that the general solution of z’”/ — 2’ = 0 is
c1+ 02€_t + 03et.

3. Assuming that cos Rt and Sin—lf’f form a linearly independent set of solutions of the
homogeneous part of the differential equation 2” + R?x = f(t), R # 0,t € [0,00),
where f(¢) is continuous for 0 < t < oo show that a solution of the equation under
consideration is of the form

B 1 [t
ﬂw:/m%3p+mmM+-t/smm@—sﬂﬂ®%,
R R J

where A and B are some constants. Show that particular solution of (2.14) is not
unique. (Hint : If z, is a particular solution of (2.14) and z is any solution of (2.15) then
show that x, + cx is also a particular solution of (2.14) for any arbitrary constant c.)

Two Useful Formulae
Two formulae proved below are interesting in themselves. They are alga uskf vhﬂe

studying boundary value problems of second order equations. Cox a@ tl‘on
L(y) = ao(t)y” + ax(t

where ag, a1,a2 : I — R are continu m méadd %’(O for t € I. Let u and
v be any two twice d1ffer<tNa ﬁ S on on,

u") + ay (uwv' —vu'). (2.23)
The Wronsklan of u and v i Qen by W = uv’ — v’ which shows that
%W(u v) = wv” —ovu”.

Note that the coefficients of ap and a; in the relation (2.23) are W'(u,v) and W (u,v)
respectively. Now we have

Theorem 2.4.5. If u and v are twice differential functions on I, then

LW, o] + ay ()W, o], (2.24)

uL(v) = vL(u) = aot) 3

where L(x) is given by (2.7). In particular, if L(u) = L(v) = 0 then W satisfies

aw

W[u, v] + a1 Wlu,v] = 0. (2.25)

ao
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Lecture 13

The results which have been discussed above for a second order have an immediate
generalization to a n-th order equation (2.34). The characteristic equation of (2.34) is given
by

L(p) = app” + a1p™ ' +---+a, =0. (2.39)
If p; is a real root of (2.39) then, eP'! is a solution of (2.34). If p; happens to be a complex
root, the complex conjugate of p; i.e., py is also a root of (2.39). In this case

e cosbt and e sin bt

are two linearly independent solutions of (2.34), where a and b are the real and imaginary
parts of p1, respectively.

We now consider when roots of (2.39) have multiplicity(real or complex). There are two
cases:

(i) when a real root has a multiplicity ms,
(ii) when a complex root has a multiplicity m;.

Case 1: Let g be the real root of (2.39) with the multiplicity m;. By induction we have my
linearly independent solutions of (2.34), namely

eqt,teqt,tQth,-- (e K
Case 2: Let s be a complex root of (2.39) with the mu%&% 9 $ = 81 + 189.

Then, as in Case 1, we note that O
m w Lest, 7 (2.40)

are mj hnea ?@Ncomplex Vi ed ons of (2. 34 For (2.34), the real and
1mag1n ch solu is also a solutlons of (2.34). So in this case
2m1 lin arly mdependent so ) are given by

€51t cos Sot, el tgin Sot
testt cos sot, te'tsin sot
t2es1t cos sot, t2e%1t sin sot (2.41)

tmi—lesit cos sot, t™1 LeS1t gin sot

Thus, if all the roots of the characteristic equation (2.39) are known, no matter whether
they are simple or multiple roots, there are n linearly independent solutions and the general
solution of (2.34) is

c1r1 + Ty + -+ Xy

where x1, 2, - , z, are n linearly independent solutions and ¢y, ¢, - - - , ¢, are any constants.
To summarize :
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Lecture 15
Example 3.2.4. For illustration we consider a linear equation
" —6x" + 112’ — 62 = 0.
Denote
ri=z, a)=xz2=2a, ah=2a"=us;.

Then, the given equation is equivalent to the system 2’ = A(t)z, where

1 0 1 O
x=|z2| and A(t)=10 0 1
I3 6 —11 6

The required general solution of the given equation z; and in the present case, we see that

x1(t) = cret + cpe?t + eze?,

where c1, co and c3 are arbitrary constants.

EXERCISES
1. Find a system of first order differential equation for which y defined by \(
[P+ 2t+5 .

is a solution.

2. Represent the IVP _‘( Om N
_* 2
aQs s%n of 2 equati@ ag
/

Show that f is continuous. Find a value of M such that

[f(tx)] < Mon R={(tz):[t| <1,z <1}

3. The system of three equations is given by
(:L'l,xg,x:g)/ = (4.%‘1 —x9,3x1 + X2 — X3, T + xg).
Then,

(i) show that the above system is linear in 1, x2 and x3;

(ii) find the solution of the system.

4. On the rectangle R
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Substituting the values of ¢, ¢}, - - - ¢},, from (3.19), the first term on the right side reduces

to
n n n
D awdr > bk o Y Gkdkn
k=1 k=1 k=1
P21 P22 e P2n

¢n1 ¢n2 T ¢nn
which is a11det®. Carrying this out for the remaining terms it is seen that
(det @) = (a11 + ag2 + -+ + app)det® = (trA)detd.

The equation thus obtained is a linear differential equation. The proof of the theorem is
complete since we know that the required solution of this is given by (3.18). O

Theorem 3.3.2. A solution matriz ® of (3.16) on I is a fundamental matriz of (3.14) on
I if and only if det ® £ 0 fort € 1.

Proof. Let ® be a solution matrix such that det ®(t) # 0,¢ € I. Then, the columns of ® are
linearly independent on I. Hence, ® is a fundamental matrix. The proof of he converse is
still easier and hence omitted. O

Some useful properties of the fundamental matrix are established below.

Theorem 3.3.3. Let ® be a fundamental matriz for the system (3.14) and let Cbe wwnt
non-singular matriz. Then, ®C' is also a fundamental matriz for é n, every
fundamental matriz ¥ of (3.14) is ®C for some non- smgul

Proof. The first part of the theorem is a sing e of m 3.3.2 and the fact
that the product of non- smgul on smgular 2 be two fundamental
q

matrices for (3. 14 and let en <I> D uation (3.16) now implies
that A®y = <I>1 +A<I> @ ha <I>1\I/' = 0 which shows that ¥/ = 0.
is a 1

Hence nce ®; and P, are non-singular so is C. [
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EXERCISES

1. Let ® be a fundamental matrix for (3.14) and C' is any constant non-singular matrix
then, in general, show that C® need not be a fundamental matrix.

2. Let ®(t) be a fundamental matrix for the system (3.14), where A(t) is a real matrix.
Then, show that the matrix (®!(¢))7 satisfies the equation

%(‘I)*UT — _AT((I)fl)T

Y

and hence show that (®~1)7 is a fundamental matrix for the system
o' =—-AT(t)z, tel. (3.23)
System (3.23) is called the “adjoint” system to (3.14) and vice versa.

3. Let ® be a fundamental matrix for Eq.(3.14), with A(¢) being a real matrix. Then,
show that ¥ is a fundamental matrix for its adjoint (3.23) if and only if ¥7'® = C,
where C' is a constant non-singular matrix.

4. Consider a matrix P defined by

- [ 5 ven oK

where f; and fo are any two linearly independ ae\on I. Then, show that
det[P(t)] = 0 on I, but the columns of P‘g& y in % ent Can the columns

P be solutions of linear h @ ms of e att&n’
in the light of Theor ﬁ O
5. vvl@ad \1%11‘5 ofﬁ g@ m@m ® which satisfies ®(0) = E for the system

e form (3.14)7 (See it

—1 3 4
A=|0 2 o0/;
1 5 -1

(b)
1 3 8
A=|-2 2 1
-3 0 5

6. Can the following matrices ® be candidates for fundamental matrices for some linear
system

=Alt)x, tel,
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3.6 Phase Portraits-Introduction
Lecture 19

In this elementary study, we wish to draw the phase portraits for a system of two linear
ordinary differential equations. In order to make life easy, we first go through a bit of ele-
mentary linear algebra.Parts A and B are more or less a revision ,,which hopefully helps the
readers to draw the phase portraits. We may skip Parts A and B in case we are familiar
with curves and elementary canonical forms for real matrices.

Part A: Preliminaries.

Let us recall: R denotes the real line. By R™, we mean the standard or the usual Euclidean
space of dimension n, n > 1. A n x n matrix A is denoted by (aij)nxn, @ij € R. The set
of all such real matrices is denoted by M, (R). A € M, (R) also induces a linear operator on
R™(now understood as column vectors) defined by

x 3 A(z) or A: R — R"
more explicitly defined by A(z) = Az(matrix multiplication). L(R™) denotes the set of
all linear transformations from R" to R"™. For a n x n real matrix A, we some times use
Ae My(R) or Ae L(R") . Let T' € L(R™). Then, Ker(T) or N(T') (read as kernel of T or
Null space of T ejectively) is defined by \(

Ker(T)=N(T): ={z eR": Tx—o}x

The dimension of Ker(T) is called the nullity of &@' . The dimension
of range of T is called the rank of T and isyde ﬁr T e L(]R”) the Rank

Nullity Theorem asserts

"( O v+ 7
Conse tr \1’&@[& é@e is hnear T is one-one iff T' is onto. Let us
now p;?l ollowing resul

1. Theorem : Given T € L(R") and given ty > 0, the series

is absolutely and uniformly convergent for all |t| < ¢.
Proof: We let | T ||= a. We know

Tktk a® to
| <
and
o0
ak té: _ 6at0
ko
k=0
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Figure 3.2:

while the phase portrait of (3.49) is (fig.3.3)

= &N z

Figure 3.3:

Supply the details for drawing Figures 3.2 and 3.3.

In general, it is easy to write/draw the phase portrait of (3.49) when A in its
canonical form. Coming back to (3.49), let P be an invertible 2 x 2 matrix such that
B = P! AP, where B is a canonical form of A. We now consider the system

y' = By (3.51)

By this time it is clear that phase portrait for (3.49) is the phase portrait of (3.51)
under the transformation x = Py. We also write that B has one of the following form.

@o=[ 3] o] @s-f ]
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s>0 "~ bxo
) ()

Figure 3.7:

Also, we note that the phase portraits for (??7) is a family of ellipses as shown in

. NN UK
©) (e
528\ N 5’3‘< ®
Pey pad

Figure 3.8:

In this case the origin is called the center for the system (??). We end this short
discussion with an example.
Example : Consider the linear system

.Z"l = —41‘2; .%"2 =2

or j:‘l o 0 —4 X1 . . 0 —4
.’i’g - 1 0 X9 ’ o 1 0
It is easy to verify that A has two non-zero (complex) eigenvalues +2i. With usual

notations
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3. Prove that any solution x of (4.2) has at most a countable number of zeros in (0, c0).

4. Show that the equation
' +a(t)r +b(t)r =0, t>0 (*)
transforms into an equation of the form
(p(t)2') +q(t)z =0, t=>0  (*%)

by multiplying (*) throughout by exp( fg a(s)ds), where a and b are continuous func-
tions on [0, 00),

p(t) = exp(f{ a(s)ds) and q(t) = b(t)p(t):

State and prove a result similar to Theorem 4.1.5 for equation (*) and (**). Also show
that if a(t) = 0, then, (**) reduces to 2’ + ¢(t)z = 0,¢ > 0.
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(a) Fither A = —oc0 or B = co.

(b) Both A= —o0 and B = cc.

(c) a(t) =0 for at least one point t in (A, B).
The proof is obvious.

In this chapter, the discussions are confined to only regular BVPs. The definitions listed
so far lead to the definition of a nonlinear BVP.

Definition 4.4.8. A BVP which is not a linear BVP is called a nonlinear BVP.

A careful analysis of the above definition shows that the nonlinearity in a BVP may be
introduced because

(i) the differential equation may be nonlinear;

(ii) the given differential equation may be linear but the boundary conditions may not be
linear homogeneous.

The assertion made in (i) and (ii) above is further clarified in the following example .
Example 4.4.9. (i) The BVP

2+ |z =0, O0<t<m

with boundary conditions x(0) = x(7) = 0 is not linear due to the p@@e &\(
(ii) The BVP \
2" — 4z =é' btesa

with boundary condltlons _‘
e 9 ,3—@% @ 0
s@@@:\’ &@qa’@@bo dary conditions is not linear homogeneous.

EXERCISES

1. State with reasons whether the following BVPs are linear homogeneous, linear non-
homogeneous or non-linear.

(i) 2" +sinz =0, z(0)=z(27) =0.
(ii) 2"+ 2 =0, z(0)==a(r), 2/(0)=2(7
(iii) 2" + x =sin2t, x(0) =x(7) =0.
(iv) 2"’ +x =cos2t, 2%2(0)=0, z%(w)=2'(0).

\_/

2. Are the following BVPs regular ?
(i) 2tz" +2'+2=0, =z(-1)=1, z(1)=1.
(ii) 22" — 32’ + 42 =0, xz(—o0) =0, z(0)=1.
(i) " =92 =0, z(0)=1, x(c0)=0.
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Lecture 27

The following theorem deals with periodic boundary conditions given in (4.20) .

Theorem 4.5.5. Let the assumptions of theorem 77 be true. Suppose x,, and x, are eigen-
functions of BVP (4.17) and (4.20) corresponding to the distinct eigenvalues Ay, and Ay
respectively. Then, x,, and xz, are orthogonal with respect to the weight function r(t).

Proof. In this case
(W @n,2)] = p(B)n(B)ain(B) — 2, (B)rm(B) — e A)a(4) + h(A)(A)].

The expression inside the brackets is zero once we use the periodic boundary condition (4.20)
O

The following theorem ensures that the eigenvalues of (4.17), (4.18) or (4.17), (4.19) are
real if r > 0 (or r(¢) < 0) on (A, B) and r is continuous on [A, B].

Theorem 4.5.6. Let the hypotheses of Theorem 7?7 hold. Suppose that r is positive on
(A, B) orr is negative on (A, B) and r is continuous on [a, B]. Then, all the eigenvalues of
BVP (4.17),(4.18) or (4.17), (4.19) are real.

Proof. Let A = a 4+ ib be an eigenvalue and let

x(t) = m(t) + in(t)
be a corresponding eigenfunction,where a,b, m(t) and n(t) are real. From (4.17) \\X%

(pm/ + pin’) + q(m + in) + (a + ib)r(m + m)\ CO
Equating the real and imaginary parts, we have es
' OrXr: 0

1
of 19
Ehmm@x aﬂ are \N . \gée—;é—t%%:;hesa

and

—b(m? +n%)r = = gllpnym — (pm/)n].
Thus, by integrating, we get
B B
—b/A (m?(s) 4+ n(s))r(s)ds = [(pn )ym — (pm )n]A. (4.26)

Since m and n satisfy one of the boundary conditions (4.18) and (4.19) or (4.20) , we have,
as shown earlier,

B B

[p(n'm — m'n)} L= [pW(m, n)]A =0. (4.27)
Also
B
/ [m?2(s) + n?(s)]r(s)ds # 0
A

by the assumptions. Hence, from (4.26) and (4.27) it follows that b = 0, which means that
A is real which completes the proof. O
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g(t) = copo(t) + cip1(t) + -+« + cupn(t) + - -,

where
en =251 [1) g(s) P(s)ds,n = 0,1,2, -
since
f P2 )ds = 2n+1,n:071,27...
EXERCISES

. Show that corresponding to an eigenvalue the Sturm-Liouville problem (4.17), (4.18)
or (4.17),(4.19) has a unique eigenfunction.

. Show that the eigenvalues for the BVP
2+ Xx=0,2(0) =0 and z(7) +2'(7) =0

satisfy the equation

ﬁ = —tanwxfx\.

Prove that the corresponding eigenfunctions are

sin(tv/An) CO \)\(
where )\, is an eigenvalue. tes \

. Consider the equation N 6’(
_‘( @m = 0 0<t é
Find the eie[‘ d elgenfuncu folfowing cases:

) =0,
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With this choice of ¢; and c2, G(t, s) defined by the relation (4.35) has all the properties of
the Green’s function. Since y and z satisfy L(x) = 0 it follows that

d

P p(yz —y'2)] = 0. (4.37)

y(p?') — 2(py') =
Hence

p(®)[y(t)2'(t) — v/ (t)z(t)] = A for all ¢ in [a, ]

where A is a non-zero constant (because y and z are linearly independent solutions of L(z) =
0). In particular it is seen that

y(s)2'(s) — 9/ (s)2(s)] = A/p(s), A # 0 (4.38)
From equation (4.36) and (4.38) it is seen that

c1 = —2(8)/A, e = —y(s)/A.

Hence the Green’s function is

—y(t)z(s)/A ift <s,
Gt ) = { Cpe)eA it s (4.39)

The main result of this article is Theorem .

Theorem 4.6.2. Let G(t, s) be given by the relation (4.39) then x(t) is ac@)q\)x(?ﬂ
: | | a\e
(4.33) and (4.34) if and only if $ tes /(
"f ,2 6 (4.40)
Proof. fea@tka}lzbl hold,
v 5ge >
o) ==} [ Zen s+ [ =1 /4. (1.41)
Differentiating (4.41) with respect to t yields
(1) = —[/: 2 ()y(s)f (s )ds+/tb ds} /A (4.42)

Next on computing (pz')’ from (4.42) and adding to gz in view of y and 2z being solutions
of L(z) = 0 it follows that

L(x(t)) = —f(1) (4.43)
Further, from the relations (4.41) and (4.42), it is seen that
Az(a) = —y(a) J, =(s) 1 (s )i,

{ Az'(a) = —y/(a) ffz(s)f (4.44)
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and n € R be a number such that
a; <n, (=12,---,m). (5.3)
Then, there exists a real constant M > 0 such that
ledt] < Me™, 0<t< oo (5.4)
Proof. Let e; be the n-vector with 1 in the j-th place and zero elsewhere. Then,
0i(t) = eMe;, (5.5)

denotes the j-th column of the matrix e**. From the previous module on systems of equa-
tions, we know that

m
eAtej = Z(cﬂ + cpot + -+ cmTt"”_l)e)""t, (5.6)
r=1
where ¢1,¢p2, -+, ¢, are constant vectors. From (5.5) and (5.6) we have
m m
| (t) Z (ler| + leralt + -+ |C7’nr|tm71)| exp(ay + i)t = Z Pr’(t)e%t (5.7)

r=1 u\(

where P, is a polynomial in ¢. By (5.3), \ CO

tk‘ CYT

tes (5.8)
for sufficiently large values of ¢. I &d dﬁer’e&%’lM > 0 such that
@ < M e"t ,& j=
Now P ( e\, \ é %—

4 < 3 loy (0] < My + My -+ M) = Me™ (0% 1 <),
j=1

where M = My + My + - - - + M, which proves the inequality (5.4). O

Actually we have estimated an upper bound for the fundamental matrix e for the
equation (5.1) in terms of an exponential function through the inequality (5.4). Theorem
5.2.2 proved subsequently is a direct consequence of Theorem 5.3.1 . It tells us about a
necessary and sufficient conditions for the solutions of (5.1) decaying to zero as t — oco. In
other words, it characterizes a certain asymptotic behavior of solutions of (5.1) It is quite
easy to sketch the proof and so the details are omitted.

Theorem 5.2.2. Every solution of the equation (5.1) tends to zero as t — +oo if and only
if the real parts of all the eigenvalues of A are negative.
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Obviously, if the real part of an eigenvalue is positive and if ¢ is a solution corresponding
to this eigenvalue then,
lp(t)| — +o0, ast — oc.

We shift our attention to the system

' = Az + b(t), (5.9)

where A is an n X n constant matrix, is a perturbed system with a perturbation term b,
where b : [0,00) — R is assumed to be continuous . Since a fundamental matrix for the
system (5.1) is e any solution of (5.9) is ( by the method of variation of parameters) is

t
z(t) = et 4z, +/ et 4p(s)ds, t>19 >0,

to

satisfies the equation (5.9). Here z( is an n- (column)vector such that x(ty) = xo. we take
the norm on both sides to get

t
2(t)] < et Agg| + / e =504 |b(s)|ds, 0<ty<t< oo.
to

Suppose |zg| < K and 7 is a number such that
n > Rexp(real part of)\;), i =1,2,---,m

.

where )\; are the eigenvalues of the matrix A. Now, in view of (5 \é h@
S\

t
|z(t)] < KMentto) +W@K’L@% % (5.10)
The inequality (5. 10 &Qe(o(f'\Th "W}O‘ce that the right side is

independent of on the congtan K d 1 and the function b. The inequality
(5.10) ? e estlm ‘ ﬁg\no of x for large values of ¢t depends on the sign
of the stant ¢ and the In the following result, we assume that b satisfies a

certain growth condition Whlch yleld an estimate for x.

Theorem 5.2.3. Suppose that b satisfies
b(t)] < pe™, t>T >0, (5.11)
where p and a are constants with p > 0. Then, every solution x of the system (5.9) satisfies
lz(t)| < Le® (5.12)
where L and q are constants.

Proof. Since b is continuous on 0 < t < oo, every solution z(of (5.9)) exists on 0 <t < 0.
Further

¢
z(t) = elle +/ et 4p(s)ds, 0 <t < oo, (5.13)
0

117



Hence, @ is uniformly bounded on [0,00). The condition in (5.26) implies, as in Theorem
5.3.5, that ®~1(¢) is bounded. Taking the norm on either side we have

[p@)] < [2@)]|C] + |@(t I/ |27 (s)]Ib(s)]ds

Now each term on the right side is bounded which shows that ¢(t) is also bounded. O
EXERCISES

1. Show that any solution of 2’ = A(t)z tends to zero as t — 0 where,

—t 0 O
i) At)=]0 —t2 0 |;
0 0 —t2
—et —1 —cost
(i) A{t)= | 1 —e?t 42 ;
cost —t2 —et

—t sint ]

i a0 = | ¢

2. Let x be any solution of a system ' = A(t)x. Let M (t) be the largest eigenvalue of

A(t) + AT (t) such that M( )ds < 0. \(
to CO u
Show that x is bounded. \

3. Prove that all the solutions of 2/ = N.&a@d wh }ﬂ{ is given by

¢ " l et 0
1 ey ; 11 nt O cost and (iii) [ _ ] .
( ey \ é — cos t 0 0 1

4. What can you say ab boundedness of solutions of the system
' = A(t)z + f(t) on (0, 00)

when a particular solution z,, the matrix A(t) and the function f are given below:

—t - o 0 —t
R Bl AU R el AU R Bl
3(sint — cost) -1 0 0 sint
(ii) zp(t) = 0 ,Aty=10 2 0 |, fO)=1] 0
0 0 0 —t 0

5. Show that the solutions of
¥ = Alt)x + f(t)

are bounded on [0, c0) for the following cases:
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3. Is the origin stabile in the following cases:

(i) 2 + 62" + 112’ 4+ 62 = 0,

(i) 2" — 62" + 112" — 62 = 0,

(iii) " + az” + ba’ + cx = 0, for all possible values of a,b and c.
4. Consider the system

/

X 0 2 0 I
) = -2 0 0 T2
T3 0 00 T3

Show that no non-trivial solution of this system tends to zero as t — oo. Is every
solution bounded ? Is every solution periodic 7

5. Prove that for 1 < a < v/2, 2’ = (sinlogt + coslogt — a)z is asymptotically stable.

6. Consider the equation
¥ =a(t)z.

Show that the origin is asymptotically stable if and only if

/OOO a(s)ds = —o0. u\(

Under what condition the zero solution is stable ? \ CO

5.5 Stability of L1near an (S% @r S
acl S

In this section the stabilit iystems are discussed with
more focus on line gﬁ Needless to st(xa portanee of these topics as these have
) ve

wide Yﬁ ny p a represention through (5.32), which may
be writ§en th a more useful@’
a

= A(t)x + f(t,x). (5.35)
The equation (5.35) simplifies the work since it is closely related with the system
= A(t)z. (5.36)

The equation (5.35) is perturbed form of (5.35). Many properties of (5.36) have already
been discussed. Under some restrictions on A and f, stability properties of (5.35) are very
similar to those of (5.36). We assume, to proceed further,

(i) Let us recall : I = [tg,00), for p>0, S,={zxeR":|z|<p}.
(ii) the matrix A(t) is an n X n matrix which is continuous on I;

(iii) f:1I x Soq — R™is a continuous function with f(¢,0) =0, ¢ € I.
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which takes the form

t
ly(t)|e” < Mlyole?® + M [ e*|f(s,y(s))|ds.
to

Let |yo| < . Then, the relation (5.42) is true in any interval [to,¢1) for which |y(¢)| < a.. In
view of the condition (5.41), for a given € > 0 we can find a positive number ¢ such that

|f(t,z)| <e€lz|, tel, forlx] <. (5.44)

Let us assume that |yo| < §. Then, there exists a number 7" such that |y(¢)| < ¢ for ¢ € [ty, T
Using (5.44) in (5.43), we obtain

t
WMMSMMWWMh/W%®W, (5.45)

to

for to <t < T. An application of Gronwall’s inequality to (5.45), yields
e ly(t)] < Mlyo|er™.eM(i=to) (5.46)

or for tg <t < T, we obtain

[y(B)] < Mlyo|e! P10, \“&w

Choose Me < p and y(to) = yo. If |yo| < /M, then, (5.47) ylela\e CO
WI<6?@@“8
ch’)daty ), t > to, |yl < a.

The solution y of the eq a 1sts 1
Since the function wﬂ I x Sa, d th olutlon y interval by interval by

preser Xs So glve = y(t;to, yo) with |yo| < §/M, y exists
on tg ? oo and satlsﬁe the above discussion, d can be made arbitrarily
small. Hence, y =0 is asym totlcally stable when Me < p. O

When the matrix A is a function of ¢ (ie A is not a constant matrix), still the stability
properties solutions of (5.35) and (5.36) are shared but now the fundamental matrix needs
to satisfy some stronger conditions. Let 7 : I — R™ be a non-negative continuous function

such that
/ r(s)ds < +o0.
to

Let f be continuous and satisfy the inequality
|f(t, )| <7r(t)|x|, (t,x) € I X S, (5.48)

The condition (5.48) guarantees the existence of a null solution of (5.35). Now the
following is a result on asymptotic stability of the zero solution of (5.35).
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A consequence :
In the light of the above proposition we again repeat that that the positive definiteness of
the matrices R and @ is a necessary and sufficient condition for the asymptotic stability of
the zero solution of the linear system (5.60).

Remark: The stability properties of zero solution of the equation (5.62)is unaffected if
the system (5.60) is transformed by the relation 2z = Py, where P is a non-singular constant
matrix. The system (5.60) then transforms to

y = (P 'AP)y.

Now choose the matrix P such that
pPtap

is a triangular matrix. Such a transformation is always possible by Jordan normal form. So
there is no loss of generality by assuming in (5.60) that, the matrix A is such that its main
diagonal consists of eigenvalues of A and for 7 < j, a;; = 0. In other words the matrix A is
of the following form:

M 0 o --- 0
as1 A9 o --- 0
A= |a3 a3z Az -+ 0

The equation (5.62) is

_a:u a;Q a;3 )\:n_ u\(
e

21
+ .
™1 T™h2 Tn3 - Tnn pl Gp2 3 A
qi1 q12 q13 -+ din
q21 g2 423 - {2n
dnl 4n2 4n3 *° dnn

Equating the corresponding terms on both sides results in the following system of equations
(Aj + A6)Tje = =Gk + (- Tk ),

where ¢, is a linear form in rpy, h+k > j+k, with coefficients in a,,. Hopefully the above
system determines r;;. The solution of the linear system is unique if the determinant of the
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