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Chapter 1

Thermodynamic systems and

the zeroth law

Ludwig Boltzmann, who spent much of his life studying statistical me-

chanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work,

died similarly in 1933. Now it is our turn to study statistical mechanics.

David L. Goodstein, States of Matter.

1.1 The goals of thermodynamics

Thermodynamics is the study of macroscopic systems for which thermal effects are
important. These systems are normally assumed to be at equilibrium, or at least,
close to equilibrium. Systems at equilibrium are easier to study, both experimentally
and theoretically, because their physical properties do not change with time. The
framework of thermodynamics applies equally well to all such macroscopic systems;
it is a powerful and very general framework.

An example of a thermodynamic system is a fluid (a gas or a liquid) confined to a
beaker of a certain volume, subjected to a certain pressure at a certain temperature.
Another example is a solid subjected to external stresses, at a given temperature.
Any macroscopic system for which temperature is an important parameter is an
example of a thermodynamic system. An example of a macroscopic system which
is not a thermodynamic system is the solar system, inasmuch as only the planetary
motion around the Sun is concerned. Here, temperature plays no role, although it
is a very important quantity in solar physics; our Sun is by itself a thermodynamic
system.

A typical question of thermodynamics is the following:

A macroscopic system A, initially at a temperature TA, is brought in
thermal contact with another system B, initially at a temperature
TB . When equilibrium is re-established, what is the final tempera-
ture of both A and B?

Another is

A macroscopic system undergoes a series of transformations which even-
tually returns it to its initial state. During these transformations,
the system absorbs a net quantity Q of heat, and releases a net
amount W of energy which can be used for useful work. What is the
efficiency of the transformation, that is, the ratio W/Q?

It is an important aspect of thermodynamics that these questions can be formu-
lated quite generally, without any explicit reference to what the thermodynamic

1
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6 Thermodynamic systems and the zeroth law

1.6.2 Empirical temperature

The existence of the relation g(P, V ) = θ for isotherms, inferred empirically above,
can also be justified by rigourous mathematics. We will now go through this ar-
gument. This will serve to illustrate a major theme of thermodynamics: Simple
physical ideas (such as the zeroth law) can go very far when combined with power-
ful mathematics.

We consider two thermodynamic systems, A and B, plus a third C, which will
serve as our reference system. For concreteness, although this is not necessary for
the discussion, we shall suppose that all three systems consist of fluids, so that P and
V can be used as thermodynamic variables. (We could instead have used generic
variables, X and Y .) We do not assume that the systems are identical, nor will we
say anything about the nature of the fluids (whether they are liquids or gases). We
denote by VA and PA the volume and pressure of system A, respectively, and we
use a similar notation for the thermodynamic variables of B and C. We suppose
that VA and VB are fixed quantities, so that the volumes do not change during the
operations made on the systems. We also suppose that the state of system C is
fixed (VC and PC do not change during the operations).

We first bring A in thermal contact with C. As a result of the thermal inter-
action, we see that A’s pressure varies with time. When equilibrium is established,
we measure the pressure of A to be PA. This value is determined uniquely by the
experimental situation; altering the conditions (for example, changing either one of
VA, VC or PC) will produce a different equilibrium pressure. We must conclude that
the quantities VA, PA, VC , and PC are not independent; PA is determined by the
other quantities, and a relation must exist between them. This can be expressed
mathematically by an equation of the form

fAC(PA, VA, PC , VC) = 0, (1.3)

where fAC is some function, characteristic of the thermal interaction between sys-
tems A and C. (We do not need to know the explicit form of this function, only that
it exists. For equal quantities of ideal gases, experiment tells us that the relation is
PAVA = PCVC , so that fAC = PAVA − PCVC . For other systems, the function will
have a different form.)

Repeating the same procedure with B, we conclude that a relation of the form

fBC(PB , VB , PC , VC) = 0 (1.4)

must also exist. Equations (1.3) and (1.4) both express a relation between PC and
the other thermodynamic variables. We may express these relations as

PC = gAC(PA, VA, VC), PC = gBC(PB , VB , VC).

In principle, these equations can be obtained by solving Eqs. (1.4) and (1.5) for PC ,
and this determines the form of the new functions gAC and gBC . (For ideal gases,
we have PC = PAVA/VC and PC = PBVB/VC .)

We now equate these two results for PC :

gAC(PA, VA, VC) = gBC(PB , VB , VC). (1.5)

It is important to understand the meaning of this equation. If the systems A and B
are different, which we assume is the case in general, then Eq. (1.5) states that the
value of function gAC , when evaluated at PA, VA, and VC , is equal to the value of
the different function gBC , when evaluated at PB , VB , and VC . Equation (1.5) does
not state that gAC and gBC are equal as functions: they are not, unless the systems
A and B are identical. [For ideal gases, Eq. (1.5) reduces to PAVA = PBVB. In this
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8 Thermodynamic systems and the zeroth law

1.7 Equation of state

V

P

θ
θ

θ
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2
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The all-important relation
g(P, V ) = θ

is called the equation of state of the thermodynamic system. It states that at
equilibrium, the system’s pressure, volume, and empirical temperature are not all
independent, but are related quantities. The relation can be expressed graphically
on a P -V diagram. The curves g(P, V ) = constant are the system’s isotherms.

The exact form of the equation of state depends on the nature of the thermo-
dynamic system. For ideal gases, we have seen that the equation of state takes the
form

PV = nθ.

This holds quite generally for a gas at low pressure. At higher pressure, the equation
of state is more accurately described by

PV = nθ
[

1 + a(θ)P + b(θ)P 2 + · · ·
]

,

where a and b are functions that must be determined empirically. Such an expansion
of the equation of state in powers of the pressure is called a virial expansion. Another
important equation of state is the van der Waals equation,

(

P +
n2a

V 2

)

(

V − nb
)

= nθ,

where a and b are constants. This equation describes a simple substance near the
vapourisation curve (to be described below). In general, however, the equation of
state cannot be expressed as a simple mathematical expression; it must then be
presented as a tabulated set of values.

The equation of state of a given substance depends on the phase occupied by
that substance. Fairly generally, three different phases are possible: solid, liquid,
and gas. The equation of state adopts a different form in each of these phases. This
can be shown graphically in a P -V diagram (Fig. 1). Notice that the isotherms look
differently in the three different phases.
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16 Thermodynamic systems and the zeroth law
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30 Transformations and the first law

What we want to calculate is (∂U/∂V )T , and we will do so employing the
techniques we have introduced thus far. Let us first go back to the equation

d−Q =

[

(

∂U

∂V

)

T

+ P

]

dV +

(

∂U

∂T

)

V

dT,

derived above. Using Eq. (2.15), this implies

d−Q

dT
= CV +

[

(

∂U

∂V

)

T

+ P

]

dV

dT
.

If we assume that P is treated as a constant in this equation, we obtain

CP = CV +

[

(

∂U

∂V

)

T

+ P

]

(

∂V

∂T

)

P

.

Using Eq. (2.19) and solving for the unknown, we finally arrive at

(

∂U

∂V

)

T

=
CP − CV

β V
− P . (2.20)

This is our answer. Because all quantities on the right-hand side are known, we have
complete information about (∂U/∂V )T . This result illustrates a very important
aspect of what thermodynamics is all about: Quantities that are difficult to measure
directly, such as (∂U/∂V )T , can be related to easily measurable quantities, such as
CV , CP and β. It is important to appreciate the complete generality of Eq. (2.20):
this equation holds for any thermodynamic system.

2.8 More on ideal gases

The ideal gas, with equation of state PV = nRT , has been used repeatedly in the
preceding sections to illustrate the abstract ideas of thermodynamics. In this section
we use the techniques introduced in this chapter to further our understanding of the
ideal gas. We shall require additional input from experiment. This will be provided
by Joule’s experiment, and by measurements of the heat capacities of several ideal
gases.

2.8.1 Joule’s experiment

The question investigated by Joule in 1843 was the following: What happens to its
temperature when an ideal gas undergoes a free expansion in a thermally insulated
chamber?

The situation considered here is that of an ideal gas initially confined by a par-
tition to lie in a smaller portion of a chamber. It is assumed that heat is prevented
to flow into, or out of, the chamber. When the partition is removed, the gas freely
expands into the entire chamber. If the initial temperature was T , what is the final
temperature? The answer, as determined by Joule, is that the final temperature is
also T . Thus, under adiabatic conditions the temperature of an ideal gas does not
change during a free expansion.

The result of the Joule experiment has profound consequences regarding the
form of the internal-energy function. Notice first that no work is done on the system
during a free expansion, because there is no external agent applying any force. And
because the free expansion takes place in a thermally insulated chamber, there is
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46 Heat engines and the second law

P

V
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Qrej

adiabatic

adiabatic

Figure 3.4: The Carnot cycle for an arbitrary fluid.

A → B: The fluid is compressed reversibly while maintained in thermal contact
with a heat reservoir of temperature Tcold. A quantity Qrej of heat is rejected
to the cold reservoir.

B → C: The temperature is increased reversibly from Tcold to Thot by performing
an adiabatic compression of the fluid.

C → D: The fluid is expanded reversibly while maintained in thermal contact with
a heat reservoir of temperature Thot. A quantity Qabs of heat is absorbed
from the hot reservoir.

D → A: The temperature is lowered reversibly from Thot back to Tcold by perform-
ing an adiabatic expansion of the fluid.

The key properties of the Carnot cycle is that (i) it is reversible, and (ii) heat is
always transferred at constant temperature, by placing the working substance in
thermal contact with a heat reservoir. Any cycle that satisfies these requirements is
by definition a Carnot cycle, irrespective of the actual design of the engine, or the
choice of working substance. We shall say that a Carnot engine operates between

two reservoirs, one of temperature Thot, the other of temperature Tcold. Because
the operation of a Carnot engine is reversible, the cycle can equally well be operated
in the reversed direction, as a refrigerator.

The importance of the Carnot cycle for thermodynamics comes from the follow-
ing four statements:

1. All Carnot engines, irrespective of size, design, choice of working substance,
etc., have the same thermal efficiency if they operate between the same two
reservoirs.
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50 Heat engines and the second law

C → D: The gas is expanded to a volume VD, at a constant temperature T1. The
heat absorbed from the hot reservoir is Q1 = nRT1 ln(VD/VC).

D → A: The gas is expanded adiabatically to the larger volume VA. During this
transformation, the temperature decreases from T1 to T2 according to the
relation TV γ−1 = constant, which implies T1/T2 = (VA/VD)γ−1.

Our two expressions for T1/T2 allow us to deduce that VB/VC = VA/VD, or
VD/VC = VA/VB , and we find that the ratio of heat absorbed to heat rejected
is equal to

Q1

Q2
=

nRT1 ln(VD/VC)

nRT2 ln(VA/VB)
=

T1

T2
.

Comparing with Eq. (3.7), we see that the thermodynamic temperature Θ must be
related to the ideal-gas temperature T by a relation of the form Θ = cT , where c
is a constant. This constant plays no role in relations such as (3.7), and we may as
well choose c = 1. We conclude that the thermodynamic temperature is equal to
the ideal-gas temperature:

Θ(T ) = T . (3.8)

This is remarkable relation, because while the definition of T is intimitely tied to
the thermal behaviour of a particular thermodynamic system (the ideal gas), the
definition of Θ is tied to a universal property of the Carnot engines.

To summarize, we have found that the thermal efficiency of any Carnot engine
operating between a hot reservoir at T1 and a cold reservoir at T2 is given by

η = 1 −
T2

T1
(any Carnot engine) , (3.9)

irrespective of the specific design of the engine. This is statement #2. Notice that
this is equal to the thermal efficiency of the Stirling engine, which was calculated
in Sec. 2. Is the Stirling engine a Carnot engine?

We do not yet have the tools to prove that 1−T2/T1 is the maximum efficiency
that can be achieved by a generic engine working between these two extremes of
temperature. We will therefore defer the proof of statement #4 to the next chapter.

3.8 Problems

1. The operation of a Diesel engine is based on the cycle depicted below. It is
assumed that the working substance is an ideal gas. Calculate the thermal
efficiency of the Diesel engine, and show that it can be expressed as

η = 1 −
1

γ

(VC/VA)γ − (VB/VA)γ

(VC/VA) − (VB/VA)
,

Preview from Notesale.co.uk

Page 55 of 97



Chapter 4

Entropy and the third law

4.1 Clausius’ theorem

Entropy is a quantity of fundamental importance in thermodynamics. Its existence
as a state function, on the same footing as the internal energy, comes as a conse-
quence of Clausius’ theorem, our first topic in this chapter. In turn, the Clausius
theorem comes as a consequence of the second law of thermodynamics. Thus, the
entropy owes its existence to the second law.

We will consider a cyclic transformation involving a generic thermodynamic
system with variables X and Y . The transformation is completely arbitrary, apart
from the requirements that it eventually returns the system to its original state,
and that it be quasi-static. In particular, we do not assume that the transformation
is reversible.

Y

X

Tn

During the cyclic transformation, the system exchanges heat with its surround-
ings, and its temperature changes in some way. We imagine breaking up the com-
plete transformation into a large number of steps, N of them, during each of which
the system’s temperature is constant to a high degree of accuracy. If Tn denotes
the system’s temperature during the nth step, and if Qn denotes the (positive or
negative) heat aborbed by the system during this step, then we will show that in
the course of the complete cycle,

N
∑

n=1

Qn

Tn
< 0

if the transformation is irreversible, while

N
∑

n=1

Qn

Tn
= 0

if the transformation is reversible. Notice that this last equation is satisfied by the
Carnot cycle, for which Q1/T1 = |Q2|/T2, with Q1 denoting the heat entering the
system, while |Q2| = −Q2 is the heat leaving the system.

These equations are the content of the Clausius theorem, which is usually for-
mulated in the continuum limit, N → ∞. In this limit, the heat exchanged during
each step is infinitesimal, so that Qn → d−Q. Similarly, Tn becomes T , the contin-
uously changing temperature of the system. Finally, the discrete sum becomes an
integral, and we obtain the continuous version of Clausius’ theorem:

In any quasi-static, cyclic transformation,

∮

d−Q

T
≤ 0 , (4.1)

53
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4.2 Entropy 55

4.2 Entropy

4.2.1 Definition

Y

X

A

B

The entropy function S is defined by the infinitesimal relation

dS =
d−Qrev

T
, (4.2)

where dS is the differential of entropy, d−Qrev is the infinitesimal of heat when it is
delivered reversibly to the system, and T is the temperature; this equation is defined
for reversible transformations only. The integral form of this equation is

S(B) − S(A) =

∫ B

A

d−Qrev

T
, (4.3)

where it is assumed that the path linking the final state B to the initial state
A represents a reversible transformation. Apart from this assumption, however,
we will see that the relation is true for any path of integration. The entropy is
therefore truly a state function, because the integral of d−Qrev/T depends only on
the endpoints, and not on the path of integration. It should be noted that the unit
of entropy is the J/K.

Y

X

A

B
γ

γ’

The statement that S is a state function follows from a simple application of
Clausius’ theorem. Suppose that the curve γ in the Y -X plane represents a re-
versible transformation from an initial state A to a final state B. Suppose also that
γ′ is another such transformation. We may form a cyclic transformation by going
from A to B along the curve γ, and returning to A by going along the curve −γ′,
that is, by going along γ′ in the opposite direction. Because the cycle is reversible,
we have

0 =

∮

d−Qrev

T
=

∫

γ

d−Qrev

T
+

∫

−γ′

d−Qrev

T
.

Reversing the direction of −γ′ yields

∫

γ

d−Qrev

T
=

∫

γ′

d−Qrev

T
,

where both integrals are from A to B, but along different paths. This implies that
the integral depends only on the endpoints, and not on the path of integration. This
means that dS = d−Qrev/T is a differential, and that S is truly a state function, as
claimed.

Equation (4.3) provides a way of calculating the entropy difference between
two states A and B: One selects a reversible transformation between these states,
and evaluates the integral of d−Qrev/T along this transformation. Equation (4.3),
however, does not provide a way of assigning a specific value to the entropy of a
particular state A. For this purpose it is necessary to choose, as a reference, a state
O and assign to it an arbitrary entropy S(O). Then the entropy of any other state
A can then be calculated from the relation

S(A) = S(O) +

∫ A

O

d−Qrev

T
,

where the integral is evaluated along any reversible transformation from O to A.
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4.7 Statistical interpretation of the entropy 63

a detailed description of which cannot be attempted here. We will nevertheless illus-
trate some key points, and see how the notion of entropy emerges in the microscopic
point of view.

Thermodynamics provides a purely macroscopic description of a system. For
example, the thermodynamic description of a gas involves the specification of a
very small number of quantities, such as pressure, volume, and temperature, which
characterize the system as a whole. By adopting this macroscopic description, we
choose to discard a great deal of information that is in principle available about the
system. For example, we could want to keep track of the motion of the individual
gas molecules, and thus retain the complete information about the microscopic
state of the system. For a number of molecules of the order of 1023, this is a lot

of extra information. Of course, to discard this information is not a bad idea: The
macroscopic description is much more economical, and it is not clear a priori that
much is to be gained by adopting the microscopic description.

Supposing that we nevertheless choose to adopt the microscopic point of view,
how would we go about specifying the microscopic state of our gas? A complete
description would involve specifying, at a given moment of time, the positions xn

and velocities vn of every single gas molecule; here, the index n runs from 1 to
N , where N the total number of molecules. The system’s microstate is therefore
specified by providing values for all these positions and velocities; it is the complete
set {x1,x2, · · · ,xN ;v1,v2, · · · ,vN}. (To simplify the notation, we will write this
as {xn;vn}.) With 3 coordinates and 3 velocities per molecule, specifying the
microstate involves providing 6N pieces of information. As was remarked before,
this is a lot more information than what is provided by the macroscopic description,
which involves the specification of just three quantities.

It should be clear that many different microstates {xn;vn} will give rise to a
gas with the same macroscopic properties. In other words, there are many ways to
choose all the positions and velocities such that the gas will have the same pressure,
volume, and temperature. For example, changing the sign of all the velocities will
not alter the macroscopic aspects of the gas. A quantity of central interest in
statistical mechanics is Ω, the number of distinct microstates which give rise to the
same macroscopic description. In other words, Ω is the number of distinct choices
{xn;vn} such that for all these choices, the gas has the same pressure P , the same
volume V , and the same temperature T . This number is called the statistical weight

of the thermodynamic system. As we shall see, the statistical weight is intimately
related to the entropy function.

To see that such a relation must exist, we imagine the following situation: A gas
is initially confined to the left-hand side of a box by means of a removable partition.
We assume that the gas is perfectly isolated from its surroundings, and we consider
the transformation that results when the partition is removed. (This is of course
not a quasi-static transformation.) We take the initial state of the gas to be what
it is immediately after the partition is removed, with all the molecules still in the
left-hand side of the box. We take the final state of the gas to be what it is when
equilibrium is established, with the molecules now uniformly occupying both sides
of the box.

Our first observation is that at the initial moment, when all the molecules are
in the left-hand side of the box, the number of possible microstates {xn;vn} is
smaller than what it is at the final moment. The reason is clear: At the final
moment, the only constraint on the positions xn is that the molecules must all be
somewhere within the box; at the initial moment, however, there is the additional
constraint that the molecules must all be in the left-hand side. Thus, the number
of possible choices for the positions xn must be smaller initially, and must grow as
the molecules redistribute themselves within the box. It follows that Ω increases as
the system evolves toward equilibrium; at equilibrium, Ω has achieved its maximum
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70 Thermodynamic potentials

Knowledge of the existence of a relation U(S, V ) for thermodynamic systems,
even if its explicit form is not known, is a useful piece of information: It shows that
the variables U , S, and V are not all independent. This relation can be expressed in
a number of ways. For example, we may choose instead to express S as a function
of U and V . That such a function S(U, V ) must exist follows directly from this
alternative expression for the first law:

dS =
1

T
dU +

P

T
dV.

This implies that T and P can also be defined by

1

T
=

(

∂S

∂U

)

V

,
P

T
=

(

∂S

∂V

)

U

.

5.2 Enthalpy and the free energies

5.2.1 Enthalpy revisited

The observation that we can define certain thermodynamic quantities (such as tem-
perature and pressure) in terms of partial derivatives of a state function (such as
internal energy or entropy) is the key idea behind the notion thermodynamic po-

tentials. The goal is to introduce as many state functions as we can, and see how
many quantities can be defined by partial differentiation. The internal energy was
our first example of a thermodynamic potential.

We have already encountered another thermodynamic potential in Sec. B7: the
enthalpy. This is defined by

H = U + PV , (5.3)

from which follows the differential relation dH = dU+P dV +V dP . Using Eq. (5.1),
this can be written as

dH = T dS + V dP . (5.4)

This equation reveals that the enthalpy must be viewed as a function of entropy
and pressure: H = H(S, P ). It also gives us formal definitions for temperature and
volume:

T =

(

∂H

∂S

)

P

, V = −

(

∂H

∂P

)

S

. (5.5)

Notice that Eq. (5.4) comes with the following physical interpretation for the en-
thalpy: During an isentropic transformation in which the pressure is kept constant,
the enthalpy of a thermodynamic system does not change.

5.2.2 Legendre transformations

From a mathematical point of view, it is interesting to see that shifting the internal
energy by the quantity PV turns a function of the variables S and V into a function
— the enthalpy — of the variables S and P . This phenomenon has nothing to do
with thermodynamics as such; it is a general property of what are known as Legendre

transformations.
Consider the differential relation

df = a dx + b dy.

It tells us that f is a function of x and y, and that a and b can be defined by partial
differentiation: a = (∂f/∂x)y and b = (∂f/∂y)x. Consider now the following
transformation from f to a new function g:

f → g = f − by.
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5.3 Maxwell relations 73

Because the order in which the derivatives of U are taken does not matter, we
find that the quantities appearing on the left-hand side must be equal. We have
therefore established our first Maxwell relation:

(

∂T

∂V

)

S

= −

(

∂P

∂S

)

V

. (5.12)

This relation is very useful, because it equates (∂P/∂S)V , a quantity which is
difficult to measure or calculate, to (∂T/∂V )S , a quantity which is much easier to
measure or calculate. For example, if the system is an ideal gas, then keeping S
constant means that the transformation must be adiabatic, so that T = cV −(γ−1),
where c is a constant. This relation is easy to differentiate, and the result can
immediately be equated to −(∂P/∂S)V . The great utility of the formal definitions
for T and P is now apparent: They give rise to the Maxwell relation (5.12).

Additional Maxwell relations can be generated by using the other thermody-
namic potentials. Starting with the enthalpy and following the same steps as above,
we arrive at the relation

(

∂T

∂P

)

S

=

(

∂V

∂S

)

P

. (5.13)

Starting with the Helmholtz free energy, we obtain
(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

. (5.14)

Finally, using the Gibbs free energy yields
(

∂S

∂P

)

T

= −

(

∂V

∂T

)

P

. (5.15)

These remarkable relations provide a further illustration of a recurring theme in this
course: Limited experimental input (such as the equation of state) and a few key
physical ideas (such as the first and second laws of thermodynamics) can go a very
long way when combined with powerful mathematical reasoning. As an exercise,
you may check the validity of the last two Maxwell relations for the specific case of
an ideal gas, by using the expressions derived in Sec. D4 for the entropy function. Of
course, the great power of these relations resides in the fact that they are completely
general: They hold for all thermodynamic systems.

As an illustration of the usefulness of the Maxwell relations, we now give a proof

of Joule’s law, which states that the internal energy of an ideal gas depends on
temperature only. Thus, we want to show that (∂U/∂V )T = 0 for an ideal gas. We
begin with the first law written in the form

dU

dV
= T

dS

dV
− P.

For the special case of an isothermal transformation, this equation becomes
(

∂U

∂V

)

T

= T

(

∂S

∂V

)

T

− P.

Using Eq. (5.14), we obtain
(

∂U

∂V

)

T

= T

(

∂P

∂T

)

V

− P . (5.16)

This equation holds for all thermodynamic systems. If we now specialize to an ideal
gas, we may use the equation of state to calculate (∂P/∂T )V = nR/V = P/T . We
then find that the right-hand side evaluates to zero, and we have proven Joule’s
law.
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Chapter 6

Thermodynamics of

magnetic systems

6.1 Thermodynamic variables and equation of

state

In this last section of the course we will turn our attention to the thermal properties
of magnetic systems, and show how the general framework of thermodynamics can
readily be applied to such systems. This discussion will provide us with a concrete
illustration of the fact that the methods of thermodynamics are not limited to the
study of gases, but are quite general.

We wish to study how temperature affects the magnetic response of some ma-
terial. For simplicity, we will be dealing only with paramagnetic materials. Para-
magnetism is a rather weak form of magnetism, characterized by the fact that the
material has a magnetization only when it is subjected to an applied magnetic field;
turning the field off removes all traces of magnetic activity. The stronger form
of magnetism associated with permanent magnets is called ferromagnetism. (This
form of magnetism is difficult to incorporate within the framework of thermody-
namics because the phenomenon of hysteresis prevents the system from having a
well-defined equation of state.)

H

V0 I

L

We will need a device capable of supplying the external magnetic field, which we
denote H. It is simplest to deal with a field that is very uniform, and this can be
provided by a very long solenoid. The magnetic field inside the solenoid can easily
be calculated from the Maxwell equation

∮

H · dℓ = µ0(current enclosed),

where the integral is calculated along the closed contour depicted in the figure; the
constant µ0 is the permeability of vacuum. If the length of the circuit is L and
p is the number of windings per unit length, then the current enclosed within the
contour is pLI, where I is the current running through the solenoid. The previous
equation then gives HL = µ0pLI, or

H = µ0 p I , (6.1)

where H is the magnitude of the magnetic field H.

V0 I

B

We now insert a magnetic sample inside the solenoid. For simplicity, we assume
that the sample is prepared in a long, cylindrical shape that fits perfectly within
the solenoid. The fact that the sample has magnetic properties implies that the
magnetic field measured inside the solenoid (and inside the sample) is now different
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91

a) T as a function of V along this line.

b) The value of V at which T is maximum.

c) The values of T0, Tmax, and T1.

d) Q, the heat transferred to the gas when it goes from the volume V0 to any
other volume V along the line.

e) The value of P and V at which Q is a maximum.

10. (Zemansky and Dittman, Problem 7.10)

A Carnot engine operates with a non-ideal gas whose equation of state is
P (v − b) = RT , where v is the molar volume and b is a constant, and whose
molar internal energy u is a function of T only. Prove that the thermal
efficiency of this particular Carnot engine is given by

η = 1 −
Tcold

Thot

This result provides another illustration of the fact that the thermal efficiency
of a Carnot engine does not depend on the specifics of the engine.

11. A thermodynamic system A is n times as massive as another system B, so
that their heat capacities (at constant pressure) are related by CA = nCB .
Initially, both systems are isolated from each other, and are at temperatures
TA and TB (TA > TB), respectively. The systems are then brought in thermal
contact; their respective pressures do not change during the interaction. After
equilibrium is re-established, the systems are separated again, and are found
to be at a common temperature TF .

a) Calculate TF .

b) Calculate ∆S, the amount by which the total entropy has increased during
the interaction.

c) Consider the case n ≫ 1. Show that in this case, your expressions for TF

and ∆S reduce to

TF ≃ TA

[

1 −
1

n
(1 − x)

]

,

∆S ≃ CB(x − 1 − lnx),

where x = TB/TA. [Hint: Use the approximation ln(1 + ǫ) ≃ ǫ, valid for
ǫ ≪ 1.]

12. (Zemansky and Dittman, Problem 8.16)

The entropy function of an ideal gas can be expressed as

S = S0 + CV ln

(

T

T0

)

+ nR ln

(

V

V0

)

.

Imagine a box divided by a partition into two equal compartments of vol-
ume V , each containing 1 mol of the same gas at the same temperature and
pressure.

a) Calculate the entropy of the two portions of gas while the partition is in
place.

b) Calculate the entropy of the entire system after the partition has been
removed.

c) Has any transformation taken place? If so, was it reversible or irreversible?
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92 Problems for review

d) Has any entropy change taken place? If not, why not?

13. (Zemansky and Dittman, Problem 9.3)

From the fact that dV/V is an exact differential, derive the relation

(

∂β

∂P

)

T

= −

(

∂κ

∂T

)

P

.

14. (Zemansky and Dittman, Problem 9.5)

Derive the third “T dS” equation,

T dS = CV

(

∂T

∂P

)

V

dP + CP

(

∂T

∂V

)

P

dV.
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